Improving Patent Mining and Relevance Classification using Transformers - IMT Mines Alès
Communication Dans Un Congrès Année : 2021

Improving Patent Mining and Relevance Classification using Transformers

Résumé

Patent analysis and mining are time-consuming and costly processes for companies, but nevertheless essential if they are willing to remain competitive. To face the overload induced by numerous patents, the idea is to automatically filter them, bringing only few to read to experts. This paper reports a successful application of fine-tuning and retraining on pre-trained deep Natural Language Processing models on patent classification. The solution that we propose combines several state-of-the-art treatments to achieve ourgoal : decrease the workload while preserving recall and precision metrics.

Dates et versions

hal-03277767 , version 1 (05-07-2021)

Identifiants

Citer

Théo Ding, Walter Vermeiren, Sylvie Ranwez, Binbin Xu. Improving Patent Mining and Relevance Classification using Transformers. APIA 2021 - Conférence Nationale sur les Applications Pratiques de l’Intelligence Artificielle (événement affilié à PFIA 2021), Jun 2021, Bordeaux, France. p. 81-90. ⟨hal-03277767⟩
126 Consultations
0 Téléchargements

Altmetric

Partager

More