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The performances of standard classifiers, i.e., any method of point prediction for classifi-cation, decline in case of imperfect data. In
some sensitive domains where these imper-fections are present, these classifiers need to be adapted in order to avoid any misclassi-
fication that has serious consequences. Recent works proposed to deal with this problem by using cautious classification techniques.
This paper is in line with these works, espe-cially with imprecise classifiers, i.e., the output of the classifier for an input sample that is 
subject to considerable imperfections is a subset of classes. The distinctive feature of our imprecise classification proposition is that it
considers that in some applications, data im-perfection is not limited to new samples to be classified but can also be present in
training data. We therefore propose a relabelling procedure which allows us to identify imperfect samples in the training data and
relabel them with an appropriate subset of candidate classes. This approach to imprecise classification is close, in some aspects, to
hierarchical classification where a “parent” can be considered as a subset of classes that are the “chil-dren” in the leaves. Furthermore,
the belief functions framework is considered to represent the uncertainty and imprecision about the class of a new sample where the
focal elements are contained in the set of new labels of the training data. A criterion based on a gener-alised Fβ score and the obtained 
mass function is established to decide which subset of classes should be associated to the new sample. Several options are presented to
build our classifier for the relabelling procedure and for the reasoning step. Thus, the performances of each option are presented before
comparison with state-of-the-art imprecise classifiers’ performances. The comparisons are conducted first on randomly generated data
and then on 11 UCI datasets based on five measures of imprecise classification performances. They show that our classifier achieves
performances close to, sometimes better than, the best on the five measures.

1. Introduction

Several causes can lead to imperfect data such as measurement inaccuracy due to the quality of sensors, data unrelia-
bility, partial data, etc. In [1] the distinction is made when representing imperfect data between ontic and epistemic views 
[2]. In the ontic view, the imperfect data representation is interpreted as the “true value”, i.e., a precise representation 
of reality while, in the epistemic view, the imperfect data representation is used to describe imperfection of knowledge 
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about the data. In this paper we consider a representation of data imperfection that is consistent with the epistemic view. 
In the cases where the data are imperfect, classical machine learning techniques reach their limits. Indeed, in the case of 
supervised classification, for example, a method of point prediction for classification can misclassify a new sample. This can 
have serious consequences when a classification task is involved in applications that are sensitive, as in medical diagnosis 
applications when the classifier has to detect early-stage cancer; or in autonomous car applications when the classifier has 
to distinguish between a human or animal and an object in dangerous situations; or in environmental compliance when 
a classifier has to sort plastics for recycling purposes, and identification errors will cause serious recycling difficulties and 
significant degradation of the secondary raw material performances [3], etc. The misclassification of some samples can be 
caused by the existence of overlapping regions in the feature space representation [4] [5] due to the imperfect data. This 
problem occurs when the obtained characteristics of some samples are very similar even if they are labelled using different 
class labels. The misclassification can also be caused when the samples belong to an isolated region, i.e., a region that is 
represented by very few samples in the training data.

Facing the issue of imperfect data, recent works focus on cautious classification. Cautious classification aims to minimize 
errors by providing a reliable output based on an appropriate representation of uncertainty. The idea of favouring the re-
liability of the information rather than the precision of its content was initially introduced in the work of R. A. Fisher [6]
and J. Neyman [7] in the fields of statistical/Bayesian inference with the concept of confidence interval/region by associating 
a confidence threshold to the set provided as an estimation of a parameter. A particular case of cautious classification is 
imprecise classification, which consists in predicting a subset of candidate classes for a sample in the event of imperfect 
data. This can be beneficial, for example, in medical diagnosis applications by orienting the investigation toward a small 
set of candidate alternatives; or in the case of plastics sorting by adding a container dedicated to a given family of plastics 
[3], etc. The first works were proposed in the probability theory framework and consisted in predicting a subset of classes 
for a sample when the maximal probability is below a fixed threshold [8] [9] [10]. The predicted subset is the smallest 
whose cumulative probability exceeds a given threshold [10]. In a recent work [11], the latter approach was adapted to 
propose the non-deterministic classifier (ndc) by taking into account a gain function when maximising the expected gain. 
Based also on the framework of probability theory and statistics, conformal prediction [12] [13] provides confidence regions 
based on statistical hypothesis testing. More recently, the authors of [14] proposed, within the framework of belief func-
tions, an extension of the utility matrix that considers the gains in the case of point prediction classification to an utility 
matrix considering gains in the case of imprecise prediction using aggregation functions. Within the framework of imprecise 
probabilities, imprecise classification is mainly based on a binary relation defined on the set of classes and the pre-order 
inferred from this relation. The subset of the non-dominated classes is considered as the prediction for the new sample. 
The Naive Credal Classifier (ncc) [15] [16] is an example of a classifier based on this approach where the dominance relation 
is inferred from the credal set representing the imprecision and uncertainty about the true class of a sample. The difficulty 
in this approach lies in the step of building the credal set. In [15] the credal set is built using the Imprecise Dirichlet Model 
(IDM) [17] while in [16] the credal set is built using an interval constraints approach [18]. Following the same principle, 
[19] proposes an imprecise classifier where the dominance relation is based on different quantifications of uncertainty based
on a binary classifier [20] trained to distinguish aleatory and epistemic uncertainty. Furthermore, [21] proposed building a
pre-order on the set of class labels based on a mass function. This approach uses interval dominance, where the intervals
are represented by the belief and plausibility functions. The same principle of dominance is also used in [22] [23], where a
fuzzy preference relation is deduced from the scores of a binary classifier in a “one-against-one” scheme. This fuzzy relation
is exploited to obtain a pre-order on the set of classes.

Regarding what has been proposed in the state-of-the-art works, the distinguishing features of our proposition are as 
follows. First, we consider that imperfection can be present not only in the new samples but also in the training data. A 
relabelling procedure is therefore proposed to relabel the samples that are in overlapping or in isolated regions. Second, 
a gain matrix that incorporates the specialisation gain to control the trade-off between cautiousness and efficiency of the 
imprecise prediction is proposed. The second point is inspired both from the matrix gain proposed in [11] and the per-
formance measures used in hierarchical classification. The specialisation gain is employed to penalise predictions that are 
more precise than the information available about a sample could allow. Moreover, the relabelling step allows us to directly 
learn labels in the form of subsets of classes, including singletons. This differentiates our approach from the other ones as 
only the subsets of classes identified in the relabelling step can be predicted to the new samples. The proposed approach 
is named eclair (Evidential CLAssification with Imprecise Relabelling) and uses the belief functions framework [24] to rep-
resent the uncertainty and imprecision present in the data. It is built in three steps: 1) the relabelling step which is applied 
to the learning data and serves to assign new labels, in the form of subsets of class labels, to the samples belonging to the 
overlapping and isolated regions in the feature space; 2) the learning step consists in training a standard classifier on the re-
sulting new training data; 3) and the reasoning step which takes a mass function and a gain function as inputs and provides 
a subset of classes as output. When applying the reasoning step to process a new sample, the mass function corresponds to 
the chances quantified by the trained classifier for each subset of classes to be the “true” label of the sample. As one can 
notice in the mentioned works about imprecise classification, the classifiers fall in two categories. The dominance-relation 
based classifiers and the expected-gain based classifiers. The comparisons of eclair performances are presented related to 
two classifiers each representing one of the two categories: ncc for the first category and ndc for the second one.

This paper is organised as follows. In Section 2, some reminders are given about imprecise and hierarchical classification, 
elements of belief functions theory, and the evaluation measures of imprecise classifiers. In Section 3, the proposed approach 



is detailed. Section 4 is dedicated to comparing firstly the different options of the eclair classifier, and secondly times to 
comparing eclair to the approaches of state-of-the-art imprecise classifiers. The comparison uses both a simulated dataset 
and UCI datasets. Finally a discussion is proposed in Section 3.4.

2. Background

In this section, background notions are briefly presented and notations are introduced. The imprecise classification is first
presented in Section 2.1, in Section 2.2 the link between hierarchical classification and the imprecise classification is briefly 
discussed, some reminders about the theory of belief functions are given in Section 2.3 and the evaluation measures for the 
imprecise classifiers are presented in Section 2.4.

2.1. Imprecise classification

Imprecise classification is a kind of cautious classification that enables the prediction of a subset of candidate classes 
for difficult samples, i.e., samples for which the available information is highly affected by imperfections and make the 
assignment to a single class label too uncertain. More precisely, let us consider the case of a supervised classification 
task where the samples represented by P characteristics X1, X2, . . . , X P should be classified using a set of n class labels 
� = {θ1, θ2, . . . , θn}. Let us also consider a set of interest A ⊆ 2� \ ∅. An imprecise classifier δic is a mapping from the 

Cartesian product X =
P∏

i=1
Xi ⊆RP to A:

δic : X →A,

where for a sample x ∈ X , δic(x) ∈ A is a subset of classes. Note that the number of elements in δic(x) is not necessary 
strictly greater than one and unlike what is usually considered in the state of the art, we consider that the set of interest 
A is not necessary equal to 2� \ ∅. Indeed, with regard to the interest of the user or the constraints of the application, the 
set A can be reduced to a very small part, necessarily including the singletons, of 2� .

2.2. Hierarchical classification vs imprecise classification

In the hierarchical classification setting, the classes correspond to structured nodes governed by “IS-A” links called 
parents-children where the class children is included in the class parents. The nodes that have no children are called leaves
of the hierarchical structure. Imprecise classification can be connected to hierarchical classification by considering that the 
prediction of a parent node in the hierarchy corresponds to the imprecise prediction of the subset containing all the child
leaves attached to this node. Nevertheless, two main differences between these two classification techniques have to be 
mentioned. First, in the case of hierarchical classification, the predictions are elements of the pre-established hierarchical 
structure whereas for imprecise classification the outputs can be any non-empty subset of �, even if it has no particular 
semantics in reality. Second, according to [25], the case of partially labelled samples, i.e., whose true class label is not nec-
essarily a leaf of the hierarchy, has been considered in several hierarchical classification works [26,27]. For this second point, 
the difference lies in the fact that in the hierarchical classification the nodes are governed by a conceptual representation 
[28] and a parent node could be the true class label for a sample in the training data. Consequently, two types of supervised
classification errors are considered in hierarchical classification. The first one is the generalisation error [25] [29] that occurs
when a classifier predicts a class that is the antecedent of the true class of a sample. The second one is the specialization
error [25] [29] that occurs when a classifier predicts a class that is the descendant of the true class of a sample. Note that
the term of generalisation error introduced in the hierarchical classification techniques should not be confused with the no-
tion of the generalisation error that is central in machine learning and that quantifies the ability of an algorithm to predict
the outcome of new samples. In the case of imprecise classification, the situation of partially labelled sample in training
data occurs when this sample could not be precisely assigned to a single class label due to lack of knowledge. In this case,
the generalisation error correspond to the error of predicting a subset of candidate class labels that is wider than the partial
label of the sample. While the specialization error can be interpreted in the imprecise classification as the error of predicting
a subset of candidate class labels that is smaller than the available information allows. Thus, when resolving an imprecise
classification problem the situation can be similar to that of hierarchical classification in the case where the class labels of
some samples in the training data are partially known.

2.3. Belief functions theory

In this Section we give a brief reminder about belief functions theory. Let us consider a reference set � where each 
element θ ∈ � represents the lowest level of discernible information in �. The set � is called a frame of discernment. 
Belief functions theory, is an interesting framework to represent and process uncertain and imprecise information and can 
be seen as an extension of many uncertainty theories. The recent growing interest in this theory has allowed techniques to 
be developed to resolve a diverse range of problems such as estimation [30] [31][32], standard classification [33,34], or even 



hierarchical classification [35,36]. Three main set functions are involved in the belief functions framework. The mass function
which assigns probabilities to imprecise information, leading to the distinction between equiprobability and imprecision or 
ignorance. More precisely, a mass function, also called basic belief assignment (bba), is a set function m : 2� → [0, 1] satisfying

m(∅) = 0 and
∑
A⊆�

m(A) = 1.

The elements A ∈ 2� , such that m(A) > 0, are called focal elements and they form a set denoted F . The pair (m, F) is called 
the body of evidence. The belief function measures the quantity of evidence proving an event, Bel : 2� → [0,1], satisfying

Bel(A) =
∑

B⊆�,B⊆A

m(B).

The plausibility function measures the quantity of evidence that makes an event possible, Pl : 2� → [0,1], satisfying

Pl(A) =
∑

B⊆�,B∩A �=∅
m(B).

The above-defined set functions constitute the credal level where beliefs are captured and quantified. A second level 
considered in the belief functions framework is the pignistic level or decision level where beliefs are quantified using 
probability distributions. In this latter level, the pignistic probability distribution is computed as follows: ∀θ ∈ �,

pigm(θ) =
∑

A⊆�,A
θ

m(A)

|A| ,

where |A| denotes the number of elements in A.

2.4. Evaluation measures for the imprecise classifiers

When a classifier provides an imprecise prediction for a new sample, the evaluation of its performance is not straight-
forward and the classical measure of accuracy is not appropriate. The task of evaluating the performance of an imprecise 
classifier can be formulated as the problem of defining a performance measure that takes into account the trade-off between 
the criterion of cautiousness, i.e., the classifier should predict a subset of classes including the “true” classes of a sample 
that has imperfect data, and the criterion of efficiency, i.e., the predicted subset of classes should be as small as possible 
depending on the sample data. Several works have studied this problem and provide some measures to model this trade-off 
[16], [37], [38]. Discounted accuracy [39] seems to be an interesting measure as it takes into account the size of the predicted 
subset. However, as pointed out in [40], this measure rewards a predicted subset as if a random assignment had been made 
in this subset. Thus the discounted accuracy fails to recognize the benefit of cautious decisions over hazardous decisions. 
To handle this problem new measures were proposed to increase the cautiousness reward to the necessary extent, i.e., the 
degree to which the decision maker prefers to fix the reward of cautiousness depending on his application and the quality 
of the information obtained for the samples. These measures are represented by a function g of the discounted accuracy
taking its values in [0, 1] and guaranteeing g(z) ≥ z, i.e., the reward with g is at least the same as the one given by the 
discounted accuracy, g(0) = 0 and g(1) = 1 (see [40] for more details).

Let us consider a dataset of test samples dst = (xl, θ l)1≤l≤M where xl ∈ X and θ l ∈ � and an imprecise classifier δic . The 
formula of the above-mentioned performance evaluation measures applied to classifier δic and the test data dst are given 
as follows:

• the classical accuracy measure that quantifies the proportion of good predictions:

accuracy(δic,dst) = 1

M

M∑
l=1

1{θ l}(δic(xl)).

• the imprecise accuracy (imprAcc) measure that quantifies the predictions containing the true class labels of the test
samples:

impr Acc(δic,dst) = 1

M

M∑
l=1

1δic(xl)(θ
l).

• the discounted accuracy (discAcc) measure that quantifies the mean of the proportions of the good predictions in the
predicted subsets and corresponds to the function g(z) = z:



disc Acc(δic,dst) = 1

M

M∑
l=1

1δic(xl)(θ
l)

|δic(xl)| .

This measure is denoted also u50.
• The u65 measure that corresponds to the function g(z) = −0.6 · z2 + 1.6 · z:

u65(δic,dst) = −0.6 · [disc Acc(δic,dst)]2 + 1.6 · disc Acc(δic,dst).

• The u80 measure that corresponds to the function g(z) = −1.2 · z2 + 2.2 · z:

u80(δic,dst) = −1.2 · [disc Acc(δic,dst)]2 + 2.2 · disc Acc(δic,dst).

Where for a subset A of �, the function 1A : � → {0, 1} is the characteristic function such that: 1A(θ) = 1 if θ ∈ A; 
and 0 otherwise. The u50 measure is considered as well suited to binary classification problems while u65 and u80 are well 
suited to classification problems with more than two class labels [40].

3. The eclair classifier

As it is briefly presented in Section 1, the eclair approach is built in three steps: 1) the relabelling step, 2) the learning step,
3) and the reasoning step. This Section presents these three steps. More precisely, let us consider a data set of L learning
samples (xl, θ l)1≤l≤L where for each l, 1 ≤ l ≤ L, xl ∈ X and θ l ∈ �. The relabelling of a learning sample xl consists of
assigning to it the smallest subsets of classes expressing the imprecision of its characteristics if it belongs to the overlapping
or the isolated regions in the training data. We assume that the new subset of classes, denoted Al , associated to the sample
xl necessarily contains the original class label θ l .

Once the relabelling step is performed, we obtain a new learning samples (xl, Al)1≤l≤L where for each l, 1 ≤ l ≤ L, xl ∈X
and Al ∈ A. The set of interest A ⊆ 2� \ ∅ mentioned in the Subsection 2.1 is constituted by the distinct labels Al of the 
training data set. The learning step then consists in training a learning algorithm of point prediction for classification to 
recognize the labels in A. Finally, using the reasoning step we assign to a new sample x an element in A based on 1) 
the posterior mass function m(.|x); 2) and an appropriate gain matrix representing the trade-off between cautiousness and 
efficiency. Note that the mass function m(.|x) is obtained from the posterior probability mass function p(.|x) : A → [0, 1]
provided by a method of point prediction quantifying the chance of each element from A to be the “true” label of x. The 
focal elements of m(.|x) are necessarily elements in A. Note also that the idea of using a method of point prediction in an 
imprecise classification task is also used in [11] and [12]. In the following subsections the relabelling, the training and the 
reasoning steps are presented in detail.

3.1. Relabelling step

The relabelling procedure is usually used to identify suspect samples with the intention to remove or relabel them into 
a concurrent, more appropriate class label [41] [42] [43]. Closer to our work are the relabelling procedures proposed in [44]
and [45] that are taking advantage of the information provided by the k nearest neighbours (knn) of the treated sample. In 
[45] the sample is relabelled using the majority vote of the k nearest neighbours but this technique may not be effective
when some neighbours of the sample are non-representative of their classes or when the sample belongs to an isolated
region. In [44] an evidential relabelling is performed on the training data using the evidential k nearest neighbours (EKNN)
[33]. This evidential relabelling is not suitable for the implementation of the two other steps of eclair classifier where the
partially labelled training samples are used to learn a point prediction for classification method.

Two new relabelling procedures are proposed in this paper as a generalisation of the one based on the knn of the 
sample. Both procedures are based on the posterior probability distribution provided by a method of point prediction for 
classification and the cross-validation technique. Indeed, knowing that the posterior probability distribution summarizes the 
information about the chances of each class to be the “true” class of a sample, one can use it to identify the subsets of 
classes that are candidates to be the new label of the sample.

Let us consider a sample xl from the learning dataset and a method of point prediction δc . Using the leave-one-out 
technique, xl is removed from the learning data and its predicted class is δc(xl). We denote by pc(θi |xl) the posterior 
probability quantifying the chances of each class label θi , i ∈ {1, . . . , n}, to be the “true” class of xl . Let us denote by Al the 
new label of xl . The first method, called the rank method, consists in including in Al the classes having a posterior probability 
at least equal to the one obtained by the true class θ l :

Al = {θ ∈ �, pc(θ |xl) ≥ pc(θ
l|xl)}. (1)

Obviously, δc(xl) and θ l are in Al . In the most of cases, i.e., when data are perfect, Al = {δc(xl)} = {θ l}. The second method, 
called the entropy method, is based on the Shannon entropy index and is detailed below. The Shannon entropy, also called 
entropy index denoted H , quantifies for a probability distribution the degree of perfection with which an outcome is pre-
dicted. If H(pc(.|xl)) = − 

∑n
i=1 pc(θi |xl) log(pc(θi |xl)) (only coefficients with pc(θi |xl) > 0 are considered) is close to 0 then 



Table 1
The relabelling of some samples using the two methods.

sample class posterior probability H relabelling
θ1 θ2 θ3 θ4 rank method entropy method

x1 θ4 0.2 0.25 0.25 0.3 1.376 {θ4} �

x2 θ3 0 0 0.99 0.01 0.056 {θ3} {θ3}
x3 θ1 0.1 0 0.9 0 0.325 {θ1, θ3} �

x4 θ1 0.2 0 0.8 0 0.5004 {θ1, θ3} {θ1, θ3}
x5 θ2 0.2 0.25 0.5 0.05 1.165 {θ2, θ3} {θ1, θ2, θ3}

the prediction from pc(.|xl) is perfect while if H(pc(.|xl)) is high the uncertainty about the predicted class for xl is also 
too high. The proposition of relabelling xl consists in fixing a threshold ρ of the entropy index beyond which the degree of 
uncertainty is considered too high. When the entropy is greater than ρ , the predicted class of xl is questionable. To simplify 
the notations, we introduce the following quantity related to the entropy index for a subset B ⊂ �:

H B(pc(.|xl)) = −Pc(B|xl) log(Pc(B|xl)) −
∑

θi∈�\B

pc(θi |xl) log(pc(θi |xl)), (2)

where Pc(.|xl) is the probability measure associated to the probability distribution pc(.|xl). The Equation (2) can be seen as 
the entropy index of a new probability distribution deduced from pc(.|xl) where all the classes in B are considered as the 
same single class. Thus, the choice of the new label Al of xl depends on ρ , δc(xl) and pc(.|xl). According to whether δc(xl)

is equal to θ l or not, two thresholds can be considered and respectively denoted ρ1 and ρ2. In the case where δc(xl) is θ l , 
the proposed new label Al is:

Al =
{

Aρ1 , if H(pc(.|xl)) > ρ1,

{θ l} elsewhere.
(3)

In the case where δc(xl) is different from θ l , the proposed new label Al is:

Al =
{

{θ l} ∪ Aρ2 , if H(pc(.|xl)) > ρ2,

� elsewhere,
(4)

where

Aρ = argminB⊂�{|B|, H B(pc(.|xl)) ≤ ρ},
is the smallest subset for which if all its classes are considered as the same, the new entropy index, H Aρ , is below the 
threshold ρ for pc(.|xl).

In the case of the relabelling defined in Equation (3), the new label Al is composed initially by θ l and other classes 
are added until the new entropy H Aρ1

becomes lower than ρ1 and if Al contains more than one class, xl is considered as 
non-representative of the class θ l . While, in the case of the relabelling defined in Equation (4), xl is considered as non-
representative of the class θ l . If the entropy index is higher than ρ2, then xl is relabelled as the union of {θ l} and Aρ2 (Aρ2

can contain θ l). Otherwise, xl is considered as too ambiguous and is relabelled by �.

Example 3.1. Let us consider five training samples and the corresponding posterior probability distribution presented in 
Table 1. These samples are part from the training samples (xl, θ l)1≤l≤L and |�| = 4. Note that the entropy method is 
performed using the parameters ρ1 = ρ2 = 0.5.

More generally, from Equation (3) the more the entropy threshold ρ1 is very small, i.e., close to 0, the more the samples 
are relabelled with subsets of classes and from Equation (4), the more the entropy threshold ρ2 is high, the more the 
samples are relabelled with �. Consequently, if a significant quantity of uncertain and ambiguous information is present in 
the training data, a large number of the samples are relabelled with subsets of classes. The choice of Al in Equations (3) and 
(4) is governed by the assumption considered in this work that the original class θ l of the sample is provided by a reliable
source. Thus, this information is considered certain. Whereas, the measured characteristics of the sample are considered as
potentially imperfect. It is certain that this choice leads to a loss of information in the training data mainly for the isolated
samples and the samples belonging to overlapping regions, i.e., regions corresponding to boundaries between the classes.
More precisely, adding another class to the original class θ l when constituting the new label Al impoverishes the original
information. Nevertheless, as mentioned in the introduction of this paper, the proposition of this paper is designed to tackle
decision problems involving sensitive applications where cautiousness is privileged. In such an application we assume that
one prefers to be cautious than to bet on a class when the information is imperfect. A second assumption is made to
simplify the approach which consists in also considering that the new label Al is provided by a reliable source, i.e., the



relabelling procedure. However, a more general approach could cover the cases of non-reliable sources for the new labels. 
Such an approach could consist in assigning to each learning sample a mass function taking into account the reliability of 
the relabelling method.

3.2. Training step

Let us consider a learning samples (xl, Al)1≤l≤L where for each l, 1 ≤ l ≤ L, xl ∈ X and Al ∈ A where A is a subset 
of 2� \ ∅ that necessary includes all the singletons, i.e., for each θ ∈ �, {θ} ∈ A. Let us consider a point prediction for 
classification method δc . Each label Al ∈ A is a subset of �, so some labels can have intersections. When training δc on 
the data (xl, Al)1≤l≤L , the method considers that the elements of A are independent and the intersections of its elements 
are ignored in this step. Consequently, when dealing with a new sample x, δc provides a posterior probability distribution 
p(.|x) : A → [0, 1] quantifying the chances of each element from A to be the “true” label of x. When x is classified as a 
non-singleton label A, this means that the true class of x belongs to A and that the available information of the training 
data and the characteristics observed on x do not allow more precise classification for x. As p(.|x) quantifies the chances 
of subsets of � to contain the true class of x, it can be considered as a mass function m(.|x) : 2� → [0, 1] whose focal 
elements are included in A. Note that all the point prediction for classification methods are adapted to provide a posterior 
probability distribution when dealing with a new sample to classify. Furthermore, this step could as well be performed 
using the evidential k − N N rule for partially supervised data [46][47].

3.3. The reasoning step

This Section presents the reasoning step used in the eclair approach. It consists in associating a class or a subset of 
classes to a new sample x based on 1) a posterior mass function m(.|x) : 2� → [0, 1] where the set of focal elements F(.|x)

is such that F(.|x) ⊆ A ⊆ 2�; and 2) a gain matrix g : A ×A → R+ that associates to each pair (Tx, B) of two elements 
in A the obtained gain when the prediction is A such that the “true” label of x is Tx . Three methods are proposed to 
perform the reasoning step in our approach: 1) the 01 gain method which consists in predicting for x the subsets A ∈ A
having the maximum mass function coefficient; 2) the pignistic ndc method which is similar to the decision step of ndc
where the posterior probability distribution is replaced by the pignistic probability distribution obtained from m(.|x) (see 
Subsection 3.3.1); 3) the generalised ndc-based Fβ -score method that is presented in the Subsection 3.3.2. In the remainder 
of this section, the construction of the gain matrix in the case of the second and the third methods are presented. The gain 
matrix of the first method is obvious and is defined for (Tx, B) ∈A ×A as follows:

g(Tx, B) = g01(Tx, B) =
{

1, if B = Tx,

0 elsewhere.
(5)

Finally, in the Subsection 3.3.3, the objective function used as the criterion to choose the optimal subsets in A as the 
prediction for x is presented for the three methods.

3.3.1. ndc based Fβ -score
The gain matrix proposed in [11] is based on the Fβ measure which is function of the recall and precision measures 

introduced in the domain of information retrieval. More precisely, the gain obtained when predicting A ∈ A such that the 
true class label is θ ∈ � (θ ∈ A) is given as follows:

Fβ(θ, A) = (1 + β2) · recall(θ, A) · precision(θ, A)

β2 · precision(θ, A) + recall(θ, A)
, (6)

where the recall is defined as the proportion of relevant classes included in A and the precision is defined as the proportion 
of retrieved classes in A that are relevant. In the case of imprecise classification these measures are given as: recall(θ, A) =
1A(θ) the proportion, i.e. 0% or 100%, of relevant classes that are included in A and precision(θ, A) = 1A(θ)

|A| the proportion
of retrieved classes in A that are relevant which correspond respectively to the discounted accuracy and imprecise accuracy
defined in the Subsection 2.4. Thus, we have:

Fβ(θ, A) = (1 + β2) ·1A(θ)

β2 + |A| . (7)

The gain matrix defined by the Fβ measure in Equation (7) is a trade-off between the imprecise accuracy, i.e., measure of 
cautiousness, and the discounted accuracy, i.e., measure of efficiency, where the parameter β is used to control the required 
levels of relevance and cautiousness.



Table 2
The quantification of the gain matrix using the function F g,β .

The predicted subset A

{θ1} {θ2} {θ3} {θ1, θ2} {θ1, θ3} {θ2, θ3} �

Tx {θ1} 1 0 0
1 + β2

2 + β2

1 + β2

2 + β2
0

1 + β2

3 + β2

{θ2} 0 1 0
1 + β2

2 + β2
0

1 + β2

2 + β2

1 + β2

3 + β2

{θ3} 0 0 1 0
1 + β2

2 + β2

1 + β2

2 + β2

1 + β2

3 + β2

{θ1, θ2} 1 + β2

1 + 2β2

1 + β2

1 + 2β2
0 1

1

2

1

2

1 + β2

3/2 + β2

{θ1, θ3} 1 + β2

1 + 2β2
0

1 + β2

1 + 2β2

1

2
1

1

2

1 + β2

3/2 + β2

{θ2, θ3} 0
1 + β2

1 + 2β2

1 + β2

1 + 2β2

1

2

1

2
1

1 + β2

3/2 + β2

�
1 + β2

1 + 3β2

1 + β2

1 + 3β2

1 + β2

1 + 3β2

1 + β2

1 + 3/2β2

1 + β2

1 + 3/2β2

1 + β2

1 + 3/2β2
1

3.3.2. The generalised Fβ -score
The gain matrix defined in Equation (7) is based on the definition of the gain obtained in the case where only the chances 

of single class to be the true label of x are quantified. Considering that the chances of the element of A to be the “true” 
label of x are quantified by the mean of the mass function m(.|x), the Equation (7) defining the gain matrix needs to be 
extended. A subset A ∈A is considered as the “true” label of x means that the true class of x belongs to A. More precisely, 
when the true class is known precisely, we check if the information “θx = θ” is true or false, where θx is the unknown true 
class of x and θ ∈ �. In the case of imprecise information A, the information to check is “θx ∈ A”. In the approach proposed 
in this paper, we take advantage of the specialisation and generalisation errors proposed in the hierarchical classification 
[25] to build the gain matrix. The generalisation gain is already exploited in Equation (7), i.e., rewarding the predictions that
are efficient. We consider the same gain and we enrich it using the specialisation gain, i.e., rewarding the predictions that
are cautious or penalize random choices in the predicted subsets of classes when the available information about the true
class of x is imprecise.

Let us consider that given the available information, the appropriate but unknown label to associate to the sample x is 
Tx ∈ A. Each prediction A ∈ A such that A ⊂ Tx should be penalized in the specialisation gain and each prediction B ∈ A
such that B ⊇ Tx should be penalized in the generalisation gain. The new gain matrix, denoted F g,β , F g,β :A ×A →R+ is 
then defined for a “truth” Tx ∈A, a prediction A ∈A and a parameter β ≥ 0 as follows:

F g,β (Tx, A) = (1 + β2)|A ∩ Tx|
β2|Tx| + |A| . (8)

In this case the definitions of the measures of recall and imprecision are extended as follows: recall(Tx, A) = |A∩Tx||Tx| and 
precision(Tx, A) = |A∩Tx||A| . In other words, recall(Tx, A) is the proportion of relevant class labels Tx that are predicted and 
precision(Tx, A) the proportion of the predicted class labels A that are relevant.

Example 3.2. In the following an example, in the case of three classes � = {θ1, θ2, θ3}, is given to show the quantification 
of the gain matrix especially to highlight the impact of specialisation and generalisation gains in Equation (8). As shown 
in Table 2, the first extreme case corresponds to the worst case that occurs when the “truth” Tx does not intersect with 
the predicted subset A, i.e., Tx ∩ A = ∅. In such a case the gain is minimal, i.e., F g,β (Tx, A) = 0 regardless the value of 
β . The second extreme case occurs when Tx = A and the gain is quantified as maximal F g,β (Tx, A) = 1 regardless the 
value of β . Concerning the intermediate cases, the generalisation gain guarantee the same results as in Equation (7), i.e., 
F g,β (Tx, A) = (1+β2) 1A(Tx)

β2+|A| (Tx is a single class). The new gains capturing the specialization gain can be seen in the cases 

where A ⊂ Tx . For instance, if A = {θ1} and Tx = {θ1, θ2}, the associated gain is F g,β ({θ1, θ2}, {θ1}) = 1 + β2

1 + 2β2
and in the 

case where Tx = �, the gain is F g,β (�, {θ1}) = 1 + β2

1 + 3 β2
. Thus, the larger the “truth” containing the prediction the smaller 

the gain function rewarding the good predictions. Also, with the new gain matrix, predictions containing more than one 
element can receive the maximal gain 1 in the case where they are equal to the “truth” Tx which is not possible when 
restricting the “truth” to the single classes. More generally, the value of β can be used to control the cautiousness and the 
relevance:

• when β is small, the prediction that is not efficient is penalised. Especially for β = 0, Fβ boils down to precision.
• when β is large, the prediction that is not cautious is penalised. Especially for β → ∞, Fβ tends towards recall.



3.3.3. The objective function
Finally, the objective function used as the criterion to choose the optimal subsets in A as the prediction for x is the 

expected gain function based on the gain matrix defined for each method and the posterior mass function. For the 01 gain
method, the expected gain EG(A|x) when choosing the imprecise prediction A ∈A for x is:

EG(A|x) := EG01(A|x) =
∑

Tx∈A
m(Tx|x) · g01(Tx, A) = m(Tx|x), (9)

where the gain matrix g01 is defined in Equation (5). In the case of the pignistic ndc method, the expected gain is defined 
as follows for A ∈A:

EG(A|x) := EGβ(A|x) =
∑
θx∈�

pigm(Tx|x) · Fβ(θx, A), (10)

where the gain matrix Fβ is defined in Equation (7). The expected gain for the generalised Fβ -score based method is a 
generalisation of the expected gain defined in Equation (9) and is defined as follows for A ∈A:

EG(A|x) := EG gβ(A|x) =
∑

Tx∈A
m(Tx|x) · F g,β (Tx, A), (11)

where the gain matrix F g,β is defined in Equation (8). Finally, for the three methods, the eclair imprecise prediction δeclair
β (x)

for the sample x is given as:

δeclair
β (x) = argmaxA∈A EG(A|x). (12)

3.4. Discussion

The proposed classifiers based on the eclair approach are comparable to the approaches of the state of the art on 
some aspects. On the one hand, they are close to the approaches of the hierarchical classification related to the idea of 
the imprecise or partial labelling of the training data and close to the approaches based on the imprecise probabilities 
concerning the representation of imprecision [15]. On the other hand, they are close to those using a gain matrix based on 
the Fβ score to model the trade-off between cautiousness and efficiency [11]. However, the computational complexity of 
the eclair classifiers and ncc classifier, as for any approach representing imprecision in the data, can be very high. Indeed, 
if n = |�| is very large and |A| � n, the computational complexity of the reasoning step of the eclair classifiers becomes 
very high, i.e., O (|A|2), at worst exponential and at best quadratic. The computational complexity is lower when the gain 
function is 01, i.e., O (|A|), or when the gain function is based on the pignistic probability distribution, i.e., O (n · |A|). 
These two last types of classifiers can be preferred when n is very large. The ndc classifier has the lowest computational 
complexity, i.e., at worst O (n) [11], and the ncc one is quadratic, i.e., O (n2 − n) [15].

Furthermore, the imprecise predictions provided by the eclair classifiers are based on the maximisation of the expected 
gain where the chances are quantified by the posterior mass function and the matrix gain is built using the Fβ score. For 
other choices, some criteria can be found in [14] that could be used to decide on the imprecise classification when the 
information concerning the possible states of nature is presented by a mass function.

4. Illustration and comparisons

In this illustration Section we present two parts. The first part is dedicated to analysing the imprecise classifiers’ results
on a simulated data and the second part presents the comparisons on the UCI data benchmark. Table 3 summarises some 
information about the methods of point prediction for classification and the imprecise classifiers that are involved in this 
section. Note that all the implementations are performed using R packages with the default parameters for the methods 
of point prediction. Note also that for the illustrations where the parameters ρ1 and ρ2 involved in the entropy based 
relabelling method are considered equal, they are both denoted ρ . Furthermore, in the studied data, some new labels 
obtained from the relabelling step could be less represented in the learning data set so we are faced with an imbalanced 
data problem. To deal with this problem, the Synthetic Minority Over-sampling Technique (SMOTE) [48], which consists in 
creating synthetic examples to increase the representativeness of minority class labels, is used.

4.1. Illustration using simulated data

In this first illustration, a simulated data for three classes a, b, and c is considered. For each class 500 training samples of 
a bivariate Gaussian distribution are considered: N (μa = (0.2, 0.65), �a = 0.01I2) for the class a, N (μb = (0.5, 0.9), �b =
0.01I2) for the class b, and N (μc = (0.8, 0.6), �c = 0.01I2) for the class c. First, the results of the relabelling procedure are 
presented. Table 4 and Fig. 1 give the resulting new labels for four methods: method rank, method entropy with ρ = 0.2, 
ρ = 0.5, and ρ = 0.7. Note that, for the four methods, the logistic classifier is used to perform cross-validation.



Table 3
The classifiers involved in the illustrations.

use a method
abbreviation classifier name type of point prediction parameters

classifier?

ndc non-deterministic imprecise yes β

ncc naive credal imprecise no s

eclair
eclair rank 01 relabelling: rank imprecise yes none

reasoning: 01 gain

eclair
eclair entropy 01 relabelling: entropy imprecise yes ρ

reasoning: 01 gain

eclair
eclair rank PIG relabelling: rank imprecise yes β

reasoning: pignistic ndc

eclair ρ
eclair entropy PIG relabelling: entropy imprecise yes β

reasoning: pignistic ndc

eclair rank GFB relabelling: rank
reasoning: generalised imprecise yes β

Fβ score

eclair ρ
eclair entropy GFB relabelling: entropy imprecise yes β

reasoning: generalised
Fβ score

nbc naive Bayes point prediction - -
knn k-Nearest Neighbour point prediction - -
eknn evidential knn point prediction - -
cart decision tree point prediction - -
rfc random forest point prediction - -
lda linear discriminant analysis point prediction - -
svm support vector machine point prediction - -
ann artificial neural networks point prediction - -
logistic logistic point prediction - -

Table 4
The new labels after relabelling.

{a} {b} {a,b} {c} {a,c} {b,c} {a,b,c}

Rank method 481 482 31 494 0 12 0
Entropy method (ρ = 0.2) 430 392 132 465 0 69 12
Entropy method (ρ = 0.5) 468 444 61 482 0 28 17
Entropy method (ρ = 0.7) 481 480 0 493 0 2 44

The rank method relabels few samples compared to the entropy methods which can be explained by the fact that in 
most cases the obtained posterior probability gives the maximum value to the true class of the sample. In such cases the 
rank method does not relabel the samples whereas with the entropy methods, even if this situation is encountered, the 
samples are relabelled when the entropy is high. As one can expect, with the entropy methods a large number of samples 
are relabelled when ρ decreases. One can see in Fig. 1 that the relabelled samples with a subset of two classes constitute 
a large boundary between the two original classes. It is more obvious when ρ = 0.2 for the subsets {a, b} and {b, c}. All 
the samples that are on the wrong side of the boundary are relabelled with the whole set {a, b, c}. In the case of a high 
entropy threshold, all the samples, where the posterior probability does not give the maximum value to the true class, are 
relabelled by the whole set, {a, b, c} (see Equation (4)).

In order to evaluate the performance of the imprecise classifiers built from the considered training data, a dataset 
of 50 samples for each class label are generated using the same bivariate Gaussian distributions with a Gaussian noise 
N (μ = (0, 0), � = 0.001I2). Note that, again the logistic classifier is used to provide the posterior probability distribution 
for eclair rank, eclair entropy and ndc. Moreover, several values of the parameters presented in Table 3 are tested and the 
results are shown in Table 5. Note that, for the considered testing data, the methods of point prediction obtain the following 
accuracies: logistic, ann: 94.67%; svm, rfc, eknn: 95.33%; nbc, lda, cart: 96%; and knn: 96.67%.

As one can see in Table 5, the imprecise classifiers have performances close to those of the point prediction classifiers 
for some fixed parameters but in these cases they are not cautious enough, the eclair and ndc performances are better 



Fig. 1. Relabelling the training data using two methods with different parameters. (For interpretation of the colours in the figure(s), the reader is referred
to the web version of this article.)

compared to those of ncc. Furthermore, eclair and ndc can reach very good performances for some values of β . For instance, 
eclair rank GFB and eclair entropy GFB have the best accuracy, u65 and u50 performances for small values of β while ndc
has good imprecise accuracy and u80 performances. If one wants to be very cautious, it is better to choose eclair entropy
classifiers as they can provide predictions with 100% good imprecise predictions for some parameters but in return they 
avoid precise predictions for several samples and then have a low accuracy performance. Generally, ndc and eclair classifiers 
give good average performances (see the last column of Table 5). This shows the trade-off that those imprecise classifiers 
are able to guarantee between cautiousness and efficiency.

To see the effect of these hyper-parameters more closely, Figs. 2 and 3 show the performances of the eclair classifiers 
related to two different point prediction methods and the hyper-parameters ρ and β using the same simulated data. Fig. 2
shows the results obtained when using the svm point prediction method while Fig. 3 shows the results obtained when 
using the logistic point prediction method. The first remark that can be made about the two figures is that regardless the 
performances of the two point prediction methods related to those data, the behaviours of the five performance measure 
curves are the same in the two figures. For that reason only Fig. 2 is commented. The first classifier studied is the eclair 
entropy 01 classifier presented in the part “ENTR.01” in the Fig. 2 that has only the entropy threshold ρ as hyper-parameter 
(ρ1 = ρ and ρ2 = ρ − 0.05). As expected, when ρ is very close to 0 the number of relabelled samples is very large and 
the size of the label subsets is also large thus the chance to contain the true class is close to 1, i.e. imprecise accuracy
performance close to 100%, and the chance to predict the true class of a sample is low, i.e., accuracy performance is low. 
The performances measures u50, u65, u80 and the accuracy performance increase until ρ reaches a value ρ∗ close to 0.25
while imprecise accuracy performance is rather constant. Above the value ρ∗ all the performance measures curves become 
almost constant. Concerning the other three parts of Fig. 2 “RANK.PIG”, “ENTR.PIG” and “ENTR.GFB” the hyper-parameter 
ρ is fixed (ρ1 = 0.25 and ρ2 = 0.2) and the hyper-parameter β is considered as variable. For those classifiers, the effect 
of the values of the hyper-parameter β on the performance measures is important. Indeed, with “ENTR.GFB” the imprecise 
accuracy reaches the performance close to 100% for values of β that are close to 0 while the accuracy decreases quickly. 
This behaviour is the same for the two other classifiers “RANG.PIG” and “ENTR.PIG” but the decrease and the increase in 
performance is lower. Thus the advantage of the “ENTR.GFB” classifier is to offer an optimal cautiousness with an accuracy 
very high, i.e., β is close to 0.

To highlight the good or bad predictions of the imprecise classifiers for some specific samples that are in overlapping or 
isolated regions, Fig. 4 shows the predictions for each sample of the test data provided by some imprecise classifiers. Ten 
samples among the 150 samples seem to be difficult to classify, i.e., the methods of point prediction fail to correctly classify 
them. The ten difficult samples are labelled by their numbers in Fig. 4. It can be noted that with β = 0.1 for the eclair 
rank GFB classifier, three samples have precise and correct predictions, five have precise and incorrect predictions, and two 
have “correct”, i.e., contain the true class, imprecise predictions with two classes. The three other classifiers of Fig. 4 are 
more cautious but less efficient. The classifiers ncc (s = 0.08) and ndc (β = 3) provide less number of imprecise predictions 
than eclair entropy (ρ = 0.5 and β = 1). eclair entropy (ρ = 0.5 and β = 1) is the only one that does not provide incorrect 
predictions.



Table 5
The performances of the imprecise classifiers for different parameters.

Performances

Parameters accuracy imprAcc u80 u65 u50 average

eclair rank 01 - 88.67 98.67 96.67 95.17 93.67 94.57

eclair rank PIG β ∈ [0,0.17] 96 96 96 96 96 96
β = 0.5 94 97.33 96.67 96.17 95.67 95.97
β = 2.1 86 98.67 96.13 94.23 92.33 93.47
β = 3 83.33 98.67 95.6 93.3 91 92.38

eclair rank GFB β ∈ [0,0.08] 96 96 96 96 96 96
β = 0.1 95.33 96.67 96.4 96.2 96 96.12
β = 0.5 91.33 98 96.67 95.67 94.67 95.27
β = 2.1 86 98.67 96.13 94.23 92.33 93.47
β = 3 83.33 98.67 95.6 93.3 91 92.38

eclair entropy 01 ρ = 0.2 81.33 100 95.47 92.73 90 91.91
ρ = 0.5 86.67 100 96.27 94.36 92.44 93.95
ρ = 0.6 86.67 99.33 95.6 93.8 92 93.48
ρ = 0.7 87.33 99.33 94.53 92.93 91.33 93.09

eclair entropy PIG ρ = 0.2, β ∈ [0,0.09] 95.33 95.33 95.33 95.33 95.33 95.33
ρ = 0.2, β = 0.5 90 97.33 95.87 94.77 93.67 94.33
ρ = 0.5, β ∈ [0,0.21] 94.67 94.67 94.67 94.67 94.67 94.67
ρ = 0.5, β = 0.5 91.33 97.33 96 95.11 94.22 94.8
ρ = 0.5, β = 1.3 86 100 96.8 94.73 92.67 94.04
ρ = 0.5, β = 2 81.33 100 95.07 92.37 89.67 91.69

eclair entropy GFB ρ = 0.2, β ∈ [0,0.01] 96 96 96 96 96 96
ρ = 0.2, β = 0.5 88 99.33 96.67 95 93.33 94.47
ρ = 0.5, β ∈ [0,0.1] 94.67 94.67 94.67 94.67 94.67 94.67
ρ = 0.5, β = 1 84.00 100 96 93.67 91.33 93
ρ = 0.5, β = 2 76.67 100 93.2 89.88 86.56 89.26
ρ = 0.6, β = 0.2 93.33 96.67 96 95.5 95 95.3
ρ = 0.7, β = 0.2 94 95.33 94.8 94.62 94.44 94.64

ncc s = 0.1 83.33 96.67 93.07 91.14 89.22 90.69
s = 0.08 88.00 96.67 94.13 92.90 91.67 92.67
s = 0.05 88.0 96.0 94.4 93.2 92.0 92.72
s = 0.01 91.33 94.00 93.47 93.07 92.67 92.91
s = 0.005 91.33 92.00 91.87 91.77 91.67 91.73
s = 0.0001 92 92 92 92 92 92

ndc β ∈ [0,0.36] 94.67 94.67 94.67 94.67 94.67 94.67
β = 0.37 94.67 95.33 95.20 95.1 95 95.06
β = 0.5 94 96 95.6 95.3 95 95.18
β = 2.1 92 98 96.67 95.78 94.89 95.47
β = 3 90.67 99.33 97.47 96.18 94.89 95.71
β = 4 88.67 99.33 97.07 95.48 93.89 94.89
β = 5 88.67 99.33 96.93 95.36 93.78 94.81

4.2. Comparing the imprecise classifiers’ performances using UCI data

The second illustration concerns the comparison of the performances of four imprecise classifiers: ndc, ncc, eclair rank GFB
and eclair entropy GFB using 11 UCI data and the same performances measures used in the first illustration of Subsection 4.1
(see the definition in Section 2.4). A brief description of the selected UCI data is given in Table 6.

Each of those classifiers has hyper parameters that should be optimized and some of them use a method of point 
prediction. Table 7 presents a summary of those parameters, the steps in which they are involved and the sets from which 
they are selected. Note that the methods of point prediction are selected from the list presented in Table 3: PRCL={nbc, knn, 
eknn, cart, rfc, lda, svm, ann and logistic }.

As the aim is to build a classifier that offers the best trade-off between cautiousness and efficiency, the criterion that is 
used to optimize the parameter of the four classifier is the average of the five measures of performance: accuracy, imprecise 
accuracy, u80, u65 and u50. The experimentation procedure is conduct as follows. Each dataset is split randomly 10 times 
to obtain a learning set (80%) and a testing set (20%). The parameters are optimized, each time, using the cross-validation 
technique on the learning dataset. Each cell in Table 8 presents the average performance of the classifiers on the test data of 
the 10 splits. As shown in Table 8, the most important observation is that even if some samples are classified with subsets 
of classes, the accuracy performance of the imprecise classifiers remains close to that of the methods of point prediction. 
The exception is the ncc classifier that has accuracy performances far from the best ones. Indeed, ncc is too cautious and 
in some situations, it has the best imprecise accuracy performances. It is the case for the Wine and PID data. As mentioned 



Fig. 2. eclair classifiers’ performances using svm point prediction method. - ENTR.01: eclair classifier using the entropy relabelling method (ρ1 = ρ , ρ2 =
ρ − 0.05) and the 01 gain reasoning method. - RANK.PIG: eclair classifier using the rank relabelling method and the pignistic ndc reasoning method.
- ENTR.PIG: eclair classifier using the entropy relabelling method (ρ1 = 0.25, ρ2 = 0.2) and the pignistic ndc reasoning method. - ENTR.GFB: eclair classifier
using the entropy relabelling method (ρ1 = 0.25, ρ2 = 0.2) and the generalised Fβ score reasoning method. (For interpretation of the colours in the figure(s),
the reader is referred to the web version of this article.)

Table 6
Information about the considered UCI data.

nom # instances # inputs # class abbreviation

Iris 150 4 3 Iris
Breast Cancer 683 9 2 BC
Wine 178 13 3 Wine
Ionosphere 351 32 2 IS
Diabetes 145 5 3 DBT
Glass 214 9 6 Glass
Pima Indians Diabetes 392 9 2 PID
Sonar 208 60 2 Sonar
Seeds 210 7 3 Seeds
Forest 523 27 4 Forest
Ecoli 327 5 5 Ecoli

Table 7
The hyper parameters involved in the models of the imprecise classifiers.

classifier relabelling posterior probabilities reasoning step

ndc - cl ∈ P RC L β ∈ [0,3]
ncc - IDM (s ∈ [10−10,2]) -
eclair rank GFB cl ∈ P RC L cl β ∈ [0,3]
eclair entropy GFB cl ∈ P RC L cl β ∈ [0,3]

ρ ∈ [0.1,1]



Fig. 3. eclair classifiers’ performances using logistic point prediction method. - ENTR.01: eclair classifier using the entropy relabelling method (ρ1 = ρ , 
ρ2 = ρ − 0.05) and the 01 gain reasoning method. - RANK.PIG: eclair classifier using the rank relabelling method and the pignistic ndc reasoning method. 
- ENTR.PIG: eclair classifier using the entropy relabelling method (ρ1 = 0.25, ρ2 = 0.2) and the pignistic ndc reasoning method. - ENTR.GFB: eclair classifier
using the entropy relabelling method (ρ1 = 0.25, ρ2 = 0.2) and the generalised Fβ score reasoning method. (For interpretation of the colours in the figure(s),
the reader is referred to the web version of this article.)

in the case of the simulated data of Subsection 4.1, eclair classifiers obtain accuracy scores close to the best ones of the 
methods of point prediction and the imprecise predictions of the difficult samples are all almost as good for several datasets. 
This can be seen for the following data: Iris, BC, IS, DBT, Seeds, Forest and Ecoli. Generally, the ndc and eclair classifiers obtain 
close results except for the u50 measure where ndc obtains slightly better performances.

Furthermore, we can also compare these results to those of the imprecise classifier named preorder in [19]. As it is 
mentioned in the introduction Section, this classifier constructs a binary relation on the set of classes and the subset of the 
non-dominated classes is considered as the prediction for the new sample. The dominance relation is based on different 
quantifications of uncertainties. The authors conducted the experiments for some UCI data under the same conditions as 
those considered in our experiments but only two measures are used: u80 and u65. Table 9 presents the comparisons 
between the performances of preorder reported in [19] and the performances of eclair classifiers and shows that except the 
“Forest” data, the eclair classifiers have the best performances on the other five datasets. In addition, we tested the five 
measures with a version of eclair where the training step is performed using the evidential k-nearest neighbourhoods EKNN 
with partially labelled samples [46][47]. Unfortunately, the obtained performances of this version fall far short of what is 
measured for the other versions of the eclair classifiers.

5. Conclusion

This paper proposes an approach for imprecise classification based on an imprecise relabelling of the training data and
a generalisation of the Fβ score within the framework of belief functions. Several imprecise classifiers can be built from 
the approach depending on the choice of the method of relabelling and the choice of the gain function involved in the 
reasoning step. Some choices appear preferable as they have less hyper parameters, i.e., eclair rank 01, but they do not 
obtain the best performances. Two illustrations are proposed to compare the proposed approach to the state-of-the-art 
approaches. First, simulated data are used to show how those classifiers deal with difficult samples. The eclair classifiers 
offer the best compromise between cautiousness and efficiency on this data. Second, the comparisons are conducted using 
the UCI data. The results show that the eclair classifiers have accuracy performances close to those of the point prediction 
classifiers while their performances on the other measures of cautiousness remain very competitive. Concerning the hyper 
parameters, the eclair classifiers can be improved by making them free from the methods of point prediction. However, the 



Fig. 4. The predictions of four selected imprecise classifiers: a large size is given to the points symbols representing predictions that are errors or imprecise.
(For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Table 8
The imprecise classifiers’ performances on the UCI data.

Iris BC Wine IS DBT Glass PID Sonar Seeds Forest Ecoli

Accuracy svm 95.67 96.15 98.53 94.57 85 68.5 75.51 84.15 94 90.19 90
rfc 96 97.19 98.24 93.86 98.93 77 79.10 83.9 92.62 91.17 90.16
lda 97.67 95.85 99.41 85.29 91.07 62.5 79.1 70.73 97.38 89 90.62
nbc 96 95.93 97.35 83.71 93.21 38 77.69 67.32 92.86 87.28 88.91
knn 96.33 96.59 65.59 83.71 91.07 61.5 74.36 63.66 90.48 90 89.53
cart 94 94.81 91.76 89 97.86 70.25 77.18 73.17 92.38 87.96 84.69
ann 96.33 94.67 90 86.14 95.36 64.75 78.08 80 95.48 86.89 81.09
eknn 97 96.67 72.06 92.86 92.14 67 72.95 81.46 87.62 91.55 89.84
logistic 96 96.59 93.82 83.43 96.07 64.25 79.62 71.71 95.71 87.77 89.53

eclair rank GFB 96 94.6 97.35 92.28 98.21 65.25 70.51 67.32 94.04 89.7 88.12
eclair entropy GFB 96 96.22 97.94 91.71 95.71 52.5 66.8 73 94.04 88.44 87.34
ndc 96.67 96.51 97.64 94.28 98.93 72 73.84 76.58 96.66 89.41 88.12
ncc 91 95.55 88.82 62.57 87.85 23.25 15.76 30.97 83.57 24.85 38.28

imprAcc eclair rank GFB 96 97.85 97.35 94.57 98.93 78.25 84.49 94.88 97.86 90.98 90.62
eclair entropy GFB 98.33 96.88 97.94 95.57 98.21 77.5 86.02 89.51 98.1 90.87 89.53
ndc 96.67 96.88 97.94 95.42 98.93 80.5 82.43 88.3 97.85 91.84 92.5
ncc 96.67 96 99.11 87.14 95.35 65.5 95.38 90.48 94.76 87.57 85

u80 eclair rank GFB 96 97.2 97.35 94.11 98.64 75.16 81.7 89.36 97.1 90.65 89.8
eclair entropy GFB 97.86 96.75 97.94 94.8 97.21 69.1 82.18 86.2 96.57 90.32 89.09
ndc 96.67 96.81 97.88 95.2 98.93 78.75 80.71 85.95 97.62 91.26 91.62
ncc 95.4 95.91 95.47 82.2 93.57 39.84 79.46 78.58 92.33 71.23 72.24

u65 eclair rank GFB 96 96.75 97.35 93.78 98.54 73.27 79.6 85.23 96.52 90.47 89.47
eclair entropy GFB 97.51 96.65 97.94 94.22 96.88 65.82 79.3 83.7 96.02 89.96 88.76
ndc 96.67 96.75 97.83 95.02 98.93 77.48 79.43 84.19 97.44 90.91 90.96
ncc 94.56 95.84 94.05 78.54 92.47 35.88 67.51 69.65 90.67 62.20 65.58

u50 eclair rank GFB 96 96.2 97.35 93.43 98.45 71.37 77.5 81.1 95.95 90.3 89.14
eclair entropy GFB 97.16 96.55 97.94 93.64 96.54 62.54 76.41 81.22 95.47 89.61 88.43
ndc 96.67 96.7 97.79 94.85 98.93 76.2 78.14 82.44 97.26 90.55 90.31
ncc 93.72 95.77 92.64 74.85 91.36 31.93 55.57 60.73 89 53.17 58.92



Table 9
Comparison of the performances of preorder classifier reported in [19] and eclair classifiers’ performances on some UCI data.

Iris Wine Glass Seeds Forest Ecoli

u80 eclair rank GFB 96 97.35 75.16 97.1 90.65 89.8
eclair entropy GFB 97.86 97.94 69.1 96.57 90.32 89.09
preorder 90.45 95.89 67.32 92.15 92.15 80.66

u65 eclair rank GFB 96 97.35 73.27 96.52 90.47 89.47
eclair entropy GFB 97.51 97.94 65.82 96.02 89.96 88.76
preorder 83.29 93.18 57.24 88.16 88.82 75.25

other hyper parameters are required because during the relabelling step they enable the detection of difficult samples in the 
training data and those involved in the reasoning step enable control of the trade-off between cautiousness and efficiency. 
Those parameters can be considered as user-control parameters whose values depend on the targeted application.
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