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technology that would be able to assess pain behaviour could
support the delivery of personalised therapies in the long-term
and the self-directed management of the condition with the
aim of improving engagement in valued everyday activities
[4]. The participants in this task had to construct a model for
classifying continuous protective behaviors, present or absent
throughout exercise of a person with chronic pain, based on
the position of the joints of the whole body and back muscle
activity. Ground truth for the type of exercise is also available,
but it is not used as an input.”

A. Data description

The anonymised 3D full-body joint positions and concomi-
tant back muscle activity data for 19 people with chronic low
back pain from the EmoPain dataset were provided [5]. The
data were given with corresponding protective behaviour labels
obtained from clinician observers. The data were given in
training, validation, and test partitions which contain instances
from 10, 4, and 5 people with chronic pain respectively. The
test partition did not include the protective behaviour labels.
AffectMove task 1 dataset is composed of 9 exercises (stand
on one leg, sit still, reach forward, sit-to-stand, stand-to-sit,
stand still, bend, walk and a other movement events) with the
body movement and muscle activity measures. Each repetition
of an exercise by a person is a 180-frame segment (3 seconds)
and the label (label 0 where there is no protective behavior, 1
otherwise) for each segment is based on continuous labelling
provided by expert raters. Movement data is the 3D full-body
joint positions where the skeleton is represented by 17 joints
and muscle activity data (electromyography) were collected
for 4 muscle groups (cf. Fig. 1).

B. Exploring the classifiers space

The first submission relies on a combination of motion
capture (MoCap) pre-processing data and a classification ap-

Abstract—This paper describes some machine learning meth-
ods that we have implemented to participate in the AffectMove 
challenge which aims to develop technologies for classification 
of body movements in the areas of physical rehabilitation of 
chronic pain, mathematical problem solving and interactive 
dance contexts. The methods and results obtained are presented 
as well as some futureworks.
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I. INTRODUCTION

As the organizers of the AffectMove Challenge describe 
it [1] ”The AffectMove challenge is based on 3 natural-
istic datasets on body movement, which are fundamental 
components of everyday living both in the execution of the 
actions that make up physical functioning as well as in rich 
expression of affect, cognition, and intent [2] [3]. The datasets 
were built according to automatic detection requirements for 
chronic pain physical rehabilitation, maths problem solving, 
and interactive dance contexts respectively.” In this paper, 
we only deal with the first t wo s ets o f d ata, w ith reference 
to the two challenge tasks: Task 1: ”Protective Behaviour 
Detection based on Multimodal Body Movement Data” and 
Task 2: ”Detection of Reflective T hinking b ased o n Body 
Movement Data”. We chose to analyze the data as a two-
class supervised classification p roblem. F or e ach t ask o f the 
challenge we present the data, their preprocessing (including 
features extraction), then the considered machine learning 
methodsand the obtained results. We end with a conclusion 
and directions for future work.

II. TASK 1: PROTECTIVE BEHAVIOUR DETECTION BASED
ON MULTIMODAL BODY MOVEMENT DATA

The aim of this task is to advance continuous detection of 
protective behaviours, i.e., bodily-expressed pain behaviours, 
in people with chronic musculoskeletal pain. As described 
in [1] ”Chronic pain is a major healthcare challenge and



proach. Three main steps constitute the whole pipeline (cf.
Fig. 2):

• Posture Features Extraction. The coordinates of the skele-
ton joints are used to compute the feature vectors which
represent human postures.

• Benchmarking classification approaches. Several classifi-
cation methods have been evaluated and Random Forest
was selected as the most efficient one.

• Fine-tuning of the selected model. A hyper-parameters
optimization step (number of trees, maximum depth of
tree, etc.) has been performed thanks to a grid search.

Fig. 1. Skeleton represented by 17 joints (M - -) and 4 EMG sensors (E - -).

The first step is the data processing where only MoCap
data is used. The process exploits spatial features computed
from 3D skeleton coordinates, without including the time
information in the computation, in order to make the system
independent of the speed of movement. For each skeleton
frame, a posture feature vector is computed. Each joint is
represented by Ji, a three-dimensional vector. The person can
be found at any place within the coverage area of the MoCap
capture, and the coordinates of the same joint may assume
different values. It is necessary to compensate this effect, by
using a proper features computation process. A straightforward
solution, proposed by [6], is to compensate the position of the
skeleton by centering the coordinate space in one skeleton
joint. Considering the skeleton composed by 17 joints, J0
being the hips center and J3 the shoulders center (cf. Fig.
1), the ith joint feature di is the distance vector between Ji
and J0, normalized by the distance between J3 and J0.

di =
Ji − J0
||J3 − J0||

, i = 1, 2, ..., 16 (1)

For a repetition, represented by 180 frames, the length of
the feature vector to characterize it is, 16× 180 = 2880.

The second step consists of a classifier selection as exposed
in [7]. As multiple classifier types are available, selecting the
right classifier according to its performance is a crucial task.
Six kinds of classifiers from the Scikit-learn API [8] have been
explored:

• SVM (Support Vector Machines) with various kernels
(linear, poly and rbf)

• Random Forest
• Ridge Regression
• k-Nearest Neighbors
• Multi-Layer Perceptron
• Passive Aggressive classifier

Classifiers have been trained with their default parameters
(according to Scikit-learn). Random Forest [9] performs best
and will be used in the next process.

The last step is a classifier optimization following a
grid search on training data with a 3-fold cross validation
based on accuracy performances. For a Random Forest Clas-
sifier, there are several different hyperparameters that can
be adjusted. Four main parameters have been investigate:
the number of trees in the forest, the maximum depth of
each tree, the minimum number of samples required to split
leaf node and the minimum number of samples required
to be at a leaf node. The resulting best hyperparameters
are as follows: RandomForestClassifier(n estimators=2000,
max depth=85, min samples leaf=1, min samples split=2).

C. Metrics, scores and conclusion for the task 1

Four metrics were used by organizers of the challenge, F1-
score for both classes, Matthews correlation coefficient (MCC)
and Accuracy. Table I shows scores for the first submission of
this article.

TABLE I
TASK 1 : SUBMISSION SCORES

F1-score
(class 0)

F1-score
(class 1) Accuracy MCC

0.89 0.30 0.81 0.23

III. TASK 2: DETECTION OF REFLECTIVE THINKING
BASED ON BODY MOVEMENT DATA

As described in [1] ”The purpose of this task is to con-
tinuously detect reflective thinking in children during maths
problem-solving activities. Understanding mathematical ideas
such as angles and shapes is a key part of basic education
and digital learning technology that promotes the use of
body movement as well as further recognizes critical learning
moments (e.g., reflective thinking) could support learning of
abstract mathematical ideas which may otherwise be challeng-
ing to relate to. The participants in this task had to build
a model for classification of reflective thinking continuously
as ‘observed’ or ‘not observed’ while a child solves maths
problems, based on joint positions.”



Fig. 2. Pipeline overview. Flatten operation allows to obtain the feature vector
for one repetition.

A. Data description

The 3D full-body joint positions for 24 children from
the weDraw-1 Movement dataset [10] were provided. The
data is accompanied with corresponding reflective thinking
labels based on expert observer annotation. Labels for the
corresponding math problem-solving activities have also been
included. The data was given in training, validation, and test
partitions which contain instances from 13, 5, and 6 children
respectively. The test partition did not include the reflective
thinking labels or the activity type.

B. Method and results

As we will be using a cross-validation method, we have
chosen to group together the training and validation sets. Files
of less than 4.5 seconds have been eliminated, the classification
rule for these recordings will be to classify them as ”0” for
”reflective thinking not observed”. Each trial is then resampled
at 25Hz and 4 seconds (from the 5th to 104th sample) are
retained. At the end of this processing, our training set consists
of 2849 trials: 2458 of class ”0” for ”reflective thinking
not observed” and 391 of class ”1” for ”reflective thinking
observed” ; Each trial consisting of 51 lines (3D position for
17 joints) of 100 samples. As we can see, our training set is
strongly unbalanced. To overcome this problem, we applied
the ADASYN (Adaptive Synthetic Sampling) method which

is fully described in [12]. The aim of the ADASYN algorithm
is to improve the class balance by synthetically creating new
examples from the minority class via a linear interpolation
between the existing minority class examples. ADASYN is an
extension of the SMOTE (Synthetic Minority Oversampling
TEchnique) method [11], creating more examples near the
border between the two classes than inside the minority class.
After this step, the learning set consists of 4897 trials of 5100
features : 2458 of class ”0” and 2439 of class ”1”. In order
to reduce the number of features we applied Common Spatial
Pattern (CSP) method [13] which consists of a binary data-
driven supervised data projection of a signal by maximizing
the variance of the positive class while minimizing the variance
of the negative one. These filters can be used in the construc-
tion of feature vectors, or other analyzes, where it is useful to
remove as much noise as possible from a signal. This method
is conventionally used to process electroencephalogram (EEG)
signals, but we thought it would be useful in our study, the
movements of the subjects being spatially reduced and very
close. For the classification we have tried several classifiers
(Linear Discriminant Analysis LDA, Logistic Regression LR,
Naives Bayes NB, Cubic Support-Vector Machines SVM,
Ensemble Sub-space k-Nearest Neighbours ESkNN [14]) and
several numbers of CSPs. We used a 5 folds cross-validation
technique to assess the accuracy of the classification (cf. Table
II).

TABLE II
TASK 2 : ACCURACY ON TRAINING SET

#CSP LDA LR NB SVM ESkNN
2 0.635 0.635 0.621 0.493 0.555
4 0.670 0.674 0.667 0.494 0.672
6 0.712 0.712 0.696 0.722 0.789
8 0.734 0.737 0.726 0.782 0.858
10 0.763 0.766 0.751 0.899 0.894
12 0.768 0.771 0.759 0.849 0.918
14 0.778 0.778 0.776 0.875 0.923
16 0.780 0.780 0.775 0.878 0.930
18 0.784 0.782 0.788 0.888 0.935
20 0.791 0.790 0.800 0.905 0.945
22 0.798 0.797 0.799 0.909 0.945
24 0.798 0.800 0.804 0.914 0.948
26 0.812 0.810 0.803 0.916 0.951
28 0.817 0.814 0.815 0.924 0.953
30 0.816 0.812 0.813 0.923 0.954
32 0.814 0.814 0.816 0.934 0.955
34 0.818 0.816 0.815 0.933 0.958
36 0.816 0.815 0.820 0.935 0.958
38 0.817 0.817 0.817 0.938 0.961
40 0.818 0.819 0.817 0.937 0.958
42 0.817 0.819 0.821 0.936 0.960

The three bold results in table II were selected and submitted
to the challenge (cf. Table III).

IV. CONCLUSION

This article presents our contributions to the first two tasks
of the AffectMove challenge : Task 1: ”Protective Behaviour
Detection based on Multimodal Body Movement Data” and
Task 2: ”Detection of Reflective Thinking based on Body
Movement Data”. For each of these tasks, we present the



TABLE III
TASK 2 : SUBMISSION SCORES

Train Test

Classifier #CSP Acc. F1-score
(class 0)

F1-score
(class 1) Acc. MCC

ESkNN 38 0.961 0.918 0.232 0.853 0.220
SVM
Cubic 30 0.923 0.874 0.206 0.783 0.082

SVM
Cubic 38 0.938 0.885 0.192 0.799 0.084

(Acc. : Accuracy)

complete process that we implemented to deal with these
classification problems and the obtained results on the train
and test sets.
Due to lack of time we could not implement a diagnostic-
oriented method for task 1, but we describe it in the next
section. We hope to be able to implement and present it during
the AffectMove workshop.

V. FUTUREWORKS

Protective behavior detection based on multimodal body
movement data defines a diagnosis problem and should be for-
malized as such. Protective behaviors correspond to counter-
actions for eliminating or minimizing the effects of physical or
muscular disturbances. The earlier the detection, the better the
anticipation of corrective actions. Fault detection and diagnosis
have been largely studied in the literature related to industrial
systems’ reliability but can naturally be transposed to other
application domains. Fault analysis of systems (technological,
medical, human systems etc.) consists of detecting failures as
early as possible in order to be able to anticipate and minimize
their future effects. [15] distinguishes two kinds of reasoning
for solving diagnostic tasks: abnormal-operation-oriented or
abductive reasoning and normal-operation-oriented reasoning.
Abnormal-operation-oriented diagnosis uses knowledge about
how the system’s components are affected by some specific
faults in order to trace those faults: all possible failures
that could occur are hypothesized, their effects are predicted
and the counteractions for eliminating or minimizing these
effects are designed. Normal-operation-oriented diagnosis uses
knowledge about how normal components work to detect
deviations from normality in observed behavior, from which
a minimal set of faults is hypothesized. [16] proposed a
logical theory of model-based diagnosis, also referred to as
consistency-based diagnosis. The analysis is aimed at obtain-
ing consistency between the observations and the model by
removing assumptions about the behavior of some component
[17]. This theory was extended and formalized in [18] and
many refinements have since been proposed ( [19]; [20];
[21]). In a short way, modeling relationships between vari-
ables provides a set of analytical redundancy relationships
(ARR) that enables assessing consistency between observa-
tions online. Each ARR can be seen as a virtual sensor
that does not measure any physical quantity but is dedicated
to anomaly detection when checking expected consistency

between variables. Model-based diagnosis is part of our further
research works w.r.t the AffectMove challenge. The idea is
to complete the position and EEG features with ARRs to
diagnose abnormal behaviors more efficiently. We will proceed
in several stages. First, the position features space will be
completed with kinematics and dynamics features. We will
use the CusToM software [22] to automatically implement
kinematics and inverse dynamics methods: from the Mocap
X, Y, Z positions of 17 points of the human body, the
angles at the joints, the joint torques, the muscular efforts
and the muscular activations will be computed. The first task
will consist of formatting our .txt data into .c3d with the
BTK toolkit [23]. Once the file obtained, we will have to
differentiate the subjects, indeed musculoskeletal modeling is
particularly sensitive to height and weight of the subject, then
we will adjust the model by choosing thresholds and methods
specific to the data provided for the challenge. The results
of the machine learning part will be then applied upon this
augmented features space. The interest of our approach is also
to have a visual understanding of movements: we can observe
some peculiarities of movements by representing raw data in
3D, that is a very useful aspect in terms of man/machine
interaction and AI explainability. In the second step of our
approach, we are also working on a more biomechanics-based
approach. Since joint torques, muscular efforts and muscular
activations are available through CusToM, we propose to
establish the biomedical constraints that provide relationships
between forces and torques. To each of these biomechanical
relationships, an ARR that enables online checking of the
consistency between the observations may be attached. We
expect that the additional knowledge the biomechanical vari-
ables (forces and torques) and the related ARRs provide will
improve the classifiers results that have been proposed for the
AffectMove challenge.
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