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INTRODUCTION

Twaite shad (Alosa fallax) is a migratory fish living primarily in the seas which goes up the rivers to breed in spring. In Europe, this species has considerably declined in the midth of the 20th century due to overfishing, pollution and obstacles to migration, and for this reason is now given considerable legal protection [START_REF]LIFE-Projekt Maifisch -The re-introduction of allis shad (Alosa alosa) in the Rhine System[END_REF]. Monitoring the numbers of shads at their reproduction sites is an important indicator for measuring interannual changes in their population. In particular, it enables the evaluation of the effectiveness of structures such as sluices and fish passes, created to facilitate their annual upstream migration [START_REF]Les Aloses (Alosa alosa et Alosa fallax spp[END_REF], [START_REF] Lebel | Bilan des actions du plan migrateurs concernant l'alose feinte (Alosa fallax rhodanensis) sur le bassin Rhône-Méditerranée-Corse[END_REF].

Shad reproduce at night near to the surface of the water, turning quickly and noisily at the time of egg-laying and emitting a characteristic sound lasting a few seconds known as a "spawning splash". The currently used measuring method is manual counting, from the river bank, by an observer who listens and counts the splashes. This manual counting method is highly restrictive and costly in terms of human resources.

Recently, thanks to technological advances in the field of multimedia, particularly audio media, counting devices using microphones and portable recorders have been set up; however, they still require considerable intervention on the part of the operator (installation, monitoring of the equipment, deinstallation, listening to the recordings, spawning recognition and counting), and clearly it misses a device that would automatically recognize spawning splashes.

In this paper, we present the design of a new equipment achieved to automatically count the spawning acts of shads (SSAs) at a reproduction site. The central part of this equipment is a smartphone, and this configuration enables to -A smartphone (Samsung GT B3750) used as an audio recorder. A sampling rate as high as 44100 Hz was chosen for testing conditions. An additional preamp was inserted in order to adapt the signal level to the smartphone microphone input.

Acoustic signals generated by shad spawning acts (SSA) are particularly difficult to analyze and discriminate: they occur at random in a noisy environment populated by a lot of nocturnal animals; their statistics are non-stationary and the sounds may notably differ from one to the other. Physically, their modeling is complex, although some numerical simulation models [START_REF] Van Den | Physically-based models for liquid sounds[END_REF] are able to reproduce them.

Non-stationarity of the phenomenon within a time window of a few seconds is clearly visible on the spectrogram of Figure 1: the figure a) shows a SSA signal starting at time 0.8 s, and the figure b) represents the evolution of power spectrum versus time. To be valid, a SSA should last at least 2 s. 

III. AUTOMATIC DETECTION

The method of automatic detection of shad spawning acts comprises an extraction of signal features, followed by an algorithm of classication.

A. Sound database

Our database was built from 272 records segmented manually, and is composed of sounds sampled at 44.1 KHz, having a duration between 3 s and 10 s, and variable amplitudes (Table I). Figure 2b summarizes the sequence of operations composing a MFCC calculation. After signal conditioning with a preemphasis filter and a Hamming window, the FFT spectral transform is filtered by a bank of 42 filters distributed along a Mel scale, filter centers ranging from 133 to 6854 Hz. Finally, 13 MFCC parameters are extracted after a log transform and a DCT (Discrete Cosine Transform). We used for MFCC the same time slices of 93 ms as previously.

Figure 3 shows the features extracted from the SSA signal presented in Figure 1. The energy per frame has been 

C. Classification

Classification of signals in the acoustic domain is covered by a set of statistical methods such as HMM (hidden Markov models), NN (artificial neural networks) or SVM (support vector machines), which are supervised learning models (see e.g. [START_REF] Temko | Classification of acoustic events using SVM-based clustering schemes[END_REF] or [START_REF] Dufaux | Automatic sound detection and recognition for noisy environment[END_REF] for an overview). However, the nonstationarity of SSA signals indicates that extracted features evolve in a discontinuous way, feature vectors of a given shape seeming to occur intermittently.

Therefore, instant features corresponding to time slices cannot be all tagged as being parts of a SSA signal. This particularity led us to orientate the detection issue toward unsupervised learning, i.e. clustering methods. In this domain, the GMM is a well understood statistical model, and presents the advantage of computational efficiency.

The Gaussian Mixture Model (GMM) clustering method assumes that the data are generated by a mixture of probability distributions in which each component represents a different cluster.

Consider a set of N points (x 1 , …, x N ) in d to be clustered into K groups. The data is seen as N observations of a ddimensional random vector with density: [START_REF]LIFE-Projekt Maifisch -The re-introduction of allis shad (Alosa alosa) in the Rhine System[END_REF] where k Φ is the density of the normal distribution N(μ k ,Σ k ) and α k the weight of this component in the mixture ( )

1 α = k .
The parameter θ=(α,μ,Σ) defines the model, with α=(α 1 ,...,α K ), μ=(μ 1 ,...,μ Κ ) and Σ=(Σ 1 ,...,Σ Κ ).

The Expectation-Maximization or EM algorithm gives a means to estimate the parameters of the model. If we denote ( | )

k i p x θ ω
the posterior probability that given x i the point belongs to cluster ω k , the EM algorithm maximizes the likelihood function of θ :

(2)

Once clusters have been determined using the EM algorithm, it is simple to obtain a classifier. We associate to each class (SSA /non SSA) the combination of clusters, i.e. the mixture of gaussian densities that provides the highest score, the score being the sum of true positives and false negatives in the confusion matrix. Results of this classification with a varying number of clusters N c are reported in Table II, where the score has been expressed as a percentage. We observe that the scores do not progress when N c > 5. Spectrum coefficients give generally better results than MFCCs.

As an example, Table III shows the confusion matrix obtained with N c =5 and spectrum coefficients on the test set. For this classification, we obtained a True Positive Rate (TPR) of 78.6% and a False Positive Rate (FPR) of 10.0%.

IV. A SMARTPHONE IMPLEMENTATION

The target device of our application is a Samsung GT-B7350 Omnia Pro4, a cell phone running Windows Mobile 6.5. According to our needs, we developed the following software functions:

Handheld recorder: this application aims at recording and storing all sounds of interest, and to build a database for further analyses. The recorder makes use of the audio functionality of the cell phone and its facility of storage on a SDHC memory card. To reduce the volume of data, a suppression of blanks has also been included.

SSA detection and counting: this function implements the automatic detection presented in Section 3, based on spectrum 
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coefficients and GMM classification. To meet real-time constraints, a particular attention has been given to the programming code, e.g. by using an integer-FFT algorithm. Furthermore, some thresholds have been added on signal energy and detection trigger in order to adapt the method to online detection. Task scheduler: this component gives the ability to launch applications at pre-defined times. It allows the smartphone to remain on standby during day and to start recorder and detection at night.

Remote control via GSM and SMS: this communication tool has been designed to drive the smartphone and monitor it remotely, in case of difficulty to access the device. When solicited, the smartphone sends reports about its state, SSA counts, etc.

Autonomy: a 32 Gb SD card and a 9600 mAh battery enables the device to work in autonomy during one week. To further improve energetic autonomy, a photovoltaic sensor has been added to the equipment. On the other hand, data storage capability can be improved by using a sound compression technique.

V. RESULTS

A prototype version of the smartphone was installed in spring 2012 on a shad spawning ground located on river Cèze, in the south of France. The smartphone equipped with a parabolic microphone and a battery was mounted on a tripod placed on the bank, at a height of 3 meters.

Unitary tests of the prototype have allowed to validate the choices of configuration. More specifically, audio files have been recorded and used to evaluate the method of SSA detection. They cover 10 days were sounds have been continuously recorded between 11pm and 3 am, giving 40 hours of recordings.

At first, a training set has been selected with 40 files of 5 minutes, each of them containing at least a manually identified SSA. The classifier was then trained by extracting the spectrum coefficients and applying GMM; the on-line detection algorithm of the smartphone was then applied to the data, giving the following results. The results obtained seem fully consistent with the true positive and false positive rates obtained previously.

Another evaluation consisted to apply the automatic detection to the whole data set, and compare the result with those recorded by manual counting. Over the total period, 74 SSAs were counted automatically and 55 manually, giving an excess of 35%.

VI. CONCLUSION

The work presented in this paper describes a new application which aims at estimating and monitoring the populations of shads on their reproduction sites. Smartphones offer today a real opportunity to integrate signal processing and pattern recognition techniques. They help reduce the development time by providing increasingly integrated audio solutions, and provide in the same time new means of communication.

Although some progress has still to be made to improve the efficiency of shad counting, the first tests provide very promising results, and let consider the deployment of this new field device during the next season of reproduction.

B

  . Feature extraction Signals were analyzed in the time-frequency domain in order to extract pertinent features. In this work we considered spectrum coefficients calculated on successive time frames of 4096 samples, i.e. 93 ms, corresponding to the granularity observed in Fig.1, and related to the flapping frequency of caudal fins in water. For each frame, the energy of the signal within the frame has been computed using FFT (Fast Fourier Transform) along 10 spectral bands covering a frequency range from 100 Hz to 5000 Hz on a logarithmic scale. The 10 triangular filters are centered on 100, 274, 485, 742, 1055, 1435, 1899, 2426, 3149, 3984 Hz. The calculation of spectrum coefficients is straightforward, made by a multiplication in the Fourier domain. The operations are schematized in Figure2a. Physically, spectrum coefficients would represent the spectral decomposition of intermittent splashes occuring during a SSA.In comparison, MFCC (Mel Frequency Cepstrum Coefficients) need more computation steps. MFCCs are features commonly used to process acoustic signals such as speech or music. In association with HMM (Hidden Markov Models), they have proven to constitute an efficient tool in the domain of speech recognition[START_REF] Rabiner | Theory and applications of digital speech processing[END_REF].
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 12 Fig. 1: a SSA signal a) vs. time, b) time -frequency spectrogram

Fig. 3 :

 3 Fig. 3: Features extracted from a SSA signal, a) energy, b) spectrum coefficients, c) MFCCs

  Number of identified SSAs : 48Correctly detected: 39 (81%) Not detected: 9 (19%) False detections: 4 (8%) Contrary to the results presented in Section 3, the on-line version of the detector does not need a segmentation of signals, and the True Negative case of the confusion matrix is therefore irrelevant.

TABLE I

 I Non SSA signals are all types of environmental sounds encountered during the recordings, such as frog calls, dog barkings, wind, train passings or human voices. Some sounds overlapping with SSAs were also included in the test set.

			. SOUND DATABASE	
	data set	SSA	non SSA	total
	training	56	80	136
	test	56	80	136

TABLE II .

 II PERCENTAGES OF CORRECT CLASSIFICATION

		spectrum coef.	MFCCs
	nb. clusters	training	test	training	test
	2	67.6	60.3	75.0	70.6
	3	86.8	77.9	71.3	69.9
	4	89.7	82.4	83.8	77.9
	5	91.2	85.3	88.2	89.7
	6	86.8	77.9	83.8	72.1
	7	88.2	84.6	89.0	79.4
	8	89.0	82.4	87.5	77.9
	9	90.4	88.2	85.3	75.0

TABLE III

 III 

	. SAMPLE CONFUSION MATRIX
		detected	detected as
		as SSA	non SSA
	actual SSA	44	12
	actual non SSA	8	72