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Abstract—The growing demand for liver transplantation is
leading medicine to explore new technologies in order to extend
the field of viable transplants. Automatic hepatic steatosis assess-
ment is the first step towards the development of a computer-
aided liver diagnosis due to its importance as a risk factor for
primary dysfunction. Color and texture are considered as two
fundamental visual characteristics to assess the degree of hepatic
steatosis. The aim of this study is to determine the discriminating
features for liver image classification according to three steatosis
classes: mild, moderate or severe. First, color features are
extracted in three color spaces namely: RGB, HSV and YCbCr.
Texture features are then extracted from RGB components using
co-occurrence matrices, Local Binary Pattern (LBP) and Local
Phase Quantization (LPQ). Additionally, feature-extraction was
followed by generating a linear model regression using Least
Absolute Shrinkage and Selection Operator (LASSO) allowing
the classification task. The experimental results show that RGB
histograms provide better classification accuracy. However, the
relevance of these preliminary results is not sufficient to draw
a decisive conclusion due to the experimental database, which
is really small, very unbalanced and the images were captured
under unknown and widely varying conditions.

Index Terms—Liver images, histograms, texture, LASSO.

I. INTRODUCTION AND CONTEXT

Liver transplantation (LT) provides indisputable benefit for

the survival and quality of life of patients with end-stage dis-

eases [1]. The advances in liver transplantation medicine have

led to its expansion over the past ten years. However, access

to allografts remains the main limitation, because the growing

number of patients who may benefit from the transplant consis-

tently exceeds the number of organ donors. This issue has led

to expand the liver selection criteria, which could have Hepatic

Steatosis (HS), moving so the limit of acceptance for marginal

livers. HS occurs initially by accumulation of triacylglycerols

(TGs) in the cytoplasm of hepatocytes. It corresponds to the

most important factors affecting liver allograft function and so

LT outcome. Based on the size of hepatocytes TGs droplets,

HS can be categorised as microvesicular or macrovesicular.

Microvesicular has less influence on poor graft function than

macrovesicular (MaS) which is one of the most important

criteria defining the extended criteria of donor organs. Current

quantification and grading of HS utilize a classification of mild

(<33%), moderate (33%-66%), or severe (>66%) [2]. Mild

MaS is considered a transplantable condition, whereas the use

of donor livers with moderate MaS remains challenging. Grafts

with severe steatosis (>60%) are highly recommended to be

excluded, due to the critical risk of primary non-function.

Currently, the histological analysis of biopsied liver tissue

performed during or after procurement is considered as the

gold reference standard for the HS evaluation. However, this

requires the availability of a cryostat facility and of an expert

pathologist to interpret the result before or immediately after

the liver retrieval. Consequently, this procedure can be inva-

sive, time-consuming and difficult in a remote donor hospital.

Due to the short time ailability between the liver procurement

and its transplantation, the surgeons usually perform HS

assessment through clinical evaluation (medical history, blood

tests) and qualitative visual liver assessment [2]. The liver

is evaluated in a standardized fashion according to certain

criteria of parenchymal texture such as: yellowness, firmness

and round liver edges. Fig. 1 shows two livers belonging

to two different hepatic steatosis (HS) classes assessed by

histopathological examination of liver tissue samples extracted

with biopsy. Thus, liver with high percentage of steatosis

(Fig.1(right)) is characterized by yellowish colors and more

rounded edges than the liver in Fig.1(left) with mild hepatic

steatosis (HS=5%). Such indicators can help surgeons to assess

the overall liver quality for transplantation. Even if biopsy

samples are taken, visual assessment of liver steatosis remains

very important and always performed. However, it depends

on the experience of the surgeon and becomes sometimes very

difficult even for experienced surgeons [1]. In this context, the

development of a simple, handy, fast and accurate device for

non-invasive quantification of HS would obviously be most

desirable.

As smartphones have become ubiquitous and the new

generation ones are equipped by high resolution cameras,

they could be the solution for automatic HS assessment.

Indeed, the recent advances in computer vision has led to the

development of various assisted diagnostics systems. In this

context, texture and color are the fundamental characteristics

used for optical images classification [3]–[5]. Inspired by these

promising studies, the aim of this paper is to study different

image descriptors in order to find the relevant characteristics

allowing to predict the quality of the liver for transplantation

and its limitations. This project represents the first attempt



Fig. 1: Images of two livers acquired with smartphones in the

operating room: liver with mild: HS=5% (left) and with severe

hepatic steatosis: HS=85% (right).

to use automatic texture analysis of RGB (for Red Green

and Blue channels) images and machine learning for graft

HS assessment. The image database used in this study was

initially introduced in the reaserch of Moccia et al. [6] on

the same project. These images were acquired with different

smartphones under different conditions wich include: a wide

range of illumination, varying camera pose, different organ

positions and presence of specular reflections. There is also

the problem of image demosaicking [7] or image compression,

degrading textures, colors and many details.

Features extraction consists to apply descriptors on the liver

image. It is therefore interesting to know the precise region

of the lobe in which the experts perform the biopsy. In this

case, it makes more sense to apply the descriptors to the patch

covering the region to be analyzed. However, the complete

liver shape in many images of the database are not available.

Consequently, the classification feasibility will be evaluated

by applying both texture and color descriptors on the whole

visible area of the liver in this study.

II. TEXTURE DESCRIPTORS

Texture analysis is a useful way whose primary purpose

is to provide descriptors for image classification. In the

medical field, texture-based information are increasingly used

for computer aided diagnosis [6], [8], [9]. In this study, we

focused on three commonly used texture descriptors: Co-

occurrence matrices, Local Binary Pattern (LBP) and Local

Phase Quantization (LPQ).

A. Gray Level Co-occurence Matrix (GLCM)
Grey Level Co-occurrence Matrix is one of the earliest

methods used for image texture analysis [10]. This technique
calculates the probability P (i, j, d, θ) which represents the
number of times two pixels with gray level i and j appear
at a relative distance d according to a given orientation θ:

Pi,j(d, θ)=#
{
[(k, l)(m,n)∈(Lx, Ly)

2 |I(k, l)= i, I(n,m)=j, d, θ]
}
,

(1)

where (k, l) and (m,n) are respectively, the coordinates

of pixels i and j, # denotes the occurrence number of the

pixel pair in the (Lx×Ly) image resolution cells ordered

by their row-column designations. The conventionally used

angular directions θ are 0, 45, 90 and 135 degrees. Note that

P (i, j, d, θ)=P (j, i, d, θ), thus GLCMs are a symmetric.

GLCMs provide a rich description of spatial dependence

that is difficult to manipulate directly. Haralick et al. proposed

a set of 14 statistical descriptors or attributes to summarize the

textural information contained in the GLCMs [10]. However,

only a subset of 5 descriptors are considered to be more

relevant in the literature, namely: angular second moment or

energy ENE, contrast CST , homogeneity HOM , entropy

ENT and correlation COR are computed such as:

ENE=
∑
i

∑
j

Pi,j(d, θ)
2, (2)

CST =
∑
i

∑
j

(i−j)2 · Pi,j(d, θ), (3)

HOM=−
∑
i

∑
j

Pi,j(d, θ)

1+(i−j)2
, (4)

ENT =−
∑
i

∑
j

Pi,j(d, θ) · log(Pij(d, θ)), (5)

COR=−
∑
i

∑
j

Pi,j(d, θ)
(i− μi)(j − μj)√

σ2
i σ

2
j

, (6)

where μi and σj represent the mean and standard deviation of

the normalized inputs for the reference pixel i and neighbor

pixel j respectively [10]. Also, μ{i,j} and σ{i,j} correspond

to μi =
∑

i i · Pi,j and σi =
∑

i Pi,j(i− μi)
2.

B. Local Binary Pattern (LBP)
The original version of the LBP labels the pixels by com-

paring each pixel with its 3×3-neighbourhood and considering
the result as a binary number as illustrated in Fig. 2 [11]. The
histogram of the labels is often used as a texture descriptor.
The LBP operator was later generalized to deal with the texture
at different scales by using neighborhoods of different sizes
[12]. The thresholding function is defined as follows:

LBPP,R =

P−1∑
p=0

s(gp−gc) ·2p, with s(x) =

{
1 x ≥ 0
0 x < 0,

(7)

where gc and gp are the gray level values of the central pixel

and its neighbor respectively. P is the total number of the

sampling points in a circular neighborhood of R radius around

gc.
The LBPP,R operator can produce 2P different output

values from the P neighbor pixels. Furthermore, the LBP
operator rotation invariant LBP ri

P,R by assigning a unique
label to each rotation invariant [13] (as an example, 01110000
and 00111000 are rotation invariant) is expressed by:

LBP ri
P,R = min {ROR(LBPP,R, i) | i = 0, 1, ..., P − 1}, (8)

where ROR(x, i) performs a circular bit-wise right shift on

the P-bit number x, i times.
Another extension of the LBP operator has been proposed to

improve both the rotational invariance and to reduce the feature
dimensionality. The uniform rotational invariance LBP riu2

P,R
assigns an individual code to uniform patterns which contain
at most 2 transitions (0 to 1 or vice versa) and a separate code
to all non-uniform patterns. Its formal definition is given by
the following equation:

LBP riu2
P,R =

{ ∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise,
(9)
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Fig. 2: Basic LBP and LPQ histogram calculation example.

where U(LBPP,R) is computed as: U(LBPP,R) =

|(s(gP−1 − gc) − s(g0 − gc)) |+∑P−1
p=1 |(s(gp−gc) − s(gp−1 − gc)) |.

Thereafter, the LBP riu2
P,R operator is a texture descriptor by

producing a histogram of (P+2) bins.

C. Local Phase Quantization (LPQ)

The LPQ is blur invariant texture analysis method based

on binary encoding of the phase information extracted from

the 2-D short-term Fourier transform (STFT) computed over

a local neighborhood at each pixel position of the image

[14]. Thus, in digital image processing, the spatial blurring

is represented by a convolution between the image intensity

and a point spread function (PSF). In the Fourier domain, for

given coefficient computed by the STFT u, this corresponds

to: G(u) = F (u) · H(u), with G, F , and H represent the

Fourier transforms of the blurred image, the original image,

and the PSF respectively. By considering only the phase of

the spectrum, the relation turns into a sum:

∠G(u) = ∠F (u) + ∠H(u). (10)

If the blur PSF is centrally symmetric, the Fourier trans-

form H(u) will always be real valued, and, as consequence:

∠H(u) = 0 if H(u) ≥ 0, π otherwise. Furthermore, the shape

of H(u) for a regular PSF is close to a Gaussian or a sinc-

function, which makes at least the low frequency values of

∠H(u) to be positive [15]. Therefore, at these frequencies,

∠G(u) = ∠F (u) causing ∠F (u) to be a blur invariant. The

LPQ method is based on this property of blur invariance. The

local phase information is extracted using STFT computed

over a rectangular neighborhood Nx of size M×M at each

pixel position x of the image f(x):

F (u, x) =
∑
y∈Nx

f(x− y)e−j2πuT y. (11)

Only four (more informative) complex coefficients are

considered in LPQ, corresponding to: u1=[a, 0]T, u2=[0, a]T,
u3=[a, a]T, u4=[a,−a]T, where a is small enough to satisfy

H(u)≥0. This results in a 1×4 vector for each pixel position:

Fx = [F (u1, x), F (u2, x), F (u3, x), F (u4, x)]. (12)

Finally, the phase information in the Fourier coefficients is

recorded by observing the signs of the real and imaginary

parts of each component in Fx as follows:

qj(x) =

{
1 if gj(x) ≥ 0
0 otherwise,

(13)

where gj(x) is the jth component of the vector Gx =
[Re{Fx}, Im{Fx}]. The resulting eight binary coefficients

qj(x) are represented as integer values between 0-255 using

a binary encoding:

fLPQ(x) =
8∑

j=1

qj(x) · 2j−1. (14)

Finally, as for the LBP descriptor (Fig. 2), the histogram of

the label image fLPQ is used as a 256-dimensional feature

vector in classification.

An improved rotation-invariant local phase quantization

(RI LPQ) approach was proposed in [16]. This method

consists of two steps: characteristic orientation estimation and

directed descriptor extraction. Feature computation procedure

is similar to the original LPQ, but the neighbourhood at

each pixel location is rotated according to the direction of

the characteristic orientation. Consequently, this technique

(RI LPQ) produces 256 features for a given grey level image

and is compared in this study with previous descriptors.

III. COLOR DESCRIPTORS

Since hepatic steatosis causes a change in the color of

the liver, color information becomes interesting features for

image classification. Indeed, it has been demonstrated that

considering the color in the image significantly improves the

performance of many tasks in medical image analysis such

as: melanoma detection [8] and skin lesions classification

[17], [18]. Several color representations have been proposed

to interpret the color information, each might outperform

others in a particular application. This section introduces the

commonly used color spaces in medical image analysis and

presents the main texture descriptors trough these color spaces

which are useful for the proposed study.
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Fig. 3: Liver image acquired by a surgeon smartphone.

A. Color Histogram Features

RGB is the default color space for storing and representing

digital images. In this space, each color appears in its primary

color components: Red, Green and Blue. There are many

other color spaces that can be computed from the RGB space

by means of linear or nonlinear transformations [19]. The

HSV color space is closer to how humans perceive color in

terms of: Hue (H), Saturation (S) and value (V). The hue

component describes the wavelength of the color, saturation

indicates the amount of white in the color and value represents

the brightness which describes the intensity of light coming

from the color. Several researches have used the HSV space

to interpret the color information in color medical images.

Indeed, the hue can reflect the abnormal appearance of tissues,

saturation can be used to assess the level of abnormalities

and value may indicates the property of luminance [20].

YCbCr is another color model which represents color. The

Y in YCbCr signifies the luminance component while Cb and

Cr represent the blue-difference and red-difference chroma

components. YCbCr color model imitates human eye which

is more sensitive to light intensity changes than hue changes.

Therefore, the model allows to perceive more information from

luminance and to obtain an efficient image representation [21].

Regardless of the used model, the distribution of intensities

in each color channel is represented by a histogram of 256
bins (for images coded on 8 bits). These histograms can

be concatenated and used as color descriptor of (3 × 256)
values [17], [22]. Instead of concatenating the three histograms

independently, it is also possible to generate a 3D histogram

representing the joint distribution of the three channels. How-

ever, this increases the space dimensionality to 2563 and an

image quantization becomes necessary [8], [18].

B. Color and texture combination

Color and texture are two related characteristics of the im-

age, but these characteristics are usually analyzed separately.

Indeed, texture analysis methods are often applied to grayscale

images for computational reasons and also for the interest

of the intensity values of the pixels in the image. However,

it has been demonstrated that texture features incorporating

color information can improve the classification results. This

generated two categories of methods:

• methods extracting color and texture features separately,

• methods considering color and texture jointly [23].

In the first approach, texture features extracted from the

grayscale image are used in conjunction with other features

describing the color distribution in a given color space [8],

[9], [24]. For example, Riaz et al. [8] combine texture features

extracted from GLCM with color histograms computed in

three color space (including RGB and HSV) to classify the

dermoscopy images into melanoma and non-melanoma. In the

second approach, spatial and color distribution of pixels are

jointly characterized by evaluating the texture features within

each of the three color components independently [25], or by

considering the spatial interactions within and between those

components in a given color space [19].

In the following, the image classification is done in a

first time by comparing histograms of concatenated color

space channels (RGB, HSV, YCbCr), then by applying texture

descriptors on the image in the most effective color space.

IV. EXPERIMENTS AND RESULTS

A. Experimental Database

The database used in this study contains 154 RGB images,

which refer to 154 different liver acquired with open-surgery

view. As mentioned in the introduction, images were acquired

with smartphones by surgeons under various conditions, which

makes the classification task very challenging. Dataset images

are divided into three classes according to HS rate assessed

with biopsy. There is a significant imbalance between the

classes: 125 images in class 1 (HS ≤ 30%), referring to

transplanted livers, 14 images in class 2 (30 < HS ≤ 50%)
corresponding to livers with moderate steatosis and 17 images

in class 3 (HS > 50%) referred to discarded grafts with severe

steatosis. Note that, these classes can be optionally changed

depending on the expert decision.

Image analysis consists of applying the descriptors on the

global area of the liver. Thus, manual segmentation was

performed on each image to separate the liver organ from

the background as shown in Fig. 3(a). Shadow areas and

specular reflections were removed by setting to zero the

bottom ’lowPercentile’ and the top ’highPercentile’ of all pixel

values of the image, see Fig. 3(c).



RGB Cooccurrrence HSV YCbCr LBP LPQ
Act.1 Act.2 Act.3 Act.1 Act.2 Act.3 Act.1 Act.2 Act.3 Act.1 Act.2 Act.3 Act.1 Act.2 Act.3 Act.1 Act.2 Act.3

Predict. 1 25 1 3 20 3 2 22 3 0 18 3 2 23 3 2 22 3 3
Predict. 2 0 1 0 5 0 2 6 0 4 7 0 1 3 0 0 7 0 1
Predict. 3 5 1 1 5 0 0 2 0 0 5 0 1 4 0 2 1 0 0

Metric Metric Metric Metric Metric Metric
Se Sp Acc Se Sp Acc Se Sp Acc Se Sp Acc Se Sp Acc Se Sp Acc

C1 vs C1C2 0.83 0.42 0.75 0.66 0.28 0.59 0.73 0.57 0.7 0.6 0.28 0.54 0.76 0.28 0.67 0.73 0.14 0.62
C2 vs C1C3 0.33 1 0.94 0 0.79 0.72 0 0.7 0.64 0 0.76 0.25 0 0.91 0.83 0 0.76 0.7
C3 vs C1C3 0.25 0.81 0.75 0 0.84 0.75 0 0.93 0.83 0.25 0.93 0.78 0 0.87 0.83 0 0.96 0.86

Mean 0.47 0.74 0.81 0.22 0.64 0.69 0.24 0.73 0.72 0.28 0.63 0.67 0.42 0.69 0.78 0.24 0.62 0.72

TABLE I: Performance measures for different color spaces and texture features.

B. Feature extraction

Image classification requires comparison of images accord-

ing to a certain useful features. In this study, color and

texture features were considered in order to find suitable

representation for images. First, color features were extracted

using color histograms in three color spaces namely: RGB,

HSV, YCbCr. Indeed, the aim is to determine if a particular

color space is optimum for our study.

Color content of the liver can be represented by a single

3D histogram or three separate 1D histograms. In a simplified

way, for each color space, a feature vector is constructed by

concatenating the corresponding three component histograms.

We could have used the joint 3D histogram of the three

channels since they are not statistically independent. How-

ever, this involves an image quantization to reduce the space

dimensionality and thus a loss of information.

The differential structures in liver images may be an-

alyzed with texture descriptors. In this study, spatial and

color distribution of pixels were jointly characterized by

evaluating texture features within each of the three color

components (Red Green and Blue) of the image indepen-

dently. Co-occurrence matrices were computed on these 3

channels separately using all the possible combinations of

(θ, d), with θ∈{0◦, 45◦, 90◦, 135◦} and d∈{1, 2, 3} (see eq. 1);

then, the corresponding Haralick five features (ENE, CST ,

HOM , ENT and COR) were concatenated. On the other

hand, LBPP,R
riu2 (eq. 9) were then computed on each of the

three channels: 10 features from LBP 1,8
riu2, 18 features from

LBP 2,16
riu2 and 26 features from LBP 3,24

riu2 , wich gives a total

of 3 × (10 + 18 + 26) LBP based features to a given image.

Finally, rotation invariant RI LPQ were computed over three

neighborhood sizes (M = 3; 5; 7) and the corresponding

histograms were concatenated. Note that the values of M
were chosen to be consistent with the scales d and P used

to calculate co-occurrence and LBP features, respectively. A

total of 3×(256×256) features were obtained by this method.

C. Classification with LASSO

Given a set of couples of observations (xk, yk)k={1,....m},

with xk∈Rd, a classical linear regression algorithm looks for a

w∈Rd such that the predicting function f(x, b, w) = b+wTx
fits the couple (xk, yk). Let X∈R(m×d+1) be the matrix with

rows [1, xT
k ]k={1,....m} and w = [b, w]. When the quality of

fitting is measured by Euclidean distance, the optimal w is the

solution of the optimization problem:

min L(w) = 1

m
‖ Xw − y ‖22, (15)

where L is the loss function to be minimized. The d explaining

features are the columns Xc of X with c = 2, , d + 1. When

a budget of C features is given, the optimal w is the solution

of:

min L(w) = 1

m
‖ Xw − y ‖22, ||w||0 � C. (16)

Here, ||w||0 = |{c | wc �= 0, c ≥ 2}| (notice that ||w||0
is not a norm). The problem (eq. 16) arises also when the

number of observations is less than the number of features

m<d. Our problem falls into this case with m∼102 limited

by the number of patients and d∼103 the number of numeric

characteristics calculated from images. A main fact from linear

algebra shows that the number of predicting features cannot

be greater than rank(X)�m. Thus, one searches for a subset

of C�m features that give the best fit for y. The problem (eq.

16) is NP-hard and a good heuristic is to solve the following:

min L(w) = 1

m
‖ Xw − y ‖22, ||w||1 � K. (17)

The minimization problem (eq.16) is LASSO (Least Absolute

Shrinkage and Selection Operator) [26]:

min L(w) = 1

2m
‖ Xw − y ‖22 +λ · ||w||1. (18)

This is a convex optimization problem that often finds sparse

solutions w. In fact, the ‖ ∗ ‖1-norm penalizing with the

factor λ brings wc to 0 whenever corr(y,Xc)<λ. The solution

w gets sparser with increasing λ. Then, a trade-off can be

easily found between the prediction error and the number of

predicting features by controlling the sparsity of w through

the penalizing factor λ.
To perform the classification, image database was divided

into: a learning set (117 images) and a test set (37 images).

Note that the learning set was created by randomly selecting

75% of images in each of the three classes while the remaining

25% were left to the test. For each of the features datasets, a

learning model is constructed using LASSO classifier with the

selected features. To evaluate the classification performance

of the resulting models, sensitivity (Se), specificity (Sp) and

accuracy (Acc) were compputed from the three confusion

matrices (C1 vs C2C3), (C2 vs C1C3), (C3 vs C1C2):

Se =
TP

TP+FN
, Sp =

TN

TN+FP
, (19)



and

Acc =
TP+TN

TN+FP+TP+FN
, (20)

where Ci,i∈{1,2,3} are the three steatosis classes. Each row of

the confusion matrices represents the instances in a predicted

class while each column represents the instances in an actual

(Act.) class. TP , TN , FP and FN represent the number of

true positive, true negative, false positive and false negative,

respectively.

The Tab. I reports all the classifications. In that respect, the

best classification performance was obtained with the RGB

dataset: (Se = 0.47, Sp = 0.74, Acc = 0.81). In this case,

LASSO retains only 129 out of 3×256 features to drive

features are really important to drive the correct predictions.

However, by analysing the RGB confusion matrix, the sensi-

tivity is decreased to (Se = 0.47) by the fact that the model

correctly classified only one image of class 2 and 3. This

problem is mainly due to the fact that we don’t have enough

images of classes 2 and 3 compared to class 1 in our database.

This creates a significant imbalance between classes, reducing

the model’s ability to learn. For texture features, the results

show that LBP perform better than co-occurrence and LPQ

features with (Se = 0.42, Sp = 0.69, Acc = 0.78). However,

there is no improvement compared to RGB results.

V. CONCLUSION

The aim of this study is to design a reliable model for

automatic hepatic steatosis assessment. More specifically, we

tried to answer the following question: which characteristics,

texture or color, convey the most relevant information? The re-

sults showed that RGB histograms provide better classification

accuracy. This contribution strengthens our claims that seeking

specific descriptors might be the key for a future computer

assisted system that can support surgeons to make the decision

to accept or reject grafts. Future work should extend these

results by using a larger and more balanced database for robust

conclusions. Moreover, image acquisition needs to consider:

• camera pose

• organ position,

• color calibration of the imaging device,

• incoming illumination parameters influencing the color

measurements.

Also, it would be interesting to combine the stronger color

and texture feature set to increase the performance of the

system.
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