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On spring nights, migratory fish

INTRODUCTION

In a context of global decline of wildlife population, numerous efforts aim at preserving biological diversity as well as conserving specific species. To be valued, and eventually validated, these actions rely substantially on measures of abundance and quantification of rate of change. Passive acoustic monitoring is a non-invasive way of reporting community information at the scale of the species (in the framework of bioacoustics [START_REF] Martin K Obrist | Bioacoustics approaches in biodiversity inventories[END_REF]), but also at an higher level of organization, that is to say at an inter-species scale (in the ecoacoustics field [START_REF] Sueur | Ecoacoustics: the ecological investigation and interpretation of environmental sound[END_REF]). Among different kind of ecosystems, freshwater produces a range of micro-habitats where terrestrial and aquatic worlds bleed gradually into each other. A broad diversity of organisms can be found in this environment, such as birds, frogs, fish and insects, that produce a rich and varied sonic environment.

Living mostly in the sea, migratory fish swim upstream in rivers at spring to spawn. This behavior is shared by different species, among them: Alosa agone in the Atlantic ocean, Alosa fallax (also known as twait shad) and Alosa alosa (also known as allis shad) in the Mediterranean Sea. We will refer thereafter to those species as alosa.

In different areas, such as the Rhone basin, an important number of infrastructures built in mid-20th century, such as power-plants and dam, hinder the migration. The alosa population has declined across Europe since the mid-20th century. Accordingly, it is a protected species since the Berne Convention of 1979.

Recent structures, such as sluices and fish passes, have been set up since then to create upstream and downstream fish passages and ensure longitudinal connectivity. The monitoring of the annual upstream migration of alosa assesses the effectiveness of these structures. Furthermore, it provides information on the abundance of a vulnerable population threatened by fishing, pollution and the deterioration of spawning grounds. Nonetheless, the monitoring of one of the biggest species of these fresh streams provides information about the ability of the overall underwater population to move upstream and downstream.

Surprisingly, aside various tools for fish detection based on image analyze such as photo traps, the migration of alosa is mostly monitored by sound. During spawning, at night, male and female come close to the surface and, half immersed, hit strongly the surface with their caudal fin while turning around each other (see Figure 1). These movements oxygenate the water and stimulate the development of eggs. It also produces a clearly audible and characteristic splash sound which lasts a few seconds, that is called "bull" [START_REF] Mc Langkau | Spawning behaviour of Allis shad Alosa alosa: new insights based on imaging sonar data[END_REF]. In many locations, an important effort is provided by stakeholders during spring to aurally count these bulls throughout the night from different sites on the river banks.

The manual counting of bulls to monitor alosa migration has a significant cost. It currently involves two persons at each spot throughout the night. Hence, the automatic detection of these audio events through field recordings is a crucial issue. The automation of the migration monitoring would enlarge the study area thanks to more counting spots and more objective processes. This data would weigh on the policy of the rehabilitation of rivers for biodiversity conservation.

In this paper, we propose a bull detection approach with Convolutional Neural Networks (CNNs). We aim for a real implementation where detected bulls will be validated by human listing. Section 2 presents previous works in the larger scope of audio event detection. The audio material of this study is detailed in section 3. The last sections present our experiments and results. 

RELATED WORKS

The task of automatic bull detection has been addressed in previous works in the last decade, mostly via a typical approach of shallow classification used in the 2010's for audio detection: MFCC features and GMM classifier [START_REF] Diep | Acoustic counting and monitoring of shad fish populations[END_REF][START_REF] Diep | Automatic acoustic recognition of shad splashing using a smartphone[END_REF]. Other contributions aspired to detect water sounds, for instance in the context of activity recognition for elderly assistance [START_REF] Guyot | Water sound recognition based on physical models[END_REF], or related to the question of their auditory perception [START_REF] Guyot | Identification of categories of liquid sounds[END_REF].

Aside these works, numerous studies address the broader issue of Audio Event detection (AED). This research area usually involves researchers from audio communities with related works in speech and Music Information Retrieval. AED usually refers to field recordings in uncontrolled environment [START_REF] Mesaros | Acoustic event detection in real life recordings[END_REF], where many kinds of sound events may occur and overlap.

Significant progresses have been made in AED trough deep learning approaches. Research is stimulated by challenges such as the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE) [START_REF] Mesaros | Sound event detection in the DCASE 2017 challenge[END_REF]. In that context, many contributions deal with time-frequency representations of audio signals, and benefit from major advances in computer vision.

In the scope of bull detection from river bank recordings, similar tasks can be found in the field of bioacoustics. In the bird detection task of the DCASE 2018 challenge, the best results were achieved with a CNN approach and data augmentation [START_REF] Lasseck | Acoustic bird detection with deep convolutional neural networks[END_REF]. Convolutional recurrent neural networks have also been proposed for bird audio detection [START_REF] Cakir | Convolutional recurrent neural networks for bird audio detection[END_REF], achieving very good results. In line with these results, this paper describes a first attempt to use CNNs for bull detection in a freshwater environment.

DATA

We focus on splash sounds, called bulls, made by fish at the surface with their caudal fin. They are broad-frequency noises with transients. The Figure 2 shows an example of this audio event. Bulls often overlap with other sounds of the freshwater environment such as bird vocalizations, and stream sounds.

Our dataset is composed of 20 recordings (mono, 16 bits, sr=44.1k) for a total duration of 68 hours (see Table 1). These files have been recorded at night from river banks in different parts of France, mostly from the Rhone Basin (Ceze and Vidourle rivers), and from the ocean side (Charente and Loire rivers). The recordings last in average between 3 and 4 hours. They have been manually labeled in bull events, resulting in 709 bull events in total, whose average duration equals to 4.5 seconds (sd: 2.2s). 

METHODS 4.1 Pre-processing

We use as inputs time × f requency representations of the audio content. Recordings are split into 15 seconds segments with an overlapping of 5 seconds. This configuration enables to include most of the whole bull event in at least one segment. Each segment is labeled as bull if it contains a part of a bull event, and no-bull otherwise (see Figure 3). We compute a Mel-spectrogram from each audio segment (n_fft=4096, hop_length=1024, f_max=22050) and resize the output (to 128 x 646 bins). In that scope, our task becomes a binary classification of images. However the resulting dataset is unbalanced and contains about 45k segments labeled as no-bull but only 2.1k labeled as bull. 

Models

From the state-of-the-art CNNs AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and the more complex VGG-16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], two models, that we will call by extension AlexNet and VGG-16, have been implemented. We redesigned these networks in order to build two models adapted to our task (see Figure 4). In these two models, the first layer is used to normalize the input of the model. Its is followed by a convolutional layer to change the number of channels from 1 to 3, in line with the original inputs of AlexNet and VGG-16. In the second model, the third layer (group normalization layer) layer prepares the input data of the VGG-16 pretrained model and avoids memory issues.

In order to solve the problem of unbalanced data, our strategy is to balance out the losses coming from labeled segments so as to bring us back to a situation where the data would be perfectly balanced. To this end, we determine two weights w bull and w no_bull related to the proportion p of the labels bull and no_bull (in our case p bull ≈ 5 % and p no_bull ≈ 95 %) in the audio segments:

w bull × p bull = w no-bull × p no-bull (1) 
To avoid the phenomenon of vanishing gradients, which is often caused by very high losses combined to certain activation functions, we use a second condition w bull + w no-bull = 1. We finally obtain:

w bull = 1 -p bull and w no-bull = p bull (2)

Metric

Finally, as we strive for a semi-automatized approach where detected bulls will be validated by human hearing, our goal is to decrease the number of missed bulls (i.e. false negatives) while reducing the amount of audio segments that need to be listened by humans (predicted bulls). As our dataset is unbalanced, we choose to use as metric the average recall, which is defined as: 

Averaдe recall = (bull recall + no-bull recall)/2 (3)

EXPERIMENTS

We implemented the pre-processing steps with the python libraries librosa1 and torchaudio and our models with PyTorch [START_REF] Ketkar | Introduction to pytorch[END_REF]. We used pretrained AlexNet and VGG-16 versions, and then trained our models entirely (without freezing) on GPU (Nvidia GeForce GTX 1080 Ti).

Our dataset has been separated into training, validation and test sets. The sites between validation/test sets and training sets are different so as to extend our models to other sites.

We used a grid search strategy to test different hyper-parameters from the following values:

• audio segments duration: 10 and 15 seconds • batch size: 32, 128, 512, 1024, 2028 and 8196

• learning rate: 10 -3 and 10 -4 (with the Adam optimizer)

• number of final dense layers: 1 and 2

• image pre-processing: input normalization, input standardization, batch normalization and group normalization [START_REF] Wu | Group normalization[END_REF] The best results were obtained with the following configurations: audio segments of 15 seconds, batch size of 128 inputs, learning rate of 10 -4 , two final dense layers at the end of the pipeline, as well as normalization by batch for AlexNet and by group for VGG-16. Moreover, the number of epochs has been chosen according to the best score on the validation set (5 epochs for AlexNet and 6 epochs for VGG-16). Furthermore, to optimize memory usage, we implemented the following methods:

• Data generation on-the-fly to load inputs only when they are required in the training step. • Gradient accumulation to reduce the memory usage required by large batch sizes. The loss and the gradients are calculated after each mini-batch but weights are updated every batch (i.e. less frequently). • Group normalization layers, which require less memory usage than batch normalization layers, and remain quite performing for image recognition models [START_REF] Wu | Group normalization[END_REF]. Table 2 shows our results with those best configurations. As we can see, the model VGG-16 obtains better results than AlexNet, even if its precision is lower. Our experiments finally led to an average recall of 89.7%. This score is really interesting owing to the fact that most of the segments labeled as bull are detected (93.2% of bull recall) as we aimed to. . In order to analyze these results in details, we introduce here a confusion matrix on the test set from the VGG-16 predictions that gave the best score (see Table 3). According to that table, 1550 segments were predicted as bulls by the model, whereas the whole test set includes 9166 segments. In a real implementation, this will lead to a reduction of human costs, in terms of listening duration, by a factor of approximately six. If we look over the missed events, 24 audio segments labeled as bull were not detected in this test set. However, as there is an important overlap between segments, some missed bulls have been detected in other adjacent segments (see Figure 3). If we consider bull events larger than 2 seconds (i.e. clearly audible events without contentious), only one bull event was totally missed on the test set. This result is very encouraging for a real implementation that would involve human listening of the detected segments. 

CONCLUSION

In this paper, we presented a deep learning approach for bull detection, in the context of migratory fish monitoring. We implemented two models based on the state-of-the-art CNNs AlexNet and VGG-16. As we aim for a semi-automatized approach, we tuned our models in order to minimize the number of missed bulls. Our method reaches almost 90% of average recall. This result is very encouraging for a real implementation of this semi-automatic approach, that would enable monitoring of more freshwater sites for a smaller human cost and a limited number of missed events.

This first implementation of a deep learning approach could be improved in the future. Regarding the data, we will collect new data each year in more sites to enlarge our dataset. We also intend to use an approach of data augmentation that proved to be effective in a bioacoustics context [START_REF] Lasseck | Acoustic bird detection with deep convolutional neural networks[END_REF]. We could use effects as masking, shifting and stretching on the time and frequency dimensions of the Melspectrograms, and add different background noises, throughout the on-the-fly data generation phase.

Regarding the models, we may improve the processing of the temporal dimension of the events, by using Convolutional Recurrent Neural Networks [START_REF] Lim | Rare sound event detection using 1D convolutional recurrent neural networks[END_REF] and/or attention [START_REF] Shen | Learning How to Listen: A Temporal-Frequential Attention Model for Sound Event Detection[END_REF]. Finally, we will also consider the use of strong labels to characterize the audio events, with using the information of the start and the end of an event, instead of a binary annotation of segments (i.e. weak labels for each segment) [START_REF] Hershey | The Benefit of Temporally-Strong Labels in Audio Event Classification[END_REF].

Figure 2 :

 2 Figure 2: Spectrogram of a bull audio event (among other sounds like river stream) made by a fish during spawning.

Figure 3 :

 3 Figure 3: Audio segmentation with overlapping. In this example, the first four segments are labeled as bull.

Figure 4 :

 4 Figure 4: Architecture of the two implemented CNNs from the original AlexNet and VGG-16 models.

  

Table 1 :

 1 Sites, number of recordings, total durations, and number of annotated bulls for each year.

	Year River / site	# Rec. Duration # Bulls
	2009 Charente	2	46m	94
	2012 Loire	6	30h59	73
	2013 Charente	3	2h	251
	2014 Ceze	2	3h54	208
	2016 Vidourle	1	1h11	6
	2017 Ceze & Vidourle	5	24h06	60
	2018 Ceze	1	5h38	3

Table 2 :

 2 Results of the bull detection on the test set.

		AlexNet VGG-16
	Precision	41.4	21.3
	Recall	81.4	93.2
	Average recall	88.4	89.7

Table 3 :

 3 Confusion matrix on the test set with the VGG-16 model. 330 segments labeled as bull are detected.

		Bull predicted No-bull predicted
	Bull segment	330	24
	No-bull segment	1220	7592

https://librosa.org/

ACKNOWLEDGMENTS

The research presented in this article was funded by the French Association Migrateurs Rhône Méditerranée. This work was partially implemented through student projects at IMT Mines Ales. External data were provided by LOGRAMI and EPTB Charente. We thank Pierre Campton for his support, as well as Julien Denozi and Chayma Mefteh for their previous works.