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Abstract. This work describes a computational strategy, based on a stabilised finite element method, to

simulate bifluid flow with capillary effects in a fibrous microstructure. In this framework, triple junction

equilibrium is imposed as a natural condition in the weak formulation of the Stokes problem. Two types

of 2D microstructures are then considered, hexagonal and random, and studied in terms of numerical

permeability and capillary pressure.

1 Introduction

Capillarity can be defined as the ability of a liquid to maintain contact with a solid substrate without the

need for external forces. Capillary effects, which occur when three phases (liquid, gas and solid) are

in presence, are involved in many areas of engineering. For example, their influence has been demon-

strated during the resin infusion manufacturing process of composite materials [1]. In the context of the

simulation of such manufacturing processes, this work aims at proposing a finite element strategy to sim-

ulate capillary flows at the fibre scale. The rest of this paper is organized as follows. The mathematical

model developed is presented in Section 2: Stokes equations and associated interface or boundary condi-

tions. The weak formulation of this problem is given is Section 3, as well as the computational strategy

employed. Finally, two type of microstructures (hexagonal and random) are investigated in Section 4.

Quantities of interest, such as capillary pressure, are computed from these digital microstructures and

compared to measured or reference values.

2 Mathematical model

Let Ω be the computational domain, a bounded region of Rd , with d = 2,3 the space dimension. This

domain describes the fibrous microstructure through which a Newtonian fluid flows. Fibres are assumed

to be rigid and therefore represented by holes into Ω. This configuration is sketched in Figure 1. The

computational domain also contains a “surrounding medium”, i.e. a gas phase. Consequently: Ω =
Ωl ∪Ωg, where Ωl and Ωg are the liquid and gas subdomains respectively. The liquid - gas interface is
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Figure 1: Computational domain Ω and zoom-in on a triple point

denoted Γlg, while Γls and Γgs denote the liquid - solid and gas - solid interfaces. Finally, the intersections

between these three interfaces define the triple junctions. They are points in 2D situations like those

investigated in this paper (points P in Figure 1) and lines in 3D cases like those treated in [2].

2.1 Mechanical equilibrium in bulk

Both liquid and gas as considered as incompressible Newtonian fluids, characterized by their viscosities,

respectively ηl and ηg, with ηg ≪ ηl , and their densities ρl and ρg. Note that our purpose is not to obtain

a fine description of gas dynamics, but just, in an Eulerian framework, to extend the velocity and pressure

fields to the whole computational domain, without disturbing the liquid flow. Since the inertia effect is

neglected in this paper, momentum and mass balances give rise to the usual Stokes system

−∇ ·(2ηε̇(v))+∇ p = ρg in Ω (1)

∇ ·v = 0 in Ω (2)

with ε̇(v) = (∇v+∇T v)/2 the strain rate tensor, g the gravitational acceleration, η equal to ηl in Ωl and

ηg in Ωg, and ρ equal to ρl in Ωl and ρg in Ωg.

These equations are closed by considering the interface and boundary conditions given in the following

that characterize capillary flows.

2.2 Mechanical equilibrium at interfaces

Liquid - gas interface. The action exerted by the liquid and gas domains on the interface Γlg is described

by the stress vectors −σl ·n and σg ·n, where σl/g = 2ηl/gε̇(v)− pI is the liquid/gas Cauchy stress tensor,

and n the unit normal to the interface, pointing outward the liquid part. In addition, let us consider a

surface stress, distributed over Γlg, and given by a vector field T . Due to the angular momentum balance,

T must be tangential to the interface: T = γlgt lg, where the scalar γlg is the surface tension parameter
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and t lg the unit tangent to the interface, defined as the derivative of the position vector with respect to

arclength s. Finally, the force balance on the interface writes [2, 3]:

[σ ·n]Γlg
=−

d

ds
(γlgt lg) (3)

where [σ ·n]Γlg
is the stress vector jump across Γlg.

Note that, expanding the derivative in the right-hand-side and using the Frenet-Serret formula dt lg/ds =
κn (κ is the mean curvature), provides two terms: one is the usual curvature term of Laplace’s law, related

to the jump in normal stress; the other is the surface derivative of γlg, related to the jump in shear stress

(Magangoni’s effect).

Fluid - solid interfaces. The solid substrate, assumed to be a rigid body, is represented by a boundary

of the computational domain. The above observations allow us to write, with coherent notations:

σl ·n =
d

ds
(γlst ls) on Γls and σg ·n =

d

ds
(γgstgs) on Γgs (4)

Note that, a Navier friction law, not presented here, can also be considered in (4) [2].

2.3 Mechanical equilibrium at triple junctions

Triple junctions are the locus defined by the intersections of Γlg, Γls and Γgs. For example, they are

the set of points P represented in Figure 1 in a 2D context. In these points, the mechanical equilibrium

writes:

γlgt lg + γlst ls + γgstgs =−Rs (5)

where Rs is the substrate reaction, here perpendicular to its surface due to the rigid body assumption.

Therefore, this vector has no influence on the flow.

2.4 Boundary conditions

Previous interface conditions are completed as it follows. Let ΓN be the lower and upper boundaries of

the computational domain (see Figure 1). Then:

σ ·n =−pextn on ΓN (6)

where pext is an external pressure. Additionally, considering ΓD = ∂Ω\ΓN , we have

v ·n = 0 on ΓD, (7)

and

(σ ·n) · t = 0 on ΓD\(Γls ∪Γgs) (8)

Finally, the capillary flow of a liquid in a microstructure, is described by the Stokes equations (1)-(2)

completed with conditions (3)-(8).
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3 Numerical strategy

Flow equations in the previous section are solved using a finite element method combined with a level-

set technique to capture the evolution of the liquid - gas interface. Before detailing these points, let us

introduce the weak formulation of the capillary flow problem.

3.1 Weak formulation

The key point of the approach presented here is to treat interface conditions (3)-(4) and equilibrium at

triple junctions (5) as Neumann conditions which are consequently weakly imposed. The weak form of

the problem is a direct result of the following relations. Let w : Ω → R
d be a velocity test function with

the property that w ·n = 0 on ΓD. By summing the contributions of Ωl and Ωg, we have:

−
∫

Ω
w ·∇ ·σdv =

∫
Ω

σ : ∇wdv+
∫

ΓN

pextw ·nds

−
∫

Γlg

w ·
d

ds
(γlgt lg)ds−

∫
Γls

w ·
d

ds
(γlst ls)ds−

∫
Γgs

w ·
d

ds
(γgstgs)ds (9)

Next, integrating by part on each interface Γi, with i ∈ {lg, ls,gs} :

∫
Γi

w ·
d

ds
(γit i)ds =−

∫
Γi

γit i ·
dw

ds
+

∫
∂Γi

γiw · t iςds (10)

Here, several remarks can be done. First, t · dw
ds

is nothing but the surface divergence of w, which can be

rewritten in tensor notation [2] as: (I−n⊗n) : ∇w. Second, in a 2D case, the boundary ∂Γi of the curve

Γi is reduced to two points, the two extremities of the curve. Hence, in such a situation, the last integral

of Equation (10) is nothing more than the sum of the values of γw · tς taken at these points. In addition,

ς is equal to +1 or −1 at each extremity of Γi, depending on the chosen orientation (in 3D, ς is a unit

vector, tangent to the surface and normal to the curve). It is important to note that when one extremity

of Γi is a triple point, Equation (9) shows that equilibrium condition (5) can be weakly imposed at this

point. The term w ·R which results from the sum of the different contributions, is equal to zero. Indeed,

on the one hand, the reaction of the substrate, R, is collinear with n, the normal to the solid surface, on

the other hand w · n = 0. Finally, in the case where one extremity of Γi is not a triple point, we will

assume, for simplicity, that the associated boundary term w · t i vanishes. If not, this term must be taken

into account in the weak formulation.

In the end, the weak form of the Stokes problem, including capillary effects, writes: find (v, p) ∈
H1(Ω)d ×L2(Ω), v ·n = 0 on ΓD, such as

∫
Ω

η∇v : ∇wdv−
∫

Ω
p∇ ·wdv =∫

Ω
ρg ·wdv−

∫
ΓN

pextw ·nds−
∫

Γlg∪Γls∪Γgs

γ(I −n⊗n) : ∇wds
∫

Ω
q∇ ·vdv = 0

(11)

for all couple of test functions (w,q) ∈ H1(Ω)d ×L2(Ω), with w · n = 0 on ΓD. Moreover, γ is equal to

γlg, γls, γgs on the corresponding interfaces.
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3.2 Finite element approximation

The computational domain is discretised using an unstructured mesh, made up of triangles in 2D or

tetrahedrons in 3D. In a Finite Element (FE) framework, both velocity and pressure are approximated by

piecewise linear continuous discrete fields vh and ph. Such a P1/P1 mixed FE does not lead to a well-

posed formulation of the discrete Stokes problem. This difficulty is overcome by the use of a Variational

MultiScale (VMS) stabilisation technique, consisting in splitting the unknowns in a computable compo-

nent, the FE solution, and an uncomputable one that cannot be captured by the FE mesh: v = vh + ṽ and

p = ph + p̃. More specifically, the Algebraic SubGrid Scale (ASGS) method is employed in this work.

Developed by Badia and Codina [4], this approach consists in approximating the subgrid terms ṽ and

p̃ by quantities proportional to the residuals of the Stokes equations, and results in stabilization terms

consistently added to the FE formulation.

Due to the liquid - gas interface curvature, pressure is intrinsically discontinuous across this interface.

However, the discretisation given so far implies a continuous discrete pressure field, which therefore

cannot accurately capture the discontinuity and leads to oscillations. That is why, in the elements crossed

by the interface, the pressure approximation space is enriched by two discontinuous shape functions.

This strategy, proposed by Ausas et al. in [5], does not increase the size of the final linear system, since

the degrees of freedom associated with the enrichment can be condensed prior to the assembling of the

global matrix. In addition, a similar strategy due to Coppola-Owen and Codina [10] can be employed to

capture the discontinuity in the pressure gradient that results in the jump of viscosity across the liquid -

gas interface.

3.3 Semi-implicit discretisation of the surface tension term

The discretisation of the Stokes problem leads to spurious velocity oscillations, also called parasitic cur-

rents, located in the vicinity of the liquid - gas interface. In the work discussed here, these perturbations

are due, on the one hand, to the pressure approximation, even though the enrichment technique greatly

improves the situation, and on the other hand, to the piecewise linear approximation of the interface

which can give rise to artificial curvatures. These non-physical velocities cause small oscillations of the

interface: this is the phenomenon of capillary wave propagation, with a wavelength of the same order as

the mesh size. Denner and van Wachem have shown in [6] that whatever the time coupling between the

resolution of the mechanical problem and the transport of the interface, these discretisation errors will in-

crease over time if the time step does not satisfy some restrictions. However, in practical situations, these

restrictions make the time step too small to carry out simulations. In the literature, this limitation is typi-

cally overcome by considering a semi-implicit form of the surface tension term
∫

Γlg
γlg(I−n⊗n) : ∇wds.

This integral is then evaluated by using a prediction of the position of the interface at the next time in-

crement, which gives the following additional term in the problem formulation:

∆t

∫
Γlg

γlg(∇v · (I −n⊗n)) : ∇wds (12)

where ∆t is the time step. This interface shear stress dissipates surface energy, especially at small wave-

length, thus avoiding capillary wave propagation.
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3.4 Interface transport

The interface Γlg is implicitly described as the zero-isovalue of a level-set function φh, continuous over

the computational domain, piecewise linear, positive in the gas subdomain and negative in the liquid

subdomain. Initially, φh is chosen as the signed distance to the interface, filtered by a hyperbolic tan-

gent [2, 3]. At each instant tn, the velocity vh(tn) and the pressure ph(tn) are computed on the configura-

tion corresponding to φh(tn). φh(tn+1) is subsequently computed by solving the transport equation

∂φh

∂t
(tn+1)+ vh(tn) ·∇φh(tn+1) = 0 (13)

using a SUPG stabilisation technique. Note that this weak coupling between mechanics and geometry can

be improved by solving iteratively in the same time increment, both the Stokes and transport equations,

until reaching a global convergence on (vh, ph,φh)(tn+1). This strong coupling allows a better accuracy

on the contact angle between liquid and solid [8]. However, this strategy also has a higher computation

cost. Here, only the weak coupling is used.

Finally, we mention that the surface integrals in Equation (11) are computed by local reconstruction

of the interface as a segment (or a 3D plane) in the elements cut by the interface. In addition, the

volume quadrature rule is enriched in these elements in order to take into account viscosity and density

discontinuities.

4 Simulation results

The computational strategy presented above has been implemented in the FE Z-set software. The rele-

vance of this approach has been evaluated in references [3, 2, 8] with 2D and 3D simulations of droplet

spreading and capillary rise. Among other results, the contact angle provided by the simulations is equal

to that of the Young - Laplace equation, as expected, at least as long as no dissipation is considered

at the triple junction (see [2]). This work presents simulations of capillary rise into two different mi-

crostructures, and sketches first calculations of capillary pressure. The two structures are: a hexagonal

arrangement of circular (half-)fibers disposed in staggered rows (structure 1) with a fiber volume ratio

Vf of 52%; a random microstructure (structure 2) made up of identical circular fibers with Vf = 48% [9].

In both cases, the fiber radius is of 5µm. The surface tension and energies are γlg = 37.03×10−3 N/m,

γls = 30.03×10−3 N/m and γgs = 60.93×10−3 N/m. The liquid viscosity is ηl = 10−3 Pa.s, that of the

surrounding medium is ηg = 1.71× 10−5 Pa.s, and the gravity is neglected. Figures 2a and 2b show at

a given time, the liquid - gas interface (green line), the velocity and pressure isovalues, as well as the

streamlines, during a capillary rise in structures 1 and 2.

4.1 Expression of the capillary pressure

The calculation of an “equivalent” capillary pressure pcap proposed here, is carried out by considering a

unidirectional flow in a homogeneous medium equivalent to structures 1 or 2. The flow in this medium

is described by Darcy law

vd =−
K

η
∇ pd (14)

where K is the permeability of the porous medium, here assumed isotropic, vd and pd are the Darcy

velocity and pressure, formally defined as the Stokes velocity and pressure averaged on an elementary

6
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(a) Structure 1 (b) Structure 2

Figure 2: Capillary rise in hexagonal (structure 1) and random (structure 2) structures: flow front, pres-

sure, velocity intensity and streamlines.

volume of the microstructure. In this context, the action of capillary forces is expressed as a pressure

discontinuity across the liquid - gas interface, resulting in a pressure jump equal to pcap. Under such

conditions, it can be demonstrated analytically (see reference [1]), that the liquid height h(t) is given,

assuming h(t = 0) = 0, by

h(t) =
1

ηl −ηg

(√

2(ηl −ηg)K(pcap −∆p)t +h2
maxη2

g −hmaxηg

)

(15)

where ∆p is the difference of pressure imposed as a boundary condition between the inlet (up) and outlet

(down) sides; hmax is the maximum height that the liquid can reach, typically the size of the computational

domain. Neglecting the gas viscosity, i.e. ηg ≪ ηl , the expression of capillary pressure we propose is

pcap(t) =
ηlh

2(t)

2Kt
+∆p (16)

Note that if h2 has a linear dependence in time, as in 1D Darcy law, pcap would be independent of time.

In the following, this relation is used to define pcap for Stokes flows in structures 1 and 2. However,

before dealing this point, the permeability of these structures must be determined.

4.2 Permeability calculation

Permeability is computed for saturated flows. Consequently, capillary phenomena play no role in this

computation. Two approaches can be used.

• The first approach is based on the Darcy law formulated in term of flow rate Q,

Q =−
K

ηl

|S|
∆pK

hmax

(17)
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where, ∆pK is the total pressure drop imposed at boundaries, which forces the fluid to flow, hmax

is the height of the Stokes domain, and |S| is the area of the S cross-section through which Q the

flux computed. Hence, we also have Q =
∫

S v ·nds. Once the Stokes equations have been solved,

permeability K can be calculated by identifying these two expressions.

• The second approach considers the Darcy velocity and pressure as averaged quantities obtained

from the Stokes fields by homogenization over an elementary volume [7]:

vd =
1

|Ω|

∫
Ωl

vdv et pd =
1

|Ωl|

∫
Ωl

pdv (18)

As with the first approach, once the Stokes equations have been solved, the values of vd and pd

can be post-processed and injected in the Darcy law (14) to obtain the permeability.

The permeability corresponding to the hexagonal packing is found to be K = 2.25×10−13 m2 with the

first approach, and K = 5.5×10−13 m2 with the second. These values are obtained with a computational

domain that has become representative in the sense that the permeability does not change as the size of

the domain increases. Such a representative domain contains 40 fibres. Note also that these values are

of the same order as those provided by the Gebart model [11], KG = 3,4× 10−13 m2 for a hexagonal

configuration and a Stokes flow. The permeability given by the Kozeny-Carman model [12] is also

very close: KKC = 2.3× 10−13 m2 , for a Vf = 52% and a fibre radius equal to 5µ m. For the random

structure with Vf = 48%, several elementary volume sizes are considered, ranging from 200 to 1000

fibres. For each size, 15 samples of the structure are generated. It is shown that the convergence on

permeability is achieved with 600 fibres: the mean value is then K = 5×10−13 m2 with Method 1, K =
1.4×10−12 m2 with Method 2, and the corresponding standard deviations are respectively 3×10−14 m2

and 4× 10−14 m2 respectively. Note that, as mentioned in [8], Method 2 provides an upper bound of

permeability.

4.3 Results and discussion

(a) h(t) and h2(t) (b) ηlh
2(t)/2t = pcap ×K

Figure 3: Capillary rise in a hexagonal structure: average position of the flow front over time (a) and

corresponding values of pcapK (b).

The capillary rise into a hexagonal structure is first investigated, with a pressure drop equal to zero:
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pext = 0, ∆p = 0. The average liquid height h(t) is plotted over time in Figure 3a, while Figure 3b shows

the quantity
ηlh

2(t)
2t

, which corresponds, according to Equation (16), to pcapK, the product between capil-

lary pressure and permeability. Except for the very first time increments of the simulation (Equation (16)

is not valid at t = 0), pcapK fluctuates around a steady value of 1.0×10−8 Pa.m2, leading to a capillary

pressure pcap ≈ 0.44 bar or pcap ≈ 0.18 bar, depending on the Method (1 or 2) considered for calculating

the permeability. These values are consistent with those determined experimentally [1]. These results

also mean that, in the case of a Stokes flow whose driving force is capillarity alone, the average position

of the flow front, h(t), behaves as the square-root of time, or, equivalently, that its velocity decreases as

1/h(t). The subfigure in Figure 3a clearly shows that the quantity h2(t) is linear in time.

Next, the capillary rise into a random structure with Vf = 48% (Figure 2b) is examined. A spontaneous

capillary rise of the resin cannot be fully achieved in this case: the gap between two neighbouring fibres

can be large enough to allow a stationary state of the flow front, i.e. a state of zero-curvature satisfying

the equilibrium at the triple points (5). Note that the contacts between fibres should be much higher in

a real 3D fibrous microstructure, thus facilitating capillarity. Here, an additional driving force, i.e. a

pressure drop, forces the liquid to flow: pext = 2 kPa is set on the inlet boundary, pext = 0 on the outlet

boundary, resulting in ∆p =−2 kPa.

(a) h(t) (b) ηlh
2(t)/2t = (pcap −∆p)×K

Figure 4: Capillary rise in a random structure : average position of the flow front over time (a) and

corresponding values pcapK (b).

Figure 4a shows, as in the previous case, the average liquid height h(t) and its square, h2(t), while the

quantity ηlh
2(t)/2t, here equal to (pcap −∆p)K, is reported in Figure 4b. Despite the random spacing of

the fibres which impacts the liquid flow, it can be seen that h, again, behaves as the square root of time.

Consequently, except just after the initial time t = 0 for which expression (16) is not valid, the quantity

(pcap−∆p)K is constant, equal to 7.3×10−9 Pa.m2, giving a capillary pressure pcap ≈ 0.15 bar or pcap ≈
5.2 kPa, depending whether the permeability is provided by Method 1 or 2. Note that since Method 2

majorises the permeability, the corresponding capillary pressure is minorised. The capillary pressure

values found here, lower than those obtained in the hexagonal structure, reflect the fact that capillary

phenomena are less intense in this random structure. However, a more in-depth study is necessary, in

9
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particular to know the influence that the pressure drop, imposed as boundary of condition, can have on

these values, and thus be able to conclude on their relevance.

5 Conclusion

In this paper, a variational formulation of the Stokes system with capillarity was presented. Capillary

effects are taken into account by considering a weak form of Laplace’s law at the liquid - gas, liquid

- solid and gas - solid interfaces, resulting in a weak imposition of the mechanical equilibrium at triple

junctions. The mixed velocity - pressure system is discretised by using a stabilised finite element method.

The computation of a saturated permeability is first carried out by numerical experiments, for a hexag-

onal structure - a good agreement with literature is found - and random 2D fibre structures. From the

capillary rise simulations performed subsequently, a macroscopic quantity, the capillary pressure, can be

calculated. However, while a spontaneous capillary flow was obtained in the case of the hexagonal struc-

ture, an additional driving force, i.e. a pressure drop, was required to force the liquid up into the random

structure. Therefore, the continuation of this work will be, in the first place, the generation of random

microstructures, with a controlled porosity as here, but satisfying additional constraints on the morphol-

ogy of the arrangements, in particular the distance between two fibres, thus allowing spontaneous rises

by capillarity.
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