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Abstract. Among the common image structures, line feature is the ex-
tensively used geometric structure for various image processing appli-
cations, including the analysis of biomedical image with blood vessels
highlighting, graph-shape structures, cracks detection, satellite images or
remote sensing data. Multi-scale processing of line feature is essentially
required for the extraction of more relevant information or line structures
of heterogeneous widths. In this paper, a multi-scale filtering-based line
detection approach using second-order semi-Gaussian anisotropic kernel
is proposed. Meanwhile, a strategy is introduced to calculate the strength
of the observed line feature across the different scales. The proposed
technique is evaluated on real images by using their tied hand-labeled
images. Finally, the experimental results and comparison of images con-
taining different line feature widths with state-of-the-art techniques have
sufficiently supported the effectiveness of our technique.

Keywords: Line-feature detection · Multi-scale · Semi-filters · Steerable

1 Introduction

Line features represent ridges and valleys in a digital image, they correspond to
thin, elongated structures and ridges refer to the valleys of the inverted relief
on the image surface, as illustrated in Fig. 1(b). Line feature characterization is
the initial step in all aforementioned applications. Amongst the low level image
structures, such as, texture, edge, corner or junction, line features is the widely
applied structure in the image processing literature. Line structures on multi-
scale like ridges or valleys contain determinative information required in image
analysis problems, such as, scene understanding, photogrammetry, biomedical
[12] and remote sensing data. It is important to have a reliable line detector,
especially adapted to different scales. Today, there are many post-processing
methods to align segments, group or recognize shapes. These methods are all
more effective when the line detector is reliable.

Two parallel step edges construct a line structure, they can be roughly ex-
tracted by the Laplacian operator, as in Fig. 1(c). Technically the step or ramp
edges correspond to local maxima of the first order derivative [2], while ridges
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(a) Gray level image of size 

67×67 coded on 8 bits.

(b) Image surface of (a), ridges are at the top 

whereas valleys are at the bottom of the surface.

(c) Ridges/valleys extracted

by Laplacian of Gaussian.

(d) Ridges/valleys extracted

with the Hessian matrix.

Fig. 1. 3D representation of ridges/valleys and their extractions using the Laplacian
of Gaussian and Hessian matrix [14], σ=2.88, see [13]. In (c)-(d), extracted ridges in
red and valleys in green are superimposed on the original image.

are tied to local maxima of second order derivative in the local analysis of Hes-
sian matrices of an image [5] [14]. There exist other techniques to extract line
structures, including oriented filters, as presented in the next section.

In this paper, a multi-scale Second Derivative of Semi-Gaussian (SDSG)
filtering technique is proposed. The line feature profiles can vary across scale
space; they are detected with different filter parameters, whose outputs would
be merged latter to create a single edge map. Hence, a function is proposed for
the scale fusion considering the desired scale.

2 Multi-Scale Ridge Extraction: Related Works

Gaussian kernels as well as their derivatives are the widely employed filtering
techniques for the processing of low level image structures due to their isotropy,
steerability and decomposability properties. The zeroth order Gaussian kernels
are used for smoothing and regularization. This section covers the main theoret-
ical principles of multi-scale line-feature extraction in digital images.

2.1 Isotropic filters

For the line-structure detection, several works are based on the eigen-decomposition
of the Hessian computed at each image pixel [5][13][14]. The combination of the
eigen-values measures the overall strength of the ridge or the valley, as illustrated
in Figs. 1(d) and 2(b). In scale space, theoretically, a pioneer work proposed by
Lindeberg assumes that a ridge point is defined as a location for which the
intensity assumes a local maximum (or minimum for the valleys) in the main
principal curvature direction [5]. Considering an image Iσ smoothed by a Gaus-
sian of standard deviation σ, the line-structure measure of the original image I
is given by:

N γ(I) = σ2γ ·
(

(Iσ,xx − Iσ,yy)
2

+ 4 · Iσ,xy
)
, (1)

where Iσ,xx and Iσ,yy represent the x and y derivatives of the image Iσ respec-
tively, and γ > 0 is termed as the scale normalization factor.

Bae et al. [1] extended the γ-normalized multi-scale Hessian matrix of Eq. 1 to
derive a width-invariant and contrast-proportional second derivative magnitude
map. Then a high-level processing is performed for segment formation.



Title Suppressed Due to Excessive Length 3

(a) Image (b) Highest value of (c) Steerable filter (d) Steerable filter

116 × 81 Hessian matrix [14] of order 2 (SF2) [3] of order 4 (SF4) [4]

(e) SOAGK, ∆θ = 5◦ (f) Linemap of SDSG, (g) Non-maxima (h) Thresholding

σu = 1.81, σv = 5σu σu = 1.81, σv = 5σu suppression of (f) of image in (g)

Fig. 2. Extraction of ridges corresponding of long chains of streptococcus pyogenes
infecting grape-like clusters of MRSA biofilm: comparison of mono-scale ridges extrac-
tors. Original image source: https://www.nikonsmallworld.com

2.2 Oriented Filters for Line Feature Detection

The well-known and popular steerable filters [3][4] are built by linear combi-
nation of the direct rotation of the derivatives of the basic isotropic Gaussian.
Thereafter, it captures the line structure energy in the direction of the maxi-
mum response of the filter. Edge detection techniques using elongated kernels
are efficient to correctly detect large linear structures [11][4][6]. The robustness
against noise depends strongly on the smoothing parameters of the filter, i.e.,
the parameter of the filter elongation. Moreover, the elongated filters enable us
to capture discontinuous line features, as illustrated in Figs. 2(d)-(e). To extract
ridges, the Second-Order Anisotropic Gaussian Kernel (SOAGK) can be applied
[6]. Considering the vertical anisotropic Gaussian directed at θ = 0◦, its second
derivative in the x direction is:

G ′′σu,σv,θ=0 (x, y)=
x2 − σ3

u

2πσ5
uσv
· e
− 1

2

(
x2

σ2u
+ y2

σ2v

)
. (2)

The choice of σv > σu enables to build a narrow filter smoothing mostly in the
y direction while enhancing valleys in the x direction. Now, this 2D kernel can
be oriented in different directions to capture line structures in the image, see
Fig. 2(e). To this end, this anisotropic choice produces a smoothing alongside
the ridge/valley, which helps to extract easily elongated features, even disturbed
by noise. On the contrary, kernels having parameters σv ≈ σu are equivalent to
a Steerable Filter of order 2 (SF2 ) [3] and may highlight undesirable features as
noise which are interpreted as small, non-elongated ridges [6]. Finally, SOAGK at
different scales are applied in [6] to detect the line structures and the combination
is done by means of the maximum among the different obtained line-maps.

https://www.nikonsmallworld.com
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(a)  𝜃 = 0° (b)  𝜃 = 45° (c) 𝜃 = 217° (d) Image 96×96
(e) Filter response as a function of the 

angular sampling for the central pixel in (d)

(f)  Δ𝜃 = 2° (g)  Δ𝜃 = 5° (h)  Δ𝜃 = 10° (i)  Δ𝜃 = 22.5° (j)  Δ𝜃 = 45° (k)  Δ𝜃 = 90°

Fig. 3. Ridge detection as a function of the angular step ∆θ, with σd = 1.8, σs = 5σd,
and SDSG responses (clockwise) at a pixel tied to a bended ridge.

3 Second-Derivative of a Semi-Gaussian Filter (SDSG)

The basic idea of the developed filter is to consider paths (i.e., ridges or valleys)
crossing each pixel. Inspired by [10], the proposed technique Second-Derivative
of a Semi-Gaussian Filter (SDSG) represents a truncated 2nd derivative of an
anisotropic Gaussian which can be steered. It’s able to detect bended ridges due
to two elongated and oriented filters in two different directions.

3.1 Concept of the SDSG

The main idea of SDSG is to “cut” the second order anisotropic Gaussian kernel
(Eq. 2) using a Heaviside function and, then, steer this filter in all directions
around the considered pixel: from 0 to 360°. Hence, the SDSG can be built by
combining a vertical semi-Gaussian on the one hand and its horizontal second
derivative on the other hand. Mathematically, it is defined by:

1. a semi-Gaussian for the smoothing in the y direction (vertically):

G (σs, t) = H(t) · e
−t2

2·σ2s , with σs ∈ R∗+, t ∈ R and H the Heaviside function,

2. a second derivative of a Gaussian in the x direction (horizontally):

G ′′(σd, t) =
t2−σ2

d

σ4
d
· e

−t2

2·σ2
d , with σd ∈ R∗+ and t ∈ R.

For signal and image processing, t represents an integer. The Fig. 3(a) shows an
example of SDSG, constructed with these two functions, respectively, G at the
vertical and G ′′ at the horizontal. In order to create an anisotropic (elongated)
filter, the support of the smoothing half-filter must be greater than the support
of the filter containing the derivative, that is to say σs>σd. Then, to obtain a
rotated version of the SDSG, this filter is applied in several directions θ from
0 to 360°. The original rotation is centered on the middle of the basis filter;
for a better understanding, the rotation center corresponds to the middle of
the image in Fig. 3(a), and the SDSG is rotated from this point in Figs. 3(b)
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and (c). Thereafter, the image convolution with the steered filters allows to
compute a derivative information at each desired direction (as shown in Fig.
3(e)). Then, the line structure strength L is calculated using a local directional
maximization/minimization:

• addition of the two local maxima regarding ridge detection,
• addition of the two local minima regarding valley detection.

The direction perpendicular to the line structure, called ~η is calculated by the
bisector between these two local directions (maxima or minima). Then, the line
structures can be extracted with non-maxima suppression (NMS) process by
deleting local non-maxima in the ~η direction, same strategy as in [2]. The Fig.
3(e) illustrates two local maxima tied to the directions of a bended line (here the
~η direction is around 90°direction). When the angular step ∆θ is well discretized,
such a filtering technique allows computing two precise directions of the line
structure. The two directions cannot be correctly calculated when the angular
step is too spaced (∆θ > 5◦, Figs. 3(f)-(k)).

In [9], an anisotropic directional filter is implemented considering difference of
two half rotating Gaussian filters (DoG mechanism), which can approximate the
SDSG filter. Meanwhile, a multi-scale approach has been developed by selecting
the maximum response among the scales [9]. Such a normalization function may
miss some thin objects, as illustrated in Fig. 5(c)-(d) and next subsection.

3.2 Scale fusion of the SDSG

In one dimension, the σ of the Gaussian derivatives depends on the line width
of the structures to be detected, as shown in Fig. 4(a)-(b). The SDSG corre-
sponds to a semi-filter. It can be seen as a scan of the projected pixels in all
the directions around the considered pixel, illustrated by the signals in Fig. 3(e).
When the SDSG is steered in the line feature direction, the σs parameter allows
an elongated smoothing in the line direction, whereas the σd (tied to the 2nd
derivative which is perpendicular to the line) captures the line structure strength.
For multi-scale line structure detection, the maximum value among the differ-
ent filter responses can be selected [9], as in Fig. 4(b). However, it may not be
sufficient, especially in real conditions. Consequently, we propose the following
improved scale function:

Fσ(L ) =

(
σ

1
σ +

1√
σ

)
· L , (3)

where L represents the filtered image line structure at scale σ.
This function allows to improve line structure enhancement at the corre-

sponding scale. Its values are always superior than 1, which is efficient for large
scales. Thin line features are also well highlighted, as illustrated in Fig. 4(c).
Finally, the σd parameter is considered in the Eq. 3, regarding the SDSG filter,
see Fig. 5(h) where thin and large elongated structures are better connected.
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𝐺𝜎
2, 𝜎 = 0.58 Ideal for ridges of width 1

𝐺𝜎
2, 𝜎 = 1.81 Ideal for ridges of width 3

𝐺𝜎
2, 𝜎 = 2.88 Ideal for ridges of width 5

𝐺𝜎
2, 𝜎 = 3.91 Ideal for ridges of width7

𝐺𝜎
2, 𝜎 = 4.93 Ideal for ridges of width 9

𝐺𝜎
2, 𝜎 = 5.94 Ideal for ridges of width 11

𝐺𝜎
2, 𝜎 = 6.95 Ideal for ridges of width 13

𝐺𝜎
2, 𝜎 = 7.95 Ideal for ridges of width 15

𝐺𝜎
2, 𝜎 = 8.96 Ideal for ridges of width 17

(a) Discrete second derivatives of the Gaussian with different parameters tied to the ridge width

(b) Convolution of the signal with the second derivatives

of the Gaussian on the left (without normalization)

(c) Convolution of the signal with the second derivatives

of the Gaussian on the left (with normalization)

𝜎 = 0.58

𝜎 = 1.81

𝜎 = 2.88

𝜎 = 3.91

𝜎 = 4.93

𝜎 = 5.94

𝜎 = 6.95

𝜎 = 7.95

𝜎 = 8.96

Fig. 4. Ridge highlighting in one dimension (1D) by convolution with different second
derivative of Gaussians in (a), detailed in [13]. In (b), ridges are highlighted with the
different Gaussian convolutions and (c) takes into account Eq. 3. The original signal
containing separated ridges of growing widths: 1, 3, 5....17 is displayed by the blue bars
in (b)-(c) while the convolved signals are plotted in orange and the maximum of the
signal is displayed by the black circles for each scale σ, exhibited between (b) and (c).

The fusion procedure of the multi-scale SDSG can be summarized as follows:
(i) Filtering the image with each possible SDSG at different directions θ and
scales (but with same ratio σs

σd
), then compute the line strength L .

(ii) Retaining the strongest response L after applying the Eq. 3 and its tied
direction ~η for each pixel.
(iii) Suppress non-maxima pixels in the ~η direction for the fused image.

The next section presents evaluations and results on real images.
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(a) Original image (b) Lindeberg (c) SDSG fusion, (d) Non-maxima (e) Thresholding

256×256 result [5] max function [9] suppression of (c) of (d)

(f) Multi-scale (g) Multi-scale (h) SDSG fusion, (i) Non-maxima (j) Thresholding

result [1] SOAGK result [6] with Eq. 3 suppression of (h) of (i)

Fig. 5. Blood vessel extraction of different widths by non-maxima suppression (NMS)
and thresholding in a Magnetic Resonance Angiography image. In (b), (f) and (g), 20%
of the highest pixels are preserved while 30% are preserved for (e) and (j). Note that
(d) and (i) are inverted images. Here, scales varied between 1.81 and 6.95, see [13].

4 Experimental results and evaluation

Experiments are carried out on real images. First, a dataset containing fungi
images with manually annotated ground truth Gt is used [6]. To evaluate the
line feature detection, the Normalized Figure of Merit method [7] is employed.
Let Dc be the detected contour map of an image. Comparing pixel by pixel
Gt and Dc, a simple evaluation based on pixel-wise comparison leads to the
definition of the following indicators:

• True Positive (TP ), common points of Gt and Dc,
• False Positive (FP ), spurious detected edges of Dc,
• False Negative (FN), missing boundary points of Dc,
• True Negative (TN), common non-edge points.

The normalized N edge detection evaluation measure is, for FN>0 or FP>0:

N (Gt,Dc)=
1

FP+FN
·

[
FP

|Dc|
·
∑
p∈Dc

1

1+δ ·d2Gt(p)
+
FN

|Gt|
·
∑
p∈Gt

1

1 + κ·d2Dc(p)

]
, (4)

where (δ, κ)∈]0, 1]2 represent two scale parameters [7], | · | denotes the cardinality
of a set, and dA(p) is the minimal Euclidian distance between a pixel p and a set
A. So, if there are no error, i.e., FP=FN=0, then N =1. Therefore, the measure
N calculates a standardized dissimilarity score; the closer the evaluation score
is to 1, the more the edge detection is qualified as suitable. On the contrary, a
score close to 0 corresponds to a poor detection of contours.

The aim here is to get the best contour map in a supervised way. For that,
the line features are extracted after a suppression of the local non-maxima,
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(a) Image annotated by hand (b) 𝐹𝛼 measure, tied to TP, FP, and FN (c) Edge detection evaluation 𝑁 (d) Legend

Fig. 6. Evaluation of the ridge extraction technique on real images (Fungal images
[6]). Detected line structures of image 3 are available in Fig. 7(a).

then a threshold by hysteresis is applied to obtain a binary segmentation [2].
Theoretically, to be objectively compared, the ideal contour map of a measure
must be a Dc at which the supervised evaluation gets the highest score [7][8].
In addition, from proper binary confusion matrix, the precision (Prec) and recall
(Rec) evaluations are computed, given the overall quality expressed in terms of
the Fα-measure with α=0.5 allowing a equal penalization between FN and FP :

Fα =
Prec · Rec

αPrec + (1− α)Rec
with Prec =

TP

TP + FP
and Rec =

TP

TP + FN
, (5)

The SDSG filter is compared with 4 other multi-scale feature line detection tech-
niques, namely: Lindeberg [5], Bae et al. [1], SF2 [3] and SOAGK [6]. Evaluation
scores are presented in Figs. 6(b)-(c) for Fα and N measures respectively. Usu-
ally, scores achieved by SDSG are similar to those of the SOAGK, showing the
reliability of the proposed filter. Both are better than Lindeberg, SF2 and Bae
et al. which uses a post processing segment formation. Visually, detections ob-
tained by the SDSG are close to those derived from the SOAGK, excepted that
SOAGK creates many straight (small) segments for isolated points, see Fig. 7(a).

In order to interpret the output of the SDSG versus the state of the art
techniques for line feature detection and extraction, the comparative tests have
been carried out on different real images shown in Fig. 7, including (a) fungal, (b)
cart wheel picture, (c) satellite image, (d) angiography to detect blood vessels,
(e) aerial image, (f) a noisy biomedical image to detect and extract filaments.

Taking into account that the original images are noisy and blurred, the Lin-
deberg filtering [5] extracted the impure desired lines in spite of non-maxima
suppression. The Bae et al. [1] output is better visually in extracting finer lines
with higher precision because of its segment formation created by the high-level
processing. Considering the steerable filter (SF2 ), it has detected more line fea-
tures of varied scale. The SOAGK has rather extracted more connected line
features, which is considered a strength point in filtering. The SOAGK in gen-
eral demonstrates good results, particularly for elongated ridges; but too thin
blood vessel as filaments and roads are not well detected, while some extracted
lines are tripled and blobs are extracted as lines, penalizing this line detector.
The proposed SDSG obviously has demonstrated significant result in case of
noise suppression. Indeed, visually desired line features as with less or no post
processing need for final output, while looking the original images.
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(a
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0
0
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3
0
0

(b
)

2
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×

2
5
6

(c
)

4
0
0
×

4
0
0

(d
)

2
5
6
×

2
5
6

(e
)

4
6
7
×

4
7
3

(f
)

5
1
2
×

5
1
2

Original Lindeberg[5] Bae et al.[1] SF2 [3] SOAGK [6] SDSG

Fig. 7. Line-feature extraction on real images with multi-scale filtering methods. The
images in (a) correspond to the 3rd image in Fig. 6 in the evaluation. For the images
(b)-(f), detected lines correspond to the same percentage of highest pixels after NMS
per method, respectively (b) 60%, (c) 50%, (d) 40%, (e) 35%, (f) 5%.

The SDSG filter has extracted desirable line features in general, and in par-
ticular in Fig. 7 (c) roads (d) blood vessels, (e) large roads and (f) filament
without too many undesirable false positive points. Usually, the extracted lines
are more pure using the same thresholding ratio, comparing other techniques.

5 Conclusion

In this paper a multi-scale filtering approach for line feature detection has been
proposed. The proposed approach can be adapted to noisy environments, and is
also reliable to detect line feature with heterogeneous types, widths, and promi-
nence. An optimal scale selection function for multi-scale processing is the main
contribution of this approach. This approach has been compared to different
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types of multi-scale filtering methods, including isotropic (using the Hessian ma-
trix) and oriented filters (isotropic or anisotropic). Quantitative and qualitative
experiments regarding real images of different types and scales have shown the
optimal efficiency and very promising results of the SDSG technique compared
with the three major techniques of the state of the art.

Future work will examine the fusion of line feature detection with different ra-
tios of σsσd (described in Sec. 3.1) which will add another dimension to our model.
Further evaluations could involve the scales of the detected features, not only the
positioning of the detection, as assessed here with Fα measure. The multi-scale
responses can also serve as input layer of neural networks in biomedical applica-
tions to improve the contrast between line features and background, as explored
in [12]. SDSG could bring more improvement in this type of applications.
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