

HydroSciences

Montpellier

IMT Mines Alès École Mines-Télécom

Thesis financed by the Occitanie region and Europe

48TH IAH CONGRESS IN BELGIUM

BRUSSELS SERTEMBER 6TH – 10TH.

SUBMISSION ID: 224

SUBMISSION TITLE: DISCRIMINATION OF THE NATURAL GEOCHEMICAL BACKGROUND OF ANTHROPOGENIC GEOCHEMICAL INPUTS: CONCEPTUAL ANALYSIS APPLIED TO THE CHARACTERIZATION OF GROUNDWATER MASSES.

Co-authors Marc VINCHES(a) ; Corinne CASIOT(b) ; Sévérin PISTRE(c)

(a) IMT Mines Ales, Centre for Environmental and Risk Education and Research (CREER), Ales, France (b) University of Montpellier, HydroSciences Montpellier - UMR 5569, Montpellier, France (c) University of Montpellier, Department of earth water and environment sciences, Montpellier, France

Philippe Lionel EBENGUE ATEGA philippe-lionel.ebengue@mines-ales.fr

1.INTRODUCTION

2.THE EXISTING

3.SCIENTIFIC CONTRIBUTION

4.DISCUSSION AND CONCLUSION

How to distinguish anthropogenic contributions to groundwater trace metal(loid)s enrichment from the natural geochemical background in an area that has experienced past mining activity ?

2.1 How previous work has answered the question?

- statistical techniques, probability plots, screening methods (Preziosi and al. 2014), or a combination of these methods and tools (Parrone, Ghergo, and Preziosi 2019).
- geochemical techniques based on geochemical foresight (Edmunds and Shand 2009; A. Blum and al. 2001)
- spatial and geostatistical techniques (Dalla Libera et al. 2017; Molinari et al. 2019; Gaus et al. 2003)

1.INTRODUCTION2.THE
EXISTING3.THE
SCIENTIFIC
CONTRIBUTION4. RESULTS
AND
DISCUSSION6

2.2 Limits of the existing

 Uncertainties of existing numerical approaches: fuzzy data

Uncertainties of existing geochemical approaches:

3.1 Method development

Combining relevant factors (statistical, hydrogeochemical and geomorphological) in the same approach to account for the enrichment contributions of a groundwater sample

- Factor a: statistical distribution
- Lepeltier distribution
- Gauss distribution

 Factor b: hydro geochemical conditions

- mineralogical composition of the aquifer (ore deposit genesis)

 hydrogeochemical conditions for rock-water exchange

Favourable = 1 ; unfavourable = 0

 Factor c: Anthropogenic context

-geomorphic gradient to describe the proximity of the mine remains to the measurement point

