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Figure 1: On spring nights, migratory fish produce splashes in rivers during spawning.

ABSTRACT
The monitoring of migratory fish is essential to evaluate the state of
the fish population in freshwater and follow its evolution. During
spawning in rivers, some species of alosa produce a characteristic
splash sound, called “bull”, that enables to perceive their presence.
Stakeholders involved in the rehabilitation of freshwater ecosys-
tems rely on staff to aurally count the bulls during spring nights
and then estimate the alosa population in different sites. In order to
reduce the human costs and expand the scope of study, we propose
a deep learning approach for audio event detection from recordings
made from the river banks. Two different models of Convolutional
Neural Networks (CNNs), namely AlexNet and VGG-16, have been
tested. Encouraging results enable us to aim for a semi-automatized
and production oriented implementation.

CCS CONCEPTS
• Information systems→ Speech / audio search; •Computing
methodologies→ Neural networks; • Applied computing→

Life and medical sciences.
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1 INTRODUCTION
In a context of global decline of wildlife population, numerous
efforts aim at preserving biological diversity as well as conserv-
ing specific species. To be valued, and eventually validated, these
actions rely substantially on measures of abundance and quantifica-
tion of rate of change. Passive acoustic monitoring is a non-invasive
way of reporting community information at the scale of the species
(in the framework of bioacoustics [14]), but also at an higher level
of organization, that is to say at an inter-species scale (in the ecoa-
coustics field [17]). Among different kind of ecosystems, freshwater
produces a range of micro-habitats where terrestrial and aquatic
worlds bleed gradually into each other. A broad diversity of organ-
isms can be found in this environment, such as birds, frogs, fish
and insects, that produce a rich and varied sonic environment.

Living mostly in the sea, migratory fish swim upstream in rivers
at spring to spawn. This behavior is shared by different species,
among them: Alosa agone in the Atlantic ocean, Alosa fallax (also
known as twait shad) and Alosa alosa (also known as allis shad) in
the Mediterranean Sea. We will refer thereafter to those species as
alosa.
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In different areas, such as the Rhone basin, an important number
of infrastructures built in mid-20th century, such as power-plants
and dam, hinder the migration. The alosa population has declined
across Europe since the mid-20th century. Accordingly, it is a pro-
tected species since the Berne Convention of 1979.

Recent structures, such as sluices and fish passes, have been set
up since then to create upstream and downstream fish passages
and ensure longitudinal connectivity. The monitoring of the an-
nual upstream migration of alosa assesses the effectiveness of these
structures. Furthermore, it provides information on the abundance
of a vulnerable population threatened by fishing, pollution and the
deterioration of spawning grounds. Nonetheless, the monitoring
of one of the biggest species of these fresh streams provides infor-
mation about the ability of the overall underwater population to
move upstream and downstream.

Surprisingly, aside various tools for fish detection based on im-
age analyze such as photo traps, the migration of alosa is mostly
monitored by sound. During spawning, at night, male and female
come close to the surface and, half immersed, hit strongly the sur-
face with their caudal fin while turning around each other (see
Figure 1). These movements oxygenate the water and stimulate
the development of eggs. It also produces a clearly audible and
characteristic splash sound which lasts a few seconds, that is called
"bull" [9]. In many locations, an important effort is provided by
stakeholders during spring to aurally count these bulls throughout
the night from different sites on the river banks.

The manual counting of bulls to monitor alosa migration has
a significant cost. It currently involves two persons at each spot
throughout the night. Hence, the automatic detection of these audio
events through field recordings is a crucial issue. The automation
of the migration monitoring would enlarge the study area thanks to
more counting spots and more objective processes. This data would
weigh on the policy of the rehabilitation of rivers for biodiversity
conservation.

In this paper, we propose a bull detection approach with Convo-
lutional Neural Networks (CNNs). We aim for a real implementation
where detected bulls will be validated by human listing. Section 2
presents previous works in the larger scope of audio event detec-
tion. The audio material of this study is detailed in section 3. The
last sections present our experiments and results.

Figure 2: Spectrogram of a bull audio event (among other
sounds like river stream) made by a fish during spawning.

2 RELATEDWORKS
The task of automatic bull detection has been addressed in previous
works in the last decade, mostly via a typical approach of shallow
classification used in the 2010’s for audio detection: MFCC features
and GMM classifier [2, 3]. Other contributions aspired to detect
water sounds, for instance in the context of activity recognition for
elderly assistance [5], or related to the question of their auditory
perception [4].

Aside these works, numerous studies address the broader issue
of Audio Event detection (AED). This research area usually involves
researchers from audio communities with related works in speech
and Music Information Retrieval. AED usually refers to field record-
ings in uncontrolled environment [13], where many kinds of sound
events may occur and overlap.

Significant progresses have been made in AED trough deep learn-
ing approaches. Research is stimulated by challenges such as the
IEEE AASP Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE) [12]. In that context, many contribu-
tions deal with time-frequency representations of audio signals,
and benefit from major advances in computer vision.

In the scope of bull detection from river bank recordings, similar
tasks can be found in the field of bioacoustics. In the bird detection
task of the DCASE 2018 challenge, the best results were achieved
with a CNN approach and data augmentation [10]. Convolutional
recurrent neural networks have also been proposed for bird audio
detection [1], achieving very good results. In line with these results,
this paper describes a first attempt to use CNNs for bull detection
in a freshwater environment.

3 DATA
We focus on splash sounds, called bulls, made by fish at the surface
with their caudal fin. They are broad-frequency noises with tran-
sients. The Figure 2 shows an example of this audio event. Bulls
often overlap with other sounds of the freshwater environment
such as bird vocalizations, and stream sounds.

Our dataset is composed of 20 recordings (mono, 16 bits, sr=44.1k)
for a total duration of 68 hours (see Table 1). These files have been
recorded at night from river banks in different parts of France,
mostly from the Rhone Basin (Ceze and Vidourle rivers), and from
the ocean side (Charente and Loire rivers). The recordings last in
average between 3 and 4 hours. They have been manually labeled
in bull events, resulting in 709 bull events in total, whose average
duration equals to 4.5 seconds (sd: 2.2s).

Year River / site # Rec. Duration # Bulls
2009 Charente 2 46m 94
2012 Loire 6 30h59 73
2013 Charente 3 2h 251
2014 Ceze 2 3h54 208
2016 Vidourle 1 1h11 6
2017 Ceze & Vidourle 5 24h06 60
2018 Ceze 1 5h38 3

Table 1: Sites, number of recordings, total durations, and
number of annotated bulls for each year.
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4 METHODS
4.1 Pre-processing
We use as inputs time × f requency representations of the audio
content. Recordings are split into 15 seconds segments with an
overlapping of 5 seconds. This configuration enables to include
most of the whole bull event in at least one segment. Each segment
is labeled as bull if it contains a part of a bull event, and no-bull
otherwise (see Figure 3). We compute a Mel-spectrogram from each
audio segment (n_fft=4096, hop_length=1024, f_max=22050) and
resize the output (to 128 x 646 bins). In that scope, our task becomes
a binary classification of images. However the resulting dataset is
unbalanced and contains about 45k segments labeled as no-bull but
only 2.1k labeled as bull .

Figure 3: Audio segmentation with overlapping. In this ex-
ample, the first four segments are labeled as bull .

4.2 Models
From the state-of-the-art CNNs AlexNet [8] and the more complex
VGG-16 [16], twomodels, that wewill call by extension AlexNet and
VGG-16, have been implemented. We redesigned these networks
in order to build two models adapted to our task (see Figure 4). In
these two models, the first layer is used to normalize the input of
the model. Its is followed by a convolutional layer to change the
number of channels from 1 to 3, in line with the original inputs of
AlexNet and VGG-16. In the second model, the third layer (group
normalization layer) layer prepares the input data of the VGG-16
pretrained model and avoids memory issues.

In order to solve the problem of unbalanced data, our strategy
is to balance out the losses coming from labeled segments so as to
bring us back to a situation where the data would be perfectly bal-
anced. To this end, we determine two weightswbull andwno_bull
related to the proportion p of the labels bull and no_bull (in our
case pbull ≈ 5 % and pno_bull ≈ 95 %) in the audio segments:

wbull × pbull = wno-bull × pno-bull (1)

To avoid the phenomenon of vanishing gradients, which is often
caused by very high losses combined to certain activation functions,
we use a second conditionwbull +wno-bull = 1. We finally obtain:

wbull = 1 − pbull and wno-bull = pbull (2)

4.3 Metric
Finally, as we strive for a semi-automatized approach where de-
tected bulls will be validated by human hearing, our goal is to
decrease the number of missed bulls (i.e. false negatives) while
reducing the amount of audio segments that need to be listened by
humans (predicted bulls). As our dataset is unbalanced, we choose
to use as metric the average recall, which is defined as:

Averaдe recall = (bull recall + no-bull recall)/2 (3)

Figure 4: Architecture of the two implemented CNNs from
the original AlexNet and VGG-16 models.

5 EXPERIMENTS
We implemented the pre-processing steps with the python libraries
librosa1 and torchaudio and our models with PyTorch [7]. We used
pretrained AlexNet and VGG-16 versions, and then trained our
models entirely (without freezing) on GPU (Nvidia GeForce GTX
1080 Ti).

Our dataset has been separated into training, validation and test
sets. The sites between validation/test sets and training sets are
different so as to extend our models to other sites.

We used a grid search strategy to test different hyper-parameters
from the following values:

• audio segments duration: 10 and 15 seconds
• batch size: 32, 128, 512, 1024, 2028 and 8196
• learning rate: 10-3 and 10-4 (with the Adam optimizer)
• number of final dense layers: 1 and 2
• image pre-processing: input normalization, input standard-
ization, batch normalization and group normalization [18]

The best results were obtained with the following configurations:
audio segments of 15 seconds, batch size of 128 inputs, learning
rate of 10-4, two final dense layers at the end of the pipeline, as well
as normalization by batch for AlexNet and by group for VGG-16.
Moreover, the number of epochs has been chosen according to
the best score on the validation set (5 epochs for AlexNet and 6
epochs for VGG-16). Furthermore, to optimize memory usage, we
implemented the following methods:

• Data generation on-the-fly to load inputs only when they
are required in the training step.

• Gradient accumulation to reduce the memory usage required
by large batch sizes. The loss and the gradients are calculated

1https://librosa.org/
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after each mini-batch but weights are updated every batch
(i.e. less frequently).

• Group normalization layers, which require less memory us-
age than batch normalization layers, and remain quite per-
forming for image recognition models [18].

Table 2 shows our results with those best configurations. As we
can see, the model VGG-16 obtains better results than AlexNet,
even if its precision is lower. Our experiments finally led to an
average recall of 89.7%. This score is really interesting owing to the
fact that most of the segments labeled as bull are detected (93.2%
of bull recall) as we aimed to.

AlexNet VGG-16
Precision 41.4 21.3
Recall 81.4 93.2
Average recall 88.4 89.7

Table 2: Results of the bull detection on the test set.

.

In order to analyze these results in details, we introduce here
a confusion matrix on the test set from the VGG-16 predictions
that gave the best score (see Table 3). According to that table, 1550
segments were predicted as bulls by the model, whereas the whole
test set includes 9166 segments. In a real implementation, this will
lead to a reduction of human costs, in terms of listening duration,
by a factor of approximately six. If we look over the missed events,
24 audio segments labeled as bull were not detected in this test
set. However, as there is an important overlap between segments,
some missed bulls have been detected in other adjacent segments
(see Figure 3). If we consider bull events larger than 2 seconds (i.e.
clearly audible events without contentious), only one bull event
was totally missed on the test set. This result is very encouraging
for a real implementation that would involve human listening of
the detected segments.

Bull predicted No-bull predicted
Bull segment 330 24
No-bull segment 1220 7592

Table 3: Confusion matrix on the test set with the VGG-16
model. 330 segments labeled as bull are detected.

6 CONCLUSION
In this paper, we presented a deep learning approach for bull detec-
tion, in the context of migratory fish monitoring. We implemented
two models based on the state-of-the-art CNNs AlexNet and VGG-
16. As we aim for a semi-automatized approach, we tuned our mod-
els in order to minimize the number of missed bulls. Our method
reaches almost 90% of average recall. This result is very encour-
aging for a real implementation of this semi-automatic approach,
that would enable monitoring of more freshwater sites for a smaller
human cost and a limited number of missed events.

This first implementation of a deep learning approach could be
improved in the future. Regarding the data, we will collect new data

each year in more sites to enlarge our dataset. We also intend to use
an approach of data augmentation that proved to be effective in a
bioacoustics context [10]. We could use effects as masking, shifting
and stretching on the time and frequency dimensions of the Mel-
spectrograms, and add different background noises, throughout the
on-the-fly data generation phase.

Regarding the models, we may improve the processing of the
temporal dimension of the events, by using Convolutional Recur-
rent Neural Networks [11] and/or attention [15]. Finally, we will
also consider the use of strong labels to characterize the audio
events, with using the information of the start and the end of an
event, instead of a binary annotation of segments (i.e. weak labels
for each segment) [6].
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