
HAL Id: hal-03372894
https://imt-mines-ales.hal.science/hal-03372894v1

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human Detection in Moving Fisheye Camera using an
Improved YOLOv3 Framework

Olfa Haggui, Hamza Bayd, Baptiste Magnier, Arezki Aberkane

To cite this version:
Olfa Haggui, Hamza Bayd, Baptiste Magnier, Arezki Aberkane. Human Detection in Moving Fisheye
Camera using an Improved YOLOv3 Framework. IEEE MMSP 2021 - IEEE 23rd International
Workshop on Multimedia Signal Processing, Oct 2021, Tampere, Finland. �hal-03372894�

https://imt-mines-ales.hal.science/hal-03372894v1
https://hal.archives-ouvertes.fr


Human Detection in Moving Fisheye Camera
using an Improved YOLOv3 Framework

Olfa Haggui, Hamza Bayd and Baptiste Magnier
EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales,

Alès, France
{Olfa.Haggui, Baptiste.Magnier}@mines-ales.fr

Arezki Aberkane
Technical Innovation Team,

Audensiel Technologies,
Boulogne-Billancourt, France

Abstract—Pedestrian detection has large relevance to the un-
derstanding of static and moving scenes of video sequences. The
increasing demand for safety and security of people has resulted
in more research on intelligent visual surveillance in a wide range
of applications, such as moving human detection. With the great
success of deep learning methods, researchers decided to switch
from traditional methods based hand-crafted feature extractors
to recent deep learning-based techniques in order to detect and
track people. In this work, the topic of person detection with
a Top-view moving fisheye camera is addressed. Although the
fisheye camera is a useful tool for video monitoring, most of object
detection techniques, with (or without) deep learning, concern
classical perspective cameras. However, due to the distortions
of fisheye images, we are expected to have higher requirements
and challenges on the pedestrian detection using this device. In
this paper, we propose an end-to-end learning people detection
method based on YOLOv3 detector that detects people using
oriented bounding boxes. The proposed model customizes the
traditional YOLOv3 for the detection of oriented bounding boxes,
by regressing the angle of each bounding box using a periodic loss
function. With rotation bounding box prediction, our approach is
efficient, reaching 98,1% of true detection. The proposed method
is evaluated on a new available dataset where rotated bounding
boxes represent annotations from several fisheye videos: https:
//partage.imt.fr/index.php/s/nytmFqiq8jaztkX

keywords Human detection, Fisheye camera, YOLOv3.

I. INTRODUCTION

During the last few years, significant progress has been
made in computer vision for people detection and tracking
challenges, notably with the advancement of network tech-
nology. Within this context, typical cameras used in visual
surveillance include perspective and fisheye cameras. Most of
the existing researches are using perspective cameras, as they
generate views similar to human vision, with small image
distortions. However, its main disadvantages concerns the
limited field of view. Therefore, the direct use of algorithms for
classical cameras is not directly applicable on fisheye images.

People detection via video frames captured by fisheye
cameras has received massive attention due to a certain number
of advantages in visual surveillance application such as the
large field of views. Yet, the major challenge is to take into
consideration the radical distortions obtained in the image.
Furthermore, the pedestrians in a fisheye image appear in
different shapes, sizes and at various orientations, such as
upright, upside-down, horizontal or diagonal. Unfortunately,
most of the existing people-detection algorithms are designed

for standard camera images where people appear upright. This
paper focuses on the problem of people detection from video
sequences recorded by Top-view moving fisheye cameras, as
represented in Fig. 1, right. Over the past decade, a significant
improvement has been witnessed with the help of traditional
handcrafted features and models based on end-to-end learning.
Among traditional people-detection algorithms, the most popu-
lar ones for pedestrian detection, HOG (Histogram of Oriented
Gradients) and ACF (Aggregate Channel Features) have been
used with overhead fisheye images. In [1], the popular human
detection algorithm based on the Histogram of HOG features
and SVM (Support Vector Machines) classifier are combined
after rotating each search window on a radial line to the
vertical reference line. Another method in [2] is based on
HOG and LBP (Local Binary Patterns) features and SVM
classifier to model people as upright cylinders and derived a
series of elliptic detection masks whose size diminishes with
the distance from the image center. In [3], ACF are trained
on side-view, standard-lens images for pedestrian detection
without unwrapping a fisheye image into a panoramic image.

Recently, with the advent of Deep Learning, numerous
benchmarks and datasets have been created in order to train
and evaluate people detection algorithms with high accuracy in
real-time. Some algorithms based on classification worked in
two stages. First, the Regions of Interest (ROIs) are detected.
This step represents a preprocessing, consisting of an image
division into several regions using basic segmentations based
on the colors or contours. Then, those regions are classified
using Convolutional Neural Networks (CNN) or SVM. This
process is very slow because every selected region must be
predicted. In this context, the most popular algorithms are the
Region-based convolutional neural network (RCNN) and the
versions Fast-RCNN [4] and Faster-RCNN [5].

Instead of a selection of ROIs from the image, classes and
bounding boxes (BBoxes) are predicted for the image in one
run of the algorithm based on regression as in YOLO (You
Only Look Once) [6] and SSD (Single-Shot multibox Detec-
tion) mobilenet [7] algorithms. Much research has addressed
the topic of Top-view person detection with a static fisheye
camera, mostly YOLO-based. In [8], a rotation invariant
training method is applied, using randomly rotated standard
images, without any additional annotation to simulate various
poses and orientations of people in fisheye images. Another
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YOLO-based people detection method adapts YOLOv3 trained
on standard images for people counting [9]. Each image is
rotated in 15◦ steps and YOLO is applied to the top–center part
of the image followed by post-processing to remove multiple
detections. Recently, the algorithm proposed in [10] provides
much faster and more accurate results than previous algorithms
aiming people detection in fisheye images, without any pre-
processing. Its goal is to predict BBoxes of people, with certain
center and size, but also the angle of each BBox.

Compared with the existing works, the technique presented
in this paper can operate the detection of people in a complex
scene recorded by Top-view moving fisheye cameras. No con-
straints on the peoples’ movements is established, i.e., people
can stand, sit, walk, kneel down, push objects and occlude
each other for long periods of time. Moreover, this method
does not require any camera calibration. To achieve this work,
a new Top-view people detection dataset is introduced.

II. ORIENTED PEOPLE DETECTION VIA FISHEYE
CAMERAS

A. Fisheye Camera Description

Usually, omnidirectional and fisheye cameras offer
panoramic views of 2π radian angles [11]. Specific mirrors
equip catadioptric cameras, whereas only lens concerns
fisheye devices; then its angle of view can attain 2π radian
angle or more. Therefore, objectives with wide-angle lens
capture images typically warped, creating the effect of a
fisheye. Fisheye cameras represent a major asset for several
applications. In this way, these cameras are popular in many
fields of computer vision, robotics and photogrammetric tasks
such as navigation, localization, tracking, mapping and so on.

A fisheye camera is a camera fixed to a front lens group
which appears as a single “big” lens, as shown in Fig. 1, left.
This device enables a far greater negative refraction power
than usual lenses, allowing greatly increasing the back focal
distance and embracing wider fields of view [12]. In the
context of people detection, the wide field of vision provided
by these cameras makes people look inclined and distorted.
Consequently, standard detection and tracking techniques are
not reliable on warped images, especially with a cluttered
and moving background [13]. Moreover, specific detectors for
unconventional cameras are hard to design because they need
a calibration stage which could be difficult to design [14].
Even though many algorithms already exist for standard im-
ages, people detection and tracking regarding top-view images
acquired by fisheye cameras are not a very documented topic
and demand very specific involvement to work consistently.

B. Top View People Detection via Fisheye Cameras

1) Overview: The focus here deals with real time people
detection using a moving fisheye camera. There exist many
methods for people detection and tracking using conventional
camera, as referenced in [15]. However, people detection using
fisheye cameras has been barely studied, due to the complexity
of the device caused by the distortion effects. Additionally, in
our investigation, we give extra focus on a people detection

in a moving scenes in real-time. In recent methods, pedestrian
detectors are trained using fisheye images, even though the
manual labeling remains a hard task, which consumes times.
Therefore, a new strategy for learning fisheye pedestrian
detectors using images from a selected pedestrian dataset
is proposed in this work. Another important development
constraint, this detector should be equally applicable on a
visual moving sensor that is either fixed in the environment
or mounted on a mobile platform (like an aerial drone).
To accommodate these challenges, a CNN model based on
YOLOv3 detector is employed for person detection using
top view video fisheye frames. This model is illustrated in
Fig. 2. Its goal is to predict BBoxes of people, with certain
center point position and size (width and height), but also
the angle of each BBox. The angles of the BBoxes represent
an important clue for the training or the detection. Indeed,
rectangular BBoxes meet difficulties for object localization
with different orientation angles, as produced by fisheye lens.

Actually, the proposed detector in this paper is a fully CNN
with an architecture based on YOLOv3, and is configured
to detect only one class, i.e., a person. In that respect, the
network is structured in three parts. The first one represents
the backbone network, known as Darknet-53, trained on the
ImageNet database [16]. Its main goal is to extract features at
different spatial resolutions; it takes an input image and outputs
a list of features from different parts of the network. Darknet-
53 mainly consists of two blocks: residual and convolutional
blocks. Each uses successive 1×1 and 3×3 convolution with
doubly increasing filter channels, as well as shortcut connec-
tion between input and convolutional output, as summarized
in Fig. 2. The second part concerns the Features Pyramid
Network (FPN) [17]. This network takes as input the multi-
resolution features computed by our Draknet53 backbone in
order to extract features related to person detection. In fact,
FPN contains information about small and large objects. We
expect DFPN

1 , the output of the FPN, to contain information
about small objects and DFPN

3 , the output about large objects.
The construction of this pyramid involves a bottom-up path-
way, a top-down pathway, and lateral connections as shown
in FPN block of the Fig. 2. The bottom-up pathway is the
feed-forward computation of the backbone ConvNet, which
computes a feature hierarchy consisting of feature maps at
several scales with a down-scaling step of 2. The output of
the last layer of each stage will be used as the reference set
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Fig. 1. Fisheye camera. On the left: fisheye lens used in our experiments:
2/3” Format C-Mount fisheye lens 1.8mm FL, with a horizontal field of view,
1/2” sensor for 185°. On the right: diagram of the experimental protocol.
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Fig. 2. Architecture of the proposed network. input: fisheye image, backbone (Darknet53), Features Pyramid Network (FPN), and detection head (BBox
regression network), Oriented BBoxes as outputs. For the YOLO loss function, only one class, 5 parameters for each BBox and a confidence score.

of feature maps for enriching the top-down pathway by lateral
connection. For the top-down pathway, the higher resolution
features are up-sampled by a factor of 2 spatially coarser, but
semantically stronger, from higher feature maps of pyramid
levels. These features are then merged with features from the
bottom-up pathway via lateral connections. Finally, the third
part is the head detection, allowing building a tensor T̂1,2,3,
containing information on the BBox position, including its
angle of rotation. The implemented model uses a loss function
combining Binary Cross Entropy (BCE , see Eqs. 2 and 3), as
described in YOLOv3 [6] [18], and, a periodic loss function
that regresses the angle of each BBox, accounting for angle
periodicities [19] [10] [9]. Therefore, the detection of oriented
objects is an extension of a general horizontal object detection.

2) Oriented Bounding Box Detection: In fisheye images,
since most targets have an orientation, neither vertical, nor
horizontal, rotated object detection is essential for overhead
people detection (an example is available in Fig. 4). In our
case, outputs of an improved YOLOv3 [6] network are used
with both horizontal location boxes and angle information,
rendering YOLOv3 module more sensitive to the angle. By
introducing the oriented BBoxes, for each video frame, the
predicted results of the proposed framework return six BBox
parameters: the position coordinates (bx, by), the BBox size
(bw, bh) and the angle of all individuals bθ. They are repre-
sented by a six-dimensional vector (bx, by , bw, bh, bθ, bConf ),

where bConf is the predicted confidence score; it quantifies
how confident the algorithm sounds that the target represents
a human being. In addition, there is a confidence threshold,
determined by the user, but usually fixed to 0.5, and the
algorithm only returns the BBoxes whose confidence score
is higher than this threshold. The Fig. 3 shows the transform
from the anchor to the BBox where the coordinates center (bx,
by) of BBox is calculated by applying a sigmoid to predicted
values and adding the corner points of the corresponding grid
cell. Meanwhile, the dimensions bw and bh of the BBox are
calculated by applying a log-space transform to the predicted
output dimensions and then multiplying with an anchor dimen-
sions (pw, ph). The network establishes a multitask and crucial
loss function (Eq. 1) inspired by that used in YOLOv3, with
an additional BBox rotation-angle loss to optimize the target
detection. It is computed by the ground truth and the predicted
result of the network:

Loss = LossBox + LossConf + LossAngle, (1)

where the Box regression loss (LossBox in Eq. 2) is calcu-
lated only when the prediction box contains detected people.
Confidence loss (LossConf in Eq. 3) determines whether
there are persons in the prediction frame. BBox rotation-
angle loss (LossAngle in Eq. 4) determines the prediction
orientation of a person. Note, that the category-classification
loss is not used since only one class (i.e., persons) is used here.
Here, T̂ = (t̂x, t̂y, t̂w, t̂h, t̂θ, t̂conf ) represents the transformed
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Fig. 3. Oriented Bounding Box (BBox) with its tied parameters.

version of BBox predictions for each stride sk, from which
a BBox prediction b̂ = (b̂x, b̂y, b̂w, b̂h, b̂θ, b̂conf ) is computed
as represented in Fig. 3, where (tx, ty, th, tw) is calculated
from the ground truth b = (bx, by, bw, bh, bθ, bconf ). These
loss functions are given by the 3 following formulas:

LossBox =
∑
t̂∈T̂+

BCE
(
S(t̂x), tx

)
+ BCE

(
S(t̂y), ty

)
+
∑
t̂∈T̂+

(
S(t̂w)− tw

)2
+
(
S(t̂h)− th

)2
,

(2)

LossConf =
∑
t̂∈T̂+

BCE
(
S(t̂conf ), 1

)
+
∑
t̂∈T̂−

BCE
(
S(t̂conf ), 0

)
,

(3)
with S the logistic sigmoid activation function, (T̂+, T̂−) pos-

itive and negative samples from the predictions respectively.

LossAngle =
∑
t̂∈T̂+

LAngle
(
b̂θ, bθ

)
, (4)

such that for a given range (α, β), b̂θ = α · S(t̂θ)− β, which
is the predict of bθ and the function LAngle is defined by

LAngle
(
b̂θ, bθ

)
= R

(
mod

[
b̂θ − bθ −

π

2
, π
]
− π

2

)
,

with “mod” representing the modulo operation and R a
symmetric regression function.

III. IMPLEMENTATION DETAILS

A. Dataset Description

Numerous benchmarks and datasets have been created in
order to train and evaluate people detection algorithms re-
garding fisheye images. Most of the existing public fisheye
datasets are annotated by an aligned BBox. In this work,
a dataset of overhead fisheye images with oriented BBoxes
is needed for each person aligned with its orientation in
the image. However, different challenges are reported with
the dealing of fisheye images, mainly spatial and temporal
illumination variations, occlusions, and various body poses
for example. Additionally, when people are walking straight
under the camera and at the periphery of the fisheye image, the
appearance is different and the image resolution is small near
the borders, disturbing regularly the detection. To overcome
these challenging scenarios of different videos captured from
a moving fisheye camera, a new dataset has been collected and

Video #person(s) #frames fps Description/Challenges
Stairs 2 500 48 Person go up and down the stairs

with rotational movement of camera
Parking 2 536 48 Person walking,

body camouflage with the scene
Window 2 534 48 Person in a top-view position

and non uniform illumination
Workshop 5 530 48 More than 4 walking

and sitting in a large space
Entrance1 2 543 48 Person walking and sitting in center

and boundary of image
Entrance2 1 567 48 Walking activity in reception

room with Top-view challenge

TABLE I
DESCRIPTIONS OF VIDEO SEQUENCES AND THEIR TIED CHALLENGES

annotated. It is called Oriented Bounding Boxes from Moving
Fisheye cameras (OBBMF) and is composed of 6 videos (see
Tab. I for details). Clearly, the new dataset contains many more
frames and human objects, and also includes challenging sce-
narios, which do not exist in the other datasets. Furthermore,
experiments are performed using three public datasets, MW-
18Mar1, HABBOF2, CEPDEOF3, and our datasets in order to
fit and evaluate the effectiveness of our proposed method.

B. Data Acquisition

In our case, the data are collected in the CERIS laboratory
of the IMT Alès research center. The videos were collected
with fisheye camera (Basler ace acA1300-200uc) facing down
at 48 fps, where one or several persons perform under the
camera various poses such as walking and sitting. Also severe
body occlusions are present, and people go up and down the
stairs with rotational movement. Then, a number of frames
are generated from these video clips which contains new
scenes with some challenging scenarios such as illumination,
camera rotation and motion in the center (Top-view), which
are generally unavailable in the common literature

C. Data Annotation and File Conversion

Data labelling is an essential step in a supervised machine
learning task requiring a lot of manual work. To annotate
our new dataset, person regions are manually annotated with
rotated BBoxes. In order to do so, the MVTec Deep Learning
Tool 4 is used. It is a very useful target detection and labeling
deep learning tool in a short time, but it generates a hdict
file which cannot be directly used in other deep learning
tools. So, it is converted into txt file in the first step using
a small application with C# and HalconDotNet-V. 19.11.0,
and finally converted again to the data format of YOLOv3 as
a json file. Technically, first, the main axis of the rectangle
is drawn to define the orientation of the person in the scene.
Then the width and height of the person in pixels are defined.
Consequently, each BBox is represented by five parameters:

• (x, y): coordinates of the BBox center,
• w and h: width and height of the BBox respectively,
• θ: clock-wise rotation angle from the vertical axis.
Furthermore, Figs. 4(a) and (b) represent these parameters

in a rectangle BBox. The whole of our data set is represented

1http://www2.icat.vt.edu/mirrorworlds/
2http://vip.bu.edu/projects/vsns/cossy/datasets/habbof/
3http://vip.bu.edu/projects/vsns/cossy/datasets/cepdof/
4https://www.mvtec.com/products/deep-learning-tool
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(a) Frame annotation with BBox angles (b) Frame and BBoxes of MW-R dataset

Fig. 4. Examples of annotated frames with BBox rotation angle. In (b), a
frame and its BBoxes from MW-R dataset (the red BBoxes are the initial tied
to the MW-R dataset whereas the green correspond to the corrected).

by more than 12.000 OBBMF. However, some annotations
in the MW database contain errors in the angles, as shown in
Fig. 4(b). Consequently, these annotations have been manually
modified to improve the relevance of this database. It allows
bringing a very efficient model for human being detection.

D. Training Datasets

Concerning training, a pre-trained Darknet53 model was
used as a starting point, which is initialized with ImageNet
pre-trained weights for faster training. Also, in order to train
the proposed detector, we used one of the largest dataset MS
COCO [20] that is commonly utilized as a general object
detection benchmark, because it contains various appearances
of people. Our network was trained end to end by optimizing
the cross entropy loss function by updating weights using
“Stochastic Gradient Descent” (SGD) [21] with a momentum
of 0.9 for more than 50,000 iterations (one iteration contains
128 images). The SGD represents an iterative optimization
technique [22], and is most widely used in the field of
deep learning to minimize the loss function to search hyper-
parameters. This algorithm calculates the gradient and makes
the update of the network parameters by the mean of the
training set’subset, which is called mini-batch. Each gradient
evaluation using the mini-batch is defined as an iteration. At
each iteration, the algorithm takes one step to minimize the
loss function. The complete progress of the training algorithm
over the total training set using mini-batches is called an
epoch. During experiments, the initial learning rate is set to
0.001 and the weight decays to 0.0005. The mini-batch size
is set to 16, and the network is trained for 500 epochs. We
have set the learning rate factor to 0.0001 with the same
SGD parameters and batch size to fine-tune parameters of
the network. All the process was trained on multiple cross
fisheye datasets for more than 8000 iterations from weights
pre-trained in ImageNet using COCO. For these two networks,
the images were resized into 608×608 pixels and fed into
the network until the loss has been saturated. Our model was
conducted on an NVIDIA Quadro P5000 GPU accelerator
(Pascal architecture). It includes 2560 CUDA cores with 16
GB GDDR5 memory. The host is an Intel® Xeon® CPU
E5-1620 V4 processors with 4 cores.

IV. EXPERIMENTAL RESULTS AND EVALUATIONS

A. Evaluation Metrics
The detection system returns a list of detected BBoxes in

an image. The match of a detected BBox and the ground
truth is rated by asserting an overlap area of more than 50%.
To quantitatively evaluate the performance of the proposed
network, the statistical analysis of Precision, Recall, F -
score and Average Precision (AP ) are performed as the
evaluation metrics. For TP , FP and FN denoting le number
of true positives, false positives and false negatives in a video,
Precision means the percentage of the correctly detected
persons (TP ) over all the detected persons (TP + FP ):
Precision = TP

TP+FP . Meanwhile, Recall is the ability of
a model to find all the objects. It associates with the correct
predictions among all the positive cases, which means the
percentage of the correctly detected: Recall = TP

TP+FN .
Hense, Precision and Recall are considered to be common
evaluation metrics, and the F -score combines the two:

F = 2 · Precision×Recall
Precision+Recall

. (5)

Finally, Average Precision (AP ) is the area under the
Precision-Recall curve: AP =

∫ 1

0
F (x) dx. Therefore, the

closer the evaluation scores of both F and AP are to 1, the
more the detection is qualified as suitable. On the contrary, a
score close to 0 corresponds to a poor detection of persons.

B. Benchmark Results

Various experiments are presented to analyze the perfor-
mance of the proposed method. We fine-tuned the algorithm
trained on COCO with various cross datasets from MW-R,
CEPDEOF, HABBOF and OBBMF. Hence, we cross-validate
on these datasets, i.e., two datasets are used for training,
then they are tested on another dataset. For example, a cross
dataset trained on MW-R + HABBOF is tested on OBBMF,
and inversely. Tab. II shows the detection performance of our
method on each video in the OBBMF dataset obtained by
fine-tuning with cross-validation1 (index cross1) and cross-
validation2 (index cross2), respectively. Our model with
608×608 resolution achieves impressive performance, despite
of using videos captured from moving fisheye camera. Thus,
the proposed method performs outstandingly with an accept-
able convergence behaviours in several experiments carried out
with various cross validation datasets.

The overall performance metrics obtained with our model
and with our OBBMF dataset are evaluated using AP ,

Performance metric
AP50 AP75 AP90 Precision Recall F-measure

stairscross1 0.857 0.478 0.467 0.810 0.808 0.852
Workshopcross1 0.785 0.306 0.396 0.818 0.649 0.756
Windowcross1 0.891 0.511 0.502 0.901 0.687 0.765
Parkingcross1 0.864 0.501 0.490 0.903 0.762 0.894

Entrance1cross1 0.970 0.576 0.564 0.972 0.936 0.963
Entrance2cross1 0.686 0.432 0.556 0.791 0.692 0.637

stairscross2 0.911 0.432 0.544 0.901 0.911 0.839
Workshopcross2 0.929 0.402 0.661 0.849 0.912 0.918
Windowcross2 0.916 0.642 0.706 0.791 0.892 0.883
Parkingcross2 0.971 0.557 0.691 0.913 0.992 0.926

Entrance1cross2 0.896 0.530 0.656 0.891 0.892 0.837
Entrance2cross2 0.686 0.432 0.556 0.893 0.992 0.902

TABLE II
PERFORMANCE COMPARISON OF OUR METHOD WITH CROSS VALIDATION

cross1 AND cross2 FOR EACH VIDEO IN OBBMF DATASET.
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Fig. 5. Precision-recall curve of the best model on the test set. The precision
remains close to 100 % for recall values as high as 85%. The optimal point
(the closer to the upper-right corner) is at 0.981.

Precision, Recall and F -measure. As shown in the Tab.
II, the new algorithm performs efficiently on ordinary videos
with a score more than 0.95 for AP . However, more com-
plex scenes (moving camera, low light, strong shadows, etc.)
remain challenging. The Fig. 6 shows sample results applied
to the four datasets where detections are nearly perfect in a
range of scenarios, such as various body poses, orientations,
and diverse background scenes. For this reason, we expand
our training datasets by cross validating various samples from
all the used datasets, in order to improve the resulting perfor-
mance model and prevent it from over-fitting. The resulting
cross dataset was split: 70% used for the training stage and
30% from data are used for testing. On the one hand, the Tab.
III shows clearly the improved performance with large scales
datasets, exceeding 90% of the AP . On the other hand, the
P−R (Precision−Recall) curve of the best model on the test
set is plotted in the Fig. 5; it shows the trade-off between the
Precision and the Recall as the threshold score of the model
changes. Recall should increase to guarantee that all the per-
sons are detected. However, as Recall increases, it is common
for some scenarios, such as distortion, camera movements, low
light, and strong shadows, decreasing Precision. Ideally, the
upper-right corner of the curve should reflect 100% of Recall
and Precision, often impossible to obtain in real scenarios.
Eventually, P−R curve illustrates why the AP of our model
is high. Indeed, Precision remains close to 100% for Recall
values as high as 85%, with a 0.98% for the optimal point.

V. CONCLUSION

An approach is proposed in this paper to detect people
in Top-view fisheye images, using moving camera. It is
based on a pre-trained deep CNN architecture, extended from
YOLOv3 detector. Experimental results confirm that people
are extracted in an indoor environment using videos streaming
from a fisheye moving camera with a high level of AP .
Our approach eliminates the need for pre-processing and/or
data augmentation, by considering oriented bounding boxes.
Finally, a new dataset of videos has been created regarding
human detection with a top view fisheye moving camera; the
great interest is that the ground truths are also available online.

For future works, we plan to expand the proposed model
for more large and complex datasets at different image reso-
lutions. We believe both that our method and dataset will be
beneficial for various real-world applications, especially for
human detection and tracking using overhead fisheye videos
captured and treated automatically from an aerial drone.

Performance metric
AP50 AP75 AP90 Precision Recall F-measure

Lab2 0.980 0.863 0.673 0.977 0.875 0.883
stairs 0.936 0.717 0.598 0.960 0.925 0.873

Lunch2 0.971 0.254 0.446 0.976 0.969 0.973
Meeting2 0.978 0.720 0.594 0.977 0.957 0.967
Workshop 0.942 0.817 0.655 0.942 0.925 0.892
MW-R18 0.941 0.690 0.514 0.955 0.899 0.894

TABLE III
PERFORMANCE TUNING EVALUATION OF OUR METHOD WITH MULTI

CROSS VALIDATION FOR EACH VIDEO IN EACH DATASET.
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(a) Straight under camera (b) Walking + occlusion (c) Standing + deformation (d) Walking + various angles

(e) Walking + rotation (f) Various angles and poses + far (g) Different poses (h) Low-light scenario

Fig. 6. Detection results of our benchmark on sample frames in different scenarios and challenge, including various poses, orientations and background
scenes. Green boxes are predicted BBox (true positives, i.e., matching of a detected BBox and the groundtruth with an overlap area of more than 50%).
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