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Abstract—Ridges (resp., valley) are the useful geometric features due to their wide varieties of applications, 
mainly in image analysis problems such as object detection, image segmentation, scene understanding, etc. 
Many characterizations have contributed to formalize the ridge notion. The signification of each characteri-
zation rely however on its actual application. The objective analysis of ridge characterized as thin and complex 
image structure is thus essentially important, for choosing which parameter’s values correspond to the suit-
able configuration to obtain accurate results and optimal performance. In this article an extensive analysis fol-
lowed by a supervised and objective comparison of different filtering-based ridge detection techniques is led. 
Furthermore, the optimal parameter configuration of each filtering techniques aimed for image salient fea-
ture analysis tool have been objectively investigated, where each chosen filter’s parameters corresponds to the 
width of the desired ridge or valley. At last, the comparative evaluations and analysis results are reported on 
both synthetic images, distorted with various types of noises and real images.
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1. INTRODUCTION

Roughly, ridges (resp., valley) as one of the many
images’ salient features, are set of curves whose
points are local maxima (resp., minima) in an image,
as shown in Fig. 1. The precise detection, localiza-
tion and extraction of this salient features along with
their accurate characterization of its geometric struc-
ture are important image processing tasks, related to
its wide range of application. Exhaustive researches
have been accomplished on this significant image
features. Ridges have shown to be the most eminent
and useful structure amongst for image analysis and
various related applications. Digital images comprise
varying types of salient features, such as edges, blobs,
corners, textures, whereas ridges (also called crest
lines or roof edges) represent a special type of con-
tours, as shown in Fig. 2. Classical edge detection
techniques are optimized to extract step or ramp
edges [3]; nonetheless, they fail to detect ridges or
crest lines in images. A step/ramp edge extraction
functions return two edges at both sides of the crest
line, because narrow ridges or valleys on the image
surface are composed of two locally parallel step or
ramp edges. Roof edges are defined as thin nets
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inside the image; describing roads or rivers in satellite
images, blood vessels in medical images or plant
roots. Therefore, finding these dense and thin struc-
tures is an important task in image processing.

Concurrently, there are many inescapable chal-
lenges in image processing task, such as noise and
artifacts that necessitate to be researched concerning
the specific application. Generally, the acceptable
ridge/valley detection involves cumbersome and
manual tuning in order to overcome the issues for
specific application. In consequence, to contribute
the research process in the domain of ridges detec-
tion and extraction techniques, an extensive evalua-
tion of the different state-of-the-art filtering tech-
niques and approaches in the scope of its most useful
application, is crucially necessary. This article is an
extension and/or improved version of [23] aimed for
objective and extensive analysis of state-of-the-art
filtering techniques for ridge (resp., valley) detection
and extraction.

Regarding a curve in a gray-level image I, ridges
correspond to directional maxima, valleys corre-
spond to direction minima, resp. [12], as illustrated
in Fig. 2. In the Cartesian space, considering the
image surface , thus,  defines all pixel coordi-
nates:  = . Let  =
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Fig. 1. Ridge and Valley highlighted on a discrete 1D signal using Laplacian.
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Fig. 2. Illustration of features in images by elevation of the image intensity.
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,  be the tangent plan of the surface

 in all points where

with  and  being the partial derivatives of ,
respectively, along the  and the  axis. Ridges and
valleys are given by the points where the values of

 are maxima (resp., minima) in the orthogonal
direction of the curve at . Consequently, to detect
and extract ridges and valleys in a signal, the Laplacian
is used as a high pass filter to enhance its high fre-
quency component. As a result, to extract peaks in a
one-dimensional (1D) signal , the (continuous)
Laplacian operator  is simply the second derivative

of :  = . The discrete Laplacian is an

approximation to the continuous Laplacian. The
common approximation to the second derivative of a
discrete signal  is:

(1)

hence, the use of a discrete Laplacian for 1D signals is
the convolution of a signal with the vector ±[1 0 –2 0 1].
Regarding the 2-dimensional (2D) signals such as dig-
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ital images, the Laplacian operator becomes  =  +

, tied to the horizontal and the vertical second

derivatives (called  and  directions, resp.). This 2D
operator allows approximating the second derivative of
the image, in order to detect edges by zero-crossing
[21] and highlight ridges or valleys. Unfortunately, it
will also increase noise. So, a good practice is, before
applying the Laplacian, to smooth the signal by con-
volving the signal with Gaussian as preprocessing step,
which consequently will not only reduce the noise but
also avoid producing ringing artifacts that yields mis-
classified ridges and valleys.

In the next section, first, the mathematical defini-
tion of ridge has been detailed. Then, an extensive the-
oretical review of the most commonly used ridge
detection and extraction filtering techniques is per-
formed. Additionally, extensive analysis of ridge char-
acterizations, driving parameters, and its usefulness
with different filtering techniques have been exam-
ined. Section 3 is devoted to objective experimental
evaluations of the ridge detection and extraction filter-
ing techniques on both synthetic and real images. Fur-
thermore, the evaluation of the ridge filtering tech-
niques is explored on the context of common noises in
the images. At last, the main conclusions have been
inferred in Section 4.

2. RIDGE EXTRACTION IN IMAGES
Initially, a discrete definition for ridge appears in

[4], where the underlying function is the image con-
volved with a difference of low-pass (DOLP) trans-
form. Considering two different low-pass filters  and

 (i.e., two supports of different widths) both posi-
tioned over the center coefficient at the point (0, 0),
ridges, valleys, and blobs may be extracted efficiently
with the DOLP transform: these features are high-
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Fig. 3. Valley detection using a DOLP filter.
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lighted by applying two different low-pass filters to the
same image and then subsequently subtracting these
two filtered images. Note that the difference of the fil-
ters may be applied before convolving the image with
the obtained DOLP filter. Afterwards, crest lines are
extracted when the support of the low-pass filter  is
smaller than the support of the low-pass filter  and
inversely regarding valleys. The final step of the ridge
extraction consists in the suppression of the local non-
maxima of the magnitude of the ridge/valley intensity,
finally the image is thresholded in four directions to
obtain thin nets of pixels. Regarding DOLP filter, the
selected pixels correspond to points being local max-
ima in one of the 4 orientations (modulo 180°) associ-
ated with the 8-neighborhood of the pixels. Figure 5
illustrates this process. Even though the results
obtained with square shapes are acceptable (as illus-
trated in Figs. 3b and 3c), the DOLP filter formed by
subtracting circularly low-pass filters is preferable.
Nevertheless, for their isotropy and circular symmetry
properties, the sampled Gaussian filter represents a
good achievement. Indeed, the Difference of Gauss-
ians ( ) remains effective in ridge detection and is
an approximation of the Laplacian of Gaussian ( )
when the ratio of the size filters is roughly equal to 1.6

1L
2L

DoG
LoG
[21]. Usually called Mexican hat or Sombrero filter,
the 2D equation of the  is given by:

(2)

where  represents the pixel coordinates and  is
the standard deviation of the Gaussian. A discrete

 is presented in Fig. 4d and a ridge extraction
example in Fig. 4c after a non-maxima suppression in
the 4 orientations associated with the 8-neighborhood
of the pixels (same process than with DOLP filter, see
Fig. 5). Also, in Haralick’s approach [12], the image
function is approximated by a cubic polynomial
which, sometimes, may distort the detection.

DOLP transform and  allow extracting
roughly ridges and valleys, but suffer when the desired
objects are too thin, thus the detection is disturbed by
noise or undesirable artifacts. Besides, the angle selec-
tivity may be improved by applying other operators, as
presented in the following section.

2.1. Hessian Matrix

In image filtering, the second order derivative may
be used to determine the location of the ridges.
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Fig. 5. Non-maxima suppression technique and different steps to obtain a thresholded image in 4 directions (usually used for
ridge/valley detection with DOLD or Laplacian).
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Indeed, bright or dark ridges correspond to, respec-
tively, a maximum or minimum of the image intensity
in the direction orthogonal to them and a constant
image intensity in the direction parallel to them. Con-
sidering a grey level image  and its partial derivatives:

• , the 2nd image derivative along
the  axis (see Fig. 6b);

• , the 2nd image derivative along
the  axis (see Fig. 6c);

• , the crossing derivative of  (see
Fig. 6d), the Hessian matrix  is often computed in
image analysis:

(3)

Image derivatives can be calculated by convolving the
image with the ±[–1 0 2 0 –1] or the ±[–1 0 1] masks in
the  and/or  directions. Note that ±[–1 0 2 0 –1] 
±[–1 0 1]  [–1 0 1] in the discrete domain.

The matrix  is symmetric, diagonalizing  pro-
vides the local normal to the ridge or the valley (that is
given by the eigenvector related with the highest eigen-
value) and its sharpness (that is related to the values of
these eigenvalues) [7, 24]. Theoretically, eigenvalues

 are computed by:
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they are visible in Figs. 6e, 6f. Then, eigenvectors, tied
to the direction perpendicular to the ridge/valley, are
given by:

(5)

The two eigenvalues  and  correspond to the
two main curvatures of the local surface. Besides,
there exists several functions  indicating the
local image contrast [25]:

• , corresponding to the main eigenvalue [24],

• , see [17],

• , see [17],

• , see [25].
These functions are plotted in Fig. 8 as a function

of  and .
Eventually, a pixel is labeled as a ridge/valley pixel

if  is maximum in the  direction. It is
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Fig. 6. Image derivatives and eigenvalue images using Hessian matrix (Eq. (3)) or Weingarten W (Eq. (6)).
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selected after non-maximum suppression [3] where the
values of the magnitude are linearly interpolated
between closest points in the 8-neighborhood. Figure 9
illustrates a ridge detection after non-maxima sup-
pression in the  direction.

In practice, regarding real images, due to the lumi-
nance variation, acquisition and/or compression
noise, the detection of pure ridges/valleys is almost
impossible. So, in order to more reliably extract the
ridges, the convolution of the image with a low-pass
filter is considered, as detailed in Section 2.3.

2.2. Weingarten

Weingarten map represents the differential of the
Gauss map [6]. This expression can be computed

directly from the first (i.e.,  and ) and

second derivatives in the  and  directions of the
images. The linear invariants of the Weingarten map are
the intrinsic curvatures of the surface: the eigenvalues
are the principal curvatures, the trace is the mean cur-
vature, and the determinant is the Gaussian curvature:

(6)

The eigenvalues and eigenvectors of  are
extracted with the same procedure as in Eqs. (4) and
(5), regarding coefficients of the matrix . The same
procedure applies for the non-maxima suppression in
the  direction. In [2], ridges or valleys are extracted
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by, first, smoothing the image with a Gaussian and
then considering .

2.3. Low Pass Filters for Ridge Detection

A low pass filter is the basis for most smoothing
methods, as it is needed to apply smoothing process
over an image prior to the feature extraction. The opti-
mization criteria, based on the Canny theory, are: (i)
detection efficiency, (ii) location accuracy of the
detected contour, and (iii) uniqueness condition of fil-
ter response to its output for an input signal [3]. Based
on this theory, several low pass filters have been pro-
posed in the literature. In the following, three low-
pass filters and their second derivatives are discussed
for ridge and valley detection.

2.3.1. Ziou filter Z. In [28], the author described an
optimal line detector allowing an economic temporal
complexity because it represents a second order recur-
sive filter. Considering , the equation of the 1D
low pass filter  is given by

(7)

where the filter parameter  represents a positive con-
stant. The second derivative of  is obtained by deri-
vation as a function of , two times:

(8)

Note that the same procedure is available to obtain
the 1st derivative of the filter Z, as for the following
presented filters.
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Fig. 7. Comparison of valley detection on real images. The image in (a) is obtained using scanning electron microscopy of melt
ceramic. Here, the valleys are detected with 3 different techniques: Hessian matrix  (c) without and (d) with Gaussian ,
respectively and steerable filter of order 4 ( ) in (e).
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2.3.2. Gouton filter R. Gouton et al. [11] described a
third order recursive filter. This ridge/valley-line
detector function is able to modify its shape as a func-
tion of its parameter :

(9)

with: , ,  and

Thus, the second derivative of  has the following
form:

rs

( ) ( ) ( )( ) −= + +sin cos ,rs t
r rR t K s t D s t E e

( )
( )

− −
=

+

2 2

2 2

2

2
r r

r r

s s t
A

s s t
= 4

1
4 r

K
s

=
2

4
2
4

r

r

s AD
s

+= 3 .r r

r

As sE
s

R

(10)

the more the  parameter decreases, the more 
enhances fine ridges/valleys. Furthermore, when 
decreases, the shape of  is nearly a Gaussian, as
shown in Fig. 10.

2.3.3. Gaussian filter. Gaussian kernels are regularly
used for their effectiveness in edge detection [3], the
1D equation is:
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Fig. 9. Example of extracted ridges with their tied perpendicular directions.
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with  representing the standard deviation of the
Gaussian. Thus, the second derivative of the Gaussian

 is given by:

(12)

The two dimensional Gaussian  is built by com-
bining with “ ,” a product of convolution,  horizon-
tally and vertically:

(13)

where  represents transpose. Using the Gaussian ,
the strategy is the same as to compute the second
derivative on an image, with  and , as an example
for an image derivative in  (see Fig. 11d). Moreover,
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Section 2.4.4 is dedicated to the strategies of the two-
dimensional filters implementation.

Furthermore, these filters in Eqs. (7), (10), and
(12) are useful to smooth the image before extracting
edges by computing  matrix presented in Eq. (3).
Additionally, it is also possible to use the Weingarten
(cf. Eq. (6)) with the Gaussian, as in [2].

2.3.4. Parameters. The three above-mentioned fil-
ters are suitable for ridge and valley detection. Consid-
ering one filter, it is adjustable by tuning only one
parameter which is the same for the low pass and the
derivative filter. Accordingly, parameters , , and 
are chosen as a function of the width of the ridge or of
the valley. Consequently, these parameters are
selected by increasing the width of the filter as robust
as possible in order to extract suitably the feature.
Here, the main idea is to compare equivalently the
3 filters , , and  as a function of the feature width.

*
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Fig. 11. Two-dimensional discrete filters for valley detection in y direction of width 7, parameters are available in Table 1. The
negative of filters detect ridges.
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Indeed, the objective is to tune each filter for a specific
width by selecting an appropriate parameter ( , ,
or ). Thus, in the discrete domain, parameters  and

 are decreasing, and parameter  is increasing until
the filter coefficients cross 0 and the shape filter con-
tains the width of the feature at the same time. Figure 10
illustrates the selected filters computed with different
parameters as a function of the width of the feature. In
addition, Table 1 references the optimum parameters
for each filter as a function of the features size from 1 to
15 pixels. Finally, the parameter  of the Gaussian has
the same properties regarding oriented filters widths.

2.4. Oriented Filters

One common task in image processing and com-
puter vision is applying the same filter on different
angles in order to detect directional responses as steer-
able filter [8, 14], anisotropic Gaussian kernel [18],
and logical linear filter [13].

2.4.1. Steerable filter. Two-dimensional Gaussian
kernels  are very useful for their properties of isot-
ropy, steerability or decomposability properties as sepa-
rability (see Section 2.4.4). Freeman and Adelson pro-
posed an efficient architecture to design oriented filters
of arbitrary orientations from linear combinations of
basis filters [8]. Thus, applying filter steered in different
directions, and then computing the filter responses
gives significant description of the orientation for the
considered pixel; also, it allows determining analytically
the filter output as a function of orientation. The initial
step to extract ridges or valleys in images is to estimate
their orientation by using even steered filters. Conse-

zs rs
σ zs

rs σ

σ

σG
Table 1. Optimum parameters of the high-pass filters z, r,
and gσ as a function of the width of the ridge or valley

Width 1 3 5 7 9 11 13 15 17

sz 1.696 0.63 0.37 0.27 0.21 0.17 0.15 0.13 0.12
sr 2.05 0.69 0.42 0.31 0.24 0.20 0.17 0.15 0.13
σ 0.58 1.81 2.88 3.91 4.93 5.94 6.95 7.95 8.96
quently, the steerable filter of second order ( ) con-
sidering  in Eq. (13) oriented at the angle  is:

(14)

This allows computing an even filter at a specific
orientation, as illustrated in Fig. 11e. At the end, the
calculation of the ridges or the valleys corresponds to
the filter energy in the direction of the maximum
response of the template.

Jacob and Unser [14] extend the idea of the steer-
able filter of order 2 ( ) with operators having a bet-
ter orientation selectivity. Indeed, they proposed
higher order functions, issued of higher order deriva-
tives of the Gaussian  (2nd and 4th: , , ,

, ), resulting in more elongated templates, as
visible in Fig. 11f. Regarding ridge detection, this filter
is specified so as to provide the best compromise in
terms of signal-to-noise ratio, false detection, and
localization (as illustrated in Fig. 7d). Thus, the even
steerable filter of 4th order ( ) is formulated as

(15)

with
• ,
• ,

• ,

• ,

• .
Such parameters control the template  not to

produce undesirable oscillations and side-lobes along
 which is contrary to the 3rd Canny criterion: unicity

(see [14]). This 2D template, presented in Fig. 11f, can
be steered in different orientations , as detailed in
[14], to extract ridges and valleys.
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2.4.2. Anisotropic Gaussian filter. Kernels based on
the derivative of anisotropic Gaussian functions have
been successfully applied in edge detection, showing
certain advantages compared with the isotropic
Gaussian derivatives [22]. As an example, as it corre-
sponds to a thin filter, the orientation selectivity
becomes more reliable with the anisotropic Gaussian
derivatives than the isotropic Gaussian filter. More-
over, the isotropic Gaussian often makes the ridge
extraction difficult as crossing lines in images; also,
parallel lines could be blurred into one line due to iso-
tropic smoothing, especially if the smoothing parame-
ter is too large (i.e.,  parameter in Eqs. (11) and (12)).
The origin is that anisotropic property is more effi-
cient at level of straight lines. It corresponds to a nar-
row filter which is oriented in different directions to
extract the edges when it is steered in the edge direc-
tion. The anisotropic Gaussian filter can thus take
advantage of this property and overtake drawbacks of
the isotropic filter. Thereafter, it is necessary to filter
the image with a set of  kernels oriented in a
variety of directions, as such, leading to the character-
ization of the partial derivatives in  different
orientations. The most evident option to produce a
single output from that information is to retain the
result produced by the oriented kernel with the maxi-
mum absolute value. An anisotropic Gaussian filter in
two dimensions is not built with the combination of
isotropic kernels, as Eq. (15), its direct equation is
given by [10]:

(16)

Here,  represent the two parameters of the
anisotropic Gaussian, i.e., the standard deviations.
When , the kernel  reduces to an isotropic
Gaussian kernel  or . To extract ridges, the sec-
ond-order anisotropic Gaussian kernel (SOAGK) can
be applied [18]. Considering the vertical anisotropic
Gaussian directed at :

thus, the second derivative of  in the  direc-
tion is calculated by:

(17)

The choice of  enables to build a narrow fil-
ter smoothing mostly in the  direction while high-
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lighting valleys in the  direction. Now, this 2D kernel
can be oriented in different directions to capture val-
leys (or ridges with the opposite filter) in the image, as
illustrated in Fig. 12. To this end, the anisotropic
parameter produces a smoothing along the ridge/val-
ley, which helps to extract easily elongated features,
even disturbed by noise. On the contrary, kernels hav-
ing parameters  highlight undesirable fea-
tures as noise which are interpreted as small, non-
elongated ridges [18].

2.4.3. Logical linear filter. Similar to the SOAGK,
Iverson and Zucker proposed a hybrid filter by com-
bining directional linear filters and a linear–logical
(L/L) operator which helps to reduce the false positive
pixels of ridges/valleys [13]. This technique allows
selecting any inflection points within the 1D signal
region , with  (see Fig. 14). First, it
depends on the Gaussian  (see Eq. (11)) and its
derivatives of the first and third order  and  by
computing the four parameters:

(18)

thereby, they can be applied to a signal, as shown in
Fig. 14.

Concretely, the L/L operator can be utilized on dif-
ferent edge types as ridge  (positive contrast lines),
valleys  (negative) and edges  (ramp or step). In
this study, only  and  are focused and evaluated.
These denote functions  and , respectively, and
combine linear operators in Eq. (18) by using the log-
ical operator  such that:

(19)

where the logical operator  is represented by, for two
hypotheses :

(20)

In this way,  and  contribute to extract con-
vex and concave points, as shown in Fig. 14. Next, to
extract ridges or valleys and their tied directions, the
2D operator is expressed as the Cartesian product of
orthogonal, 1D L/L operators  or , and a tan-
gential operator T(t). Moreover, this 2D operator is
oriented and uses strategies of the logical operator 
with the tangential operator T(t) to (a) discriminate
between locally continuous and discontinuous curves
along their tangent direction in the image and (b) align
the line termination with the line ending (illustrated in
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Fig. 12. Representation and visualization of the second derivative of an image computed by convolution with the SOAGK with
= 2.88 and .
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Fig. 14. Convolution of a 1D signal with the , , , and  with  to compute positive and negative contrast lines with
 and , respectively. 
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Fig. 13, for more details refer to [13]). To sum up, the
L/L operator is similar to the SOAGK, with the
parameter  tied to the normal operator (  and )
and  for the tangential operator  (see Fig. 12a).

2.4.4. Implementation and complexity. Presented fil-
ters , , and  may be implemented with different

σu 6P 6N

σ
v

T

Z R σG
strategies. Filters  and  have been designed to be
implemented recursively. Also known as infinite
impulse response (IIR) filters, they represent filters
where the output sample is a linear combination of
some number of previous inputs and outputs. Even
though there are other ways to apply them (i.e., via fast
Fourier transform), the recursive implementation

Z R



Table 2. Recursive orders of the filters and image computa-
tions as a function of the chosen technique

Filter Z and z R and r Gσ and gσ

Recursive order 2, see [28] 3, see [11] 4, see [5] or 5, 
see [26]
strategy is compared here. First, they correspond to
separable filters, so they can be written as a product of
two 1D filters, which is equivalent to a typical 2D con-
volution operation providing a reduction of the opera-
tor computational cost.

Secondly, to reduce even more the number of oper-
ations per pixel, each 1D , , or  filter may be also
implemented recursively, Table 2 reports the order of
these 3 detailed filters. To reduce the number of oper-
ations per pixel, an -order recursive filter is
obtained by calculating its Z-transform. Thus, the
two-sided sequence of a filter  is the superposition of
a causal filter  and anti-causal filter :  =

 + , for . To minimize the
computational complexity, the authors of [26] pro-
posed to decompose series interconnection into a
product of the causal and anti-causal parts, leading to
a 3rd-order Gaussian filter, a 4th-order first derivative
filter and a 5th-order second derivative filter (many
fast approximations of the Gaussian have been pro-
posed, some of them are detailed in [9]).

Now, the first and second derivatives of the original
image can be computed easily by applying the [–1 0 1]
mask one or two times, respectively, to the smoothed
image (i.e., smoothed image obtained by applying the

, , or  filters both in  and  directions).
Besides, the derivatives of an image are computed by
combining in the two directions  and  the different
1-dimensional filters presented in the beginning of
Section 2.3 (which are implemented with the different
strategies above). As an example, the second derivative
in the  direction of an image with the filter  can be
obtained by applying the low pass filter  in the y
direction then the second derivative of , called  in
the  direction of the filtered image.

Subsequently, Table 3 specifies the required num-
ber of image computations as a function of the seg-
mentation technique ( , , , , , or L/L)
and Fig. 15 roughly schematizes the complexity. The
Hessian Matrix  needs the second derivatives of the
image , , and , using , , or  filters. Obvi-
ously,  is more computationally complex than the

 or  because it needs more image derivatives.
Regarding the steerable filters, an operation of filter
rotation with an angle  is necessary (with 360°/
total rotations, where  is the angular step); and 5
derivative images are calculated for the steerable filter
of order 4 (see Eq. (15)). On the other hand, the num-
ber of basis filters is large to extract features with the
SOAGK, and the basis filters are nonseparable,
requiring high computational loads. In [10], the aniso-
tropic Gaussian is decomposed into two Gaussian 1D
filters by considering 360°/  steps of rotation, allow-
ing reducing the operation number per pixel (to
approximate the SOAGK, the difference of anisotro-
pic Gaussian by differentiating the whole image array
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with two different standard deviations  in Eq. (16) is
calculated, see [10]). Also, the L/L filter contains sev-
eral steps of interpolation for the normal operator (
and ) and for the tangential operator  which are
directed in different directions in the image. More-
over, the L/L uses other strategies such as the endline
or the stabilizer to qualify the segmentation; these
steps add more filter complexity.

3. EXPERIMENTAL
RESULTS AND EVALUATION

Experiments are performed on synthetic and real
images, showing qualitative and quantitative results. A
first result presented in Fig. 16 illustrates the advan-
tage to use sharp and narrow filter to extract thin and
close objects, as filters  and .

The aim here is to extract branches inside the drag-
onfly wings; as this image does not contain any notice-
able noise, the Hessian matrix  with finite filters like
[1 0 –2 0 1] gave interesting results for these thin
objects, but created many undesirable edge points
around certain valleys (similar segmentation also by

). Elsewhere,  with the Gaussian  and 
brings similar but less complete result. Segmentation
obtained with  and , , and  are worse with a
lot of missing edge points, as with . However, the
valley extraction using  is perfectible. On the other
hand, the result using  with  filter is quite perfect
(Fig. 16b); this justifies the need to use low pass filter.
Among all the ridge/valley detectors, exponential
( or ) filters do not delocalize contour points [16],
whereas they are sensitive to noise. Techniques using
Gaussian filters are less sensitive to noise, but suffer
from rounding bends and junctions like the oriented
filters , , and the SOAGK. The more the 2D fil-
ter is elongated, the more the segmentation remains
robust against noise. In the following sections, quanti-
tative results are reported with different types and lev-
els of noise in synthetic images. Then, evaluations will
involve real images.

3.1. Error Quantification and Evaluation Procedure

Evaluations are reported using synthetic images
where the true positions of the edges are known. Let 
be the reference contour map corresponding to the
ground truth and  the detected contour map of an
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Table 3. Image computations as a function of the chosen
technique

Computed basis 
images Rotation Other

LoG  and – –

, , and – , , , or 

, , , , 
and 

– Usually 

SF2  or yes max and argmax

SF4 , , , 
, 

yes max and argmax

SOAGK  or yes max and argmax

L/L , yes , endline, stabilizer

xxI yyI

* xxI yyI xyI 1D 2D 3D 4D

W xI yI xxI yyI

xyI
1D

xxI yyI

xxI yyI xxxxI

yyyyI xxyyI

xxI yyI

xI xxxI £
image . Comparing pixel by pixel  and , a basic
evaluation is composed of statistics:

• true positive ( ), common points of both 
and ;

• false positive ( ), spurious detected edges of ;

• false negative ( ), missing boundary points
of ;

• true negative ( ), common non-edge points,
where  denotes the cardinality of a set. Several edge
detection evaluation techniques involving only statis-
tics have been developed (see [20]). It is clearly proved
that poorly located or missing pixels should be penal-
ized according to the distance from the position where
they should be localized. Also, as demonstrated in
[20], the evaluation of FP and FN should not be sym-
metrical, because such a penalty could alter the visibil-
ity of the outlines of the desired objects in an objective
evaluation (see [20]): some measures calculate a large
error for a single FP at a sufficiently large distance,
while many desired contours are missing, but unfortu-
nately, they are not penalized enough. Thus, described

I tG cD

TP tG
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⋅

Fig. 15. Complexity schema, depending on the recursive filters
rotation.
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in [19], the normalized  edge detection evaluation
measure is, for  or :

where  represent two scale parameters
[19],  denotes the cardinality of a set, and  is
the minimal Euclidian distance between a pixel  and
a set  [20]. Therefore, the measure  calculates a
standardized dissimilarity score; the closer the evalua-
tion score is to 1, the more the segmentation is quali-
fied as suitable. On the contrary, a score closes to 0
corresponds to a poor detection of contours.

The aim here is to get the best contour map in a
supervised way. For that, the contours are extracted
after a suppression of the local non-maxima, then a
threshold by hysteresis is applied to obtain a binary
segmentation [3]. Theoretically, to be objectively
compared, the ideal contour map of a measure must
be a  at which the supervised evaluation gets the
highest score [19, 20]. For each better segmentation
tied to , the FP and percentage of TP relative to the
total number of edge pixels of  are also displayed
(TP/ ). In addition, the last evaluation measure con-
cerns the angle tied to the ridge/valley, . Considering

, the set of contour chains in  (i.e., at least 2 pix-
els per chain), the angle evaluation is computed as fol-
lows:

where  represents a contour pixel belonging to , a
3 × 3 window centered on ,  is the direction tied to

, and  is the number of contour pixels in  minus
the central pixel. This evaluation linearly ranges from
0 for identical angles of  and  to 1 for angles that
differ. Note that  and  angles belong to [0°; 180°[
and when one direction approximates 0° and the other
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Fig. 16. Valley detection in green on real image of a dragonfly, with thin, blurred, and very close junctions. The original image is
inverted for a better visualization.

(a) Image 800 ��1200 (b) H with discrete filters (c) H with filter Z, sz = 1.696

(d) H with filter G and D1, � = 0.58 (e) W with filter G and D1, � = 0.58 (f) SF4, � = 0.58
direction approximates 180°, the evaluation remains
close to 0.

Also, from proper binary confusion matrix, the
precision ( ) and recall ( ) evaluations are com-
puted, given the overall quality expressed in terms of
the -measure:

with  allows an equal penalization between 
and .

These scores are presented throughout the remain-
der of this study, according to different images and
noise types.

3.2. Synthetic Images Corrupted by Poisson Noise
The first image in Fig. 17 contains ridges of width

1 pixel and is corrupt by Poisson noise. This noise dis-
tribution typically models shot noise in a sensor in
which the time between photon arrivals is governed by
Poisson statistics and appears for example in medical
imaging system. The Poisson noise density models the
time statistics between photon arrivals, where the
defined expected number of occurrence of integer ,
the noise probability corresponds to observed number
of  instead of  in pixel [27] . Given  an integer, the
maximum probability is obtained for  and the
variance of the distribution is also ; at a pixel , the
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equation is given by  = . Poisson noise

appears from quantum effects of photons. The Pois-
son noise estimate is the square root of the number of
detected photons, then the Cameras cab be calibrated
to know how many photons a certain pixel value is [1].

As shown in Fig. 17, except SOAGK and L/L, all
the other filters are robust to Poisson noise at this
scale.  performed exceptionally well, with True
Positive value  (and ) almost close to 1. It
only started to drop from SNR of 5 dB. Filters with ,

, , and  ranked in the second place, their per-
formances are still sufficiently well (TP/  over 0.9).
But  seemed to be less robust to Poisson noise,
whose TP dropped sharply from SNR of 6 dB. In com-
parison, SOAGK showed its relatively poor perfor-
mance to resist the noise–starting with TP 0.85, end-
ing with TP 0.3 at SNR of 3 dB. L/L failed completely
in this task. It detected barely any true positive ridges.
This poor performance of oriented filters is caused by
the small size of these filters where small-scale orien-
tation deforms the kernels. The angular score  is the
best for  and  filters (using ), because they corre-
spond to sharp filters, especially suitable for thin
ridges.

3.3. Synthetic Images Corrupted by Speckle Noise
The second image in Fig. 18 contains ridges of

width 3 pixels and is disturbed by a speckle noise. This
multiplicative noise appears with the image acquisi-
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Fig. 17. Evaluation of the different ridge/valley extraction techniques on synthetic images corrupted by Poisson noise.
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tion due to the level of noise in the sensor of a CCD or
CMOS camera, increasing in proportion to luminos-
ity [15]. This noise model can be formulated as:  =
I + σηI, where  represents the observed image,  is the
noise-free image, and  is a normalized Gaussian noise
distribution centered at 0 of standard deviation .

Compared to Poisson noise, which is correlated to
the original image, speckle noise adds some indepen-
dent noise to the images that could corrupt more the
image’s geometric structure. For filters providing
quite good results in previous situation (Fig. 17), they
are less efficient in case of speckle noise. Instead of
starting with TP in the range of [0.93, 1], they are now
under the threshold of 0.85 corresponding a perfor-
mance drop of 10% at SNR of 9 dB. And the robust-
ness to noise level decreased much more. This
decreasing behavior in the interval [0.85, 0.55] is sim-
ilar to speckle noise’s granular effect property. At
SNR of 3 dB, the TP are around 0.55, meaning only
about 55% ridge pixels are perfectly detected. Unlike
the total failure with Poisson noise, L/L filter worked
correctly. However, its performance is still the worst
compared to other filters. The main reason could be
due to the fact that L/L is by definition a 1D filter with
additional processing as the endline or the stabilizer
which are noise sensitive. This makes it be much less
robust to structure-correlated noise. As the structure-
correlated noise could destroy the two-dimensional
visual structures transformed in 1D filter space and
cause thus the failure of detection. On the other hand,
among the techniques using non-oriented filters, it is
noticeable that  with  and  with  obtain best
scores. Additionally, the extracted ridges are more
continuous and less disturbed by undesirable false
positive pixels.  with  allows a better quality of

J
J I

η
σ

H 1D W 1D

W 1D
detected ridges than with other non-oriented filters.
Finally, the angular score  obtained by the SOAGK
is less penalized because it corresponds to an elon-
gated kernel applied on close-right structures, so the
oriented filter is generally the same along these struc-
tures (same remark for the Gaussian noise).

3.4. Synthetic Images Corrupted by Gaussian Noise
The last experiment with synthetic images in

Fig. 19 concerns valleys corrupted by a Gaussian blur
and Gaussian noise. This type of noise represents an
additive noise disturbing gray values in images. Its
model is essentially designed and characterized by its
probability distribution function (PDF) or histogram
normalization with reference to the gray value:  =

 where  is the gray value,  is the mean,

and  is the standard deviation. Gaussian noise
blurred more the geometrical structure in images. So,
as shown in Fig. 19, the general TP for all filters are
decreased compared to those with Poisson and
Speckle noises. SOAGK, ,  filters gave better
results (TP  0.8). L/L filter showed always the worst
result, even at SNR of 9 dB, the TP is only 0.57; when
noise becomes stronger, performances decreases. In
comparison,  with  still detects a better quality of
ridges than with other non-oriented filters, statistically
and visually.

3.5. Evaluation with Real Images
After evaluating the filters on synthetic images with

different types of noise, the ridge detection on real-
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Fig. 18. Evaluation of the different ridge/valley extraction techniques on synthetic images corrupted by speckle noise.
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world images is presented. These images are from the
Ghent University Fungal Images together with their
manually annotated ground-truth ridges [18]. This
database is extremely challenging. Here, 13 images
with their tied ground-truth images are selected ran-
domly for this experiment. The images have very poor
contrast and strong noises (see Fig. 20). Regarding the
evaluation pixel per pixel, due to the hand-labeled
ridge points which create inaccurate ground truth
( ), the overall ridge detection with these filters is
around TP 0.2, and they are image-dependent. In the
best situation, TP can reach 0.3; otherwise, in worst
cases, the TP will drop below 0.5 and be close to 0.06.
Oriented filter , , and SOAGK performs well,
regarding  and , contrary to the L/L and  with

. Regarding  with , its evaluation is better than
other non-oriented filters, even though the angle eval-
uation  penalizes the directions perpendicular to the
detected ridges (however, the score remains under 0.1
where it was under 0.2 for speckle noise).

3.6. Visual Comparison on Real Images
The experiment on real images have been per-

formed on heart images for cartographic analysis and
aerial noisy image which are available in Figs. 21 and
22, respectively.

For the first image presented in Fig. 21a, the output
filtered images demonstrate interesting results with all
filtering techniques reviewed in this literature non-
maxima suppression and thresholded images. Here,
the thresholded images correspond to the 3500 highest
computed points for each filtering techniques. The
original image is not specifically noisy but it is blurred.

tG

2SF 4SF
αF N H

4D W 1D

E

The selected parameters correspond to the detection
of ridges of width 3 pixels (see Table 1). Usually, the
blood vessels are well extracted, even with the Lapla-
cian, even though ridges are roughly extracted (see
Fig. 21b). The discrete filter obtains the worse result
with some false positive points and extracted ridges
which are doubled. Regarding the Hessian matrix, ,

, and  perform well using  with the extraction of
main blood vessels without many false positives. Same
remark, the Weingarten is reliable contrary to the Hes-
sian matrix with  and / , which are corrupted by
many false positive pixels and noncontinuous
extracted ridges. Now, considering oriented filters in
Figs. 21j–21l,  performs as well as , , and  fil-
ters using  while  obtains the stronger result with
continuous extracted ridges without many undesirable
extracted pixels. Elsewhere, the SOAGK in Fig. 21l
performs well for elongated ridges but too thin blood
vessel are not well extracted, while some extracted
ridges are tripled, penalizing this ridge detector.

Likewise, the same implementation procedure has
been applied on Stanwick aerial image in Fig. 22a for
aerial image analysis, where the original image is cor-
rupted by a strong noise. Because the images contain
too many ridges to be detected, the thresholded
images after filtering correspond to 50% of the highest
extracted points after non-maxima suppression
(excepted for the discrete filter). The selected param-
eters correspond to the detection of ridges of width
5 pixels (see Table 1). The extracted information in
Figs. 22b–22l, clearly shows that each filtering tech-
nique detects different level of information after non-
maximum suppression, as subject to different applica-
tion analysis. For instance, the LoG (Fig. 22b) detects

Z
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Fig. 19. Evaluation of the different ridge/valley extraction techniques on synthetic images corrupted by Gaussian noise and
Gaussian blur.
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Fig. 20. Evaluation of the different ridge/valley extraction techniques on real images.
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roughly disconnected contours as of blob like struc-
ture, and Hessian with discrete filter (Fig. 22c) has
detected most of the discernible details but the major-
ity of detected ridges are misconnected. The  and 
filters in Figs. 22d and 22e have extracted similar
roughly disconnected ridges, which cannot be
enhanced even with post morphological processing.

Z R
The Hessian matrix ( ) using Gaussian and  in
Fig. 22f shows more interesting result with extracting
sufficiently ridges mostly connected without need of
any further processing even though it contains many
false positive points. The results obtained by  and

/  in Figs. 22g and 22h show more ridges with
sharp noises. The Weingarten in Fig. 22i displays less

* 1D

*

2D 4D



Fig. 21. Ridge detection on heart image. Detected ridges are displayed on the original image. Thresholded images correspond to
the 3500 highest computed points for each method.

(a) Original image 256 ��256 (b)LoG, � = 1.81 (c) H with discrete filter and D1

(d) H with filter Z and
sz = 0.63

(e) H with filter R and sr = 0.69 (f) H with G, � = 1.81 and D1

(g) H with G, � = 1.81 and D2 (g) H with G, � = 1.81 and D4 (i) W with G, � = 1.81 and D1

(j) SF2, � = 1.81 (j) SF4, � = 1.81 (l) SOAGK, �u = 1.81, �v = 5�u



Fig. 22. Ridge detection on Stanwick aerial image. Thresholded images correspond to 50% of the positive points after non-max-
ima suppression step, excepted for (c) where the 7500 highest points are reported because it contains too many positive pixels.

(a) Original image 256 ��256 (b)LoG, � = 2.88 (c) H with discrete filter and D1

(d) H with filter Z and
sz = 0.37

(e) H with filter R and sr = 0.42 (f) H with G, � = 2.88 and D1

(g) H with G, � = 2.88 and D2 (g) H with G, � = 2.88 and D4 (i) W with G, � = 2.88 and D1

(j) SF2, � = 2.88 (k) SF4, � = 2.88 (l) SOAGK, �u = 1.81, �v = 5�u
information than  with , it is similar to  and .
Finally, detected ridges extracted by oriented filters in
Figs. 22j–22l demonstrate quiet interesting and
directly usable information for its application analysis,
in particular, the SOAGK for the straight ridges.

* 1D Z R
 4. CONCLUSIONS

This paper presents an extensive evaluation and
comparison of ridge/valley detection with image-
based filtering techniques including the ridge/valley



mathematical properties, driving filter parameters and
characterizations. Classical technique s such as DOLP
and Laplacian filter are detailed, along with the ele-
gant way using the Hessian matrix . Different tech-
niques exist to compute ridge or valley extraction with
the eigenvalues of ; they are detailed through this
communication, as for the Weingarten. Three low pass
filter are compared, namely, , , which are expo-
nential filters, and the Gaussian one . Elsewhere,
method using oriented Gaussian filters are also
reported. The evaluation and comparison of filtering
techniques have been performed both theoretically
and experimentally on synthetic and real images. Each
filtering technique has been examined on complex
images, where different types of noises have been
applied. The acquired comparison and evaluation
graphs exhibited which method is reliable as a function
of the width feature and the noise type.

Regarding non-oriented filters, the  filter per-
forms well when the ridge or the valley are very thin
(width of one pixel) and requires the less computa-
tional complexity computed the Hessian matrix . On
the other hand,  associated with the Gaussian 
and the highest eigenvalue ( ) is a good compromise
when the feature widths are growing. Yet, the Weing-
arten  and its eigenvalue give suitable and better
continuous detected ridges. Steerable filters of order 2
( ) and of order 4 ( ) obtain similar results, they
are particularly reliable for images corrupted by noise,
especially for bended features (  is a little more reli-
able), contrary to the SOAGK which is well adapted
for straight features.

Eventually, this study would serve as ridge/valley
optimal parameter configuration and adjustment
guide for its interested applied researchers and appli-
cation tools and domain such as satellite or aerial
image analysis (road, river, etc.), medical image anal-
ysis (blood vessels, filaments, nerve system, etc.), lines
detection, image segmentation, and object detection.
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