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Abstract: Neural networks are used to forecast hydrogeological risks, such as droughts and floods. 

However, uncertainties generated by these models are difficult to assess, possibly leading to a low 

use of these solutions by water managers. These uncertainties are the result of three sources: input 

data, model architecture and parameters and their initialization. The aim of the study is, first, to 

calibrate a model to predict Champagne chalk groundwater level at Vailly (Grand-Est, France), and, 

second, to estimate related uncertainties, linked both to the spatial distribution of rainfalls and to 

the parameter initialization. The parameter uncertainties are assessed following a previous meth-

odology, using nine mixed probability density functions (pdf), thus creating models of correctness. 

Spatial distribution of rainfall uncertainty is generated by swapping three rainfall inputs and then 

observing dispersion of 27 model outputs. This uncertainty is incorporated into models of correct-

ness. We show that, in this case study, an ensemble model of 40 different initializations is sufficient 

to estimate parameter uncertainty while preserving quality. Logistic, Gumbel and Raised Cosine 

laws fit the distribution of increasing and decreasing groundwater levels well, which then allows 

the establishment of models of correctness. These models of correctness provide a confidence inter-

val associated with the forecasts, with an arbitrary degree of confidence chosen by the user. These 

methodologies have proved to have significant advantages: the rigorous design of the neural net-

work model has allowed the realisation of models able to generalize outside of the range of the data 

used for training. Furthermore, it is possible to flexibly choose the confidence index according to 

the hydrological configuration (e.g., recession or rising water table). 

Keywords: neural networks; uncertainty; hydrogeology; probability; probability density function; 

model; rainfall 

 

1. Introduction 

Water is an essential resource for life on Earth but also a hazard, through its scarcity 

during droughts or its abundance during floods. Water-related risks sometimes cause 

damage and fatalities and have a strong impact on water supply, agriculture and indus-

tries. The current climate change context has causes the rise of extreme phenomena fre-

quency and duration [1]. Moreover, water demand is growing in developed countries due 

to change in water uses, thus becoming a major issue. Predictive systems can be used in 

order to manage and to prevent these hydro(geo)logical risks. Among the available solu-

tions to forecast groundwater level or river discharge, two stand out. The first consists in 

using physically based models, which are supposed to represent a deep knowledge of the 

study basin. Unfortunately, this level of knowledge is often difficult to reach because of 
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the heterogeneity and anisotropy of hydro-systems. Besides, these models require mete-

orological forecasts whose reliability, at the necessary space and time scales, can be insuf-

ficient. The second consists in statistical modeling, among which artificial neural networks 

(ANN) are widely represented. This family of models does not require a strong 

knowledge about the system behavior, but does require a database representing the as-

sumed relationship between input and output data. Moreover, ANN do not necessarily 

require forecasts of their inputs to provide output forecasts, as long as the lead-time re-

mains below or close to the response time of the system. A specific model, the multilayer 

perceptron, is known to be able to identify any nonlinear but differentiable function 

thanks to the universal approximation property [2]. The choice of ANN models thus relies 

on poor knowledge of the underground processes of the area and on very low operational 

calculation times. This avoids making an uncertain hypothesis about the hydrosystem. As 

any model will, ANN generate uncertainties that are difficult to quantify and to communi-

cate, the absence of which would optimize the decision-making process for end users. 

Especially, as is often the case in hydrology and hydrogeology, if the decision is based on 

threshold crossing, ambiguities in decisions are not acceptable. Thus, uncertainties can 

lead to mistakes and inconsistencies in decision-making. For these reasons, [3] focus on 

the key issues for modelers, especially the issue of how far the model has been able to 

capture the catchment behavior and [4] focuses on the origins of the uncertainties. [4] de-

scribed three main origins for these uncertainties: (i) input data, especially noise and non-

measured spatial variability of these data, (ii) oversimplified structure and (iii) parameters 

determination. The origins of input data uncertainties are mainly related to data quality, 

input representativity in the basin related to spatial distribution, environmental condi-

tions and errors from measurements (resolution, measuring instruments) [4,5]. The uncer-

tainties in the model parameters are found in training performance, as well in initializa-

tion during the training step [4]. Bayesian Model Averaging was developed for parameter 

uncertainty estimation [6] and applied to the Pô streamflow in Italy. Uncertainty is repre-

sented as a forecast interval with a certain probability of correctness [6]. As long as the 

chosen model generates multiple outputs with an ensemble model, an interval of uncer-

tainty can be drawn. The uncertainty related to various input variables can thus be ad-

dressed, for example, the spatial distribution of rainfalls. The latter was approached with 

a Bayesian Forecasting System [7], coupled to a precipitation forecast, with interesting 

results [8], indicating that the uncertainty, estimated by the prediction interval delivered 

by the ensemble model, could be improved by post processing. Therefore, Bayesian mod-

els can be an alternate solution to estimate model uncertainties. This approach is therefore 

an effective method for approximating the uncertainty of the various hyperparameters of 

a model.  

In the present paper, we propose a methodology to estimate the uncertainty gener-

ated by both the neural network model itself and by the non-measured spatial heteroge-

neity of rainfall. This work was carried out on the Champagne chalk aquifer (Northern 

France) as a case study, at a 10-day time-step. Predictions are achieved for up to 20 days 

(two time-steps). A reliable enough ANN model to forecast Champagne chalk groundwa-

ter level is built, thanks to a rigorous variable and complexity selection process [9,10] 

helped by the application of regularization methods [10], mainly cross-validation [11] and 

early stopping [12]. The uncertainties due to the model parameters are then estimated [13]. 

Even though the noise in rainfall inputs is assumed to be limited due to the quality of rain 

gauges and to the 10 day time-step, the spatial variability of rainfall is significant, and the 

number of rain gauges may be insufficient to properly represent this variability. An orig-

inal method to assess this uncertainty is to perform permutations and substitutions of the 

available rain gauges, simulating a spatial variation of rainfall and thus giving an ensem-

ble of forecasts. These new forecasts are finally embedded in the assessment and the rep-

resentation of uncertainties method.  

The article is organized as follows: the material and methods section presents the 

neural networks and the method used for model design. Then, the target basin used to 
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implement this method, the Champagne chalk groundwater basin, the quality criteria 

used and, finally, the method used to estimate the uncertainties are described. A correct-

ness model implementation method is proposed, allowing the display of a confidence in-

terval, choosing an a priori confidence index. Then the design method deployed to realize 

the neural network model is detailed in Section 3. Section 4 goes on to present the results 

of the prediction and an uncertainty estimation. Section 5 proposes a discussion and some 

paths of improvement, before the general conclusion. 

2. Material and Methods 

2.1. Neural Network Models 

2.1.1. Definitions 

An artificial neuron is a mathematical operator that first calculates its potential, i.e., 

the weighted sum of its inputs with its parameters, and secondly its output, applying a 

nonlinear transformation to its potential.  

Neurons are combined inside a network following an architecture, which is built ac-

cording to the targeted function: classification or regression. Neurons can be organized in 

layers of two types: (i) output layer, whose outputs are those of the model, and associated 

to measured values, and (ii) hidden layers, whose outputs are not associated to measured 

values [14]. 

One of the most common forms of neural network architecture in hydrology is the 

feed-forward model “multilayer perceptron” (MLP), for which the universal approxima-

tion property has been shown by [2,15]. This property states that the model (Figure 1) is 

able to approximate any differentiable function with an accuracy depending on the num-

ber of hidden neurons. The other property of this architecture is parsimony. This means 

that the model needs less parameters to describe phenomena, compared to other statistical 

nonlinear models [16]. This comes from the calculation of the output, which depends non-

linearly on the inputs and the parameters. Parsimony is even more valuable when the 

number of input variables increases. For these reasons, this model is used in this study. 

 

Figure 1. Multilayer Perceptron representation, with xi, the exogenous variables; W, the matrix of 

parameters; y, the measured output; ŷ, the predicted output; r, the order of the model, nr, the input 

window width; Hi (i = 1 to N) the hidden neurons; N, the number of hidden neurons; k, the dis-

crete time and h, the lead time [13]. 

2.1.2. Role of Time in Neural Networks Models 

Assuming the crucial role of time in forecasting, a neural network can have a dy-

namic behavior, according to its architecture [17].  
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In the first case, the static character of the model implies that time has no functional 

role and that input variables are all exogenous (1). The model is a finite impulse response 

filter.  

 ��(�) = �(�(�), … , �(� − �� + 1), �) (1)

where ŷ(k) is the estimated output at the discrete time k; u the input vector; φ the nonlinear 

function implemented by the neural model; nr the sliding time-window size that defines 

the length of the necessary history of exogenous data; and W the matrix of parameters. 

In the second case, the recurrent model uses the result of the simulation at previous 

time-steps in addition to the exogenous variables (2). The model is thus an infinite impulse 

response filter and presents a dynamic behavior. 

��(�) = �(��(� − 1), … , ��(� −  �); �(�), … , �(� − �� + 1), �)  (2)

with the same notations as previously stated, and r, the order of the recurrent model; that 

is to say, the number of previous output values applied at the input of the model.  

The recurrent model allows the simulation of a dynamic function: it is used when the 

noise added by output measurements is supposed to be higher than that affecting inputs. 

Practically, recurrent models must also be used when real-time data are unavailable [18]. 

In the third case, the feed-forward model, the recurrent inputs are substituted by the 

measurement of the output variables at previous time steps (3). The model is thus a finite 

impulse filter. It is static, rigorously speaking, but thanks to the addition of observed state 

variables as exogenous input variables, it is able to simulate dynamic behavior. 

��(�) = �(�(� − 1), … , �(� −  �); �(�), … , �(� −  �� + 1), �) (3)

where y(k) is the observed output of the simulated system at the discrete time k. 

Feed-forward models are used if the noise due to the measurement of the output 

variables is low, or lower than the noise on inputs [17,19]. 

2.1.3. Training and Overfitting 

Training a neural network consists of calculating the parameters set by minimizing a 

cost function, measuring the error between observed and simulated values. This stage 

uses a training rule applied on a subset of the database: the training set.  

Afterward, the quality of the model is assessed on another subset: the test set. The 

test is used to assess the property of “generalization” of the model. It is never used during 

training, nor for optimization of the architecture. 

Ref. [20] showed that the training error is not a relevant estimator of the test error. 

Indeed, the training error diminishes when the complexity (number of free parameters) 

increases, while the test error (the variance) increases. This phenomenon is called 

“bias/variance dilemma”, and indicates that a too complex model perfectly fits the train-

ing data, also including the random noise contained by these data. This model is thus 

unable to correctly generalize to unknown data. Conversely, a too simple model will not 

be able to adapt to the signal. This leads to a high bias and a low variance. 

2.1.4. Regularization Methods 

Regularization methods can be used to prevent overfitting. The cross-validation 

method [11] is used in this study. It allows assessment of the generalization error and 

provides the cross-validation score that assesses the variance. It is used to select the vari-

ables and the complexity of the model (see Section 3). 

The second regularization method used in this study is early stopping. Early stop-

ping [12] considers that training the model too much increases the amplitude of the pa-

rameters and is equivalent to increasing the complexity. It thus stops training before the 

generalization capacity decreases. For this purpose, a subset of the database, called the 

“stop set” must be defined. 
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As shown by [21,22], the ensemble model can be used to reduce the uncertainty due 

to the initialization of parameters before training. At each time-step, the output is calcu-

lated as (4): 

���
� = �����������

�� (4)

where ���
�  is the output of the ensemble model at time-step k; ��

� is the output of one 

member of the ensemble at time-step k; and MedianX represents the median calculated on 

the outputs of a set of X models. The choice of the number of models in the ensemble 

depends on the application.  

2.1.5. Model Design 

The first step in the model design is to split the database into several subsets: training 

set, stop set and test set. Various test sets can be chosen depending on the modelling pur-

pose. For example, the most intense event can be chosen when floods are targeted. 

The second step consists in choosing the relevant kind of model regarding the role of 

time (Section 2.1.2). 

The third step is to realize cross-correlations between input data and between input 

and output data. These correlations allow the obtaining of a response time and a memory 

effect duration for each input variable. This gives a first overview of the hydro-system 

dynamics and allows preselecting the input windows width of the model and a relevant 

lead-time (Figure 1). 

Then, in order to prevent overfitting, the architecture of the model is optimized using 

the cross-validation method. For this optimization, the output is that of the ensemble 

model. This architecture selection is carried out by adjusting the following hyperparame-

ters using cross-validation:  

- The window widths of the different (exogenous) input variables (nr in Equations (1)–

(3)). 

- The “order” of the model, corresponding to the window width of the estimated (or 

observed, if the model is a feed-forward) targeted variable (output variable), for pre-

vious time-steps, applied at the input of the model (r in Equations (2) and (3)). 

- The number of neurons in the hidden layers: N. 

2.2. Study Area: The Champagne Chalk Groundwater Basin 

2.2.1. Field Study Presentation 

 Location 

Located in Northern France, in the Grand-Est region, the Champagne chalk ground-

water basin area is estimated at 5927 sq.km. It corresponds mainly to the drainage of 

the rivers Marne and Aube, delimited by piezometric ridges characterized as follows: 

chalk limit on the eastern part, tertiary rocks on the western part, other hydrogeolog-

ical basins on the northern limit, the Seine river for the southern part and, as a bed-

rock, marlstones [23]. Elevation varies from 40 to 286 m.a.s.l. (Figure 2).  
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Figure 2. Map of the Champagne chalk groundwater basin (IGN, BRGM, BD Carthage). 

 Water use 

Water is mainly used for tap water production and agriculture [23]. Annual water 

withdrawals via studied piezometer made on average between 2012 and 2017 are 

17,393 m3, however, showing a decreasing trend [24]. Water is also used for agricul-

ture, with 61.5% of groundwater withdrawal for irrigation in 2017 (against 38.5% for 

tap water production) in Vailly (location of the studied piezometer) and neighboring 

towns [25]. 

 Climate 

The climate of the basin corresponds to a transition climate between oceanic and 

semi-continental climates. The mean annual rainfall varies from 640 to 820 mm, 

measured on 22 meteorological stations calculated on the 1981–2010 period [26]. The 

recharge is estimated at 160 mm/y [23]. 

 Geology and groundwater behavior 

This basin is mainly composed of chalk, and limestones to a lesser proportion, with 

sands and clay along the hydrographic network [27,28]. Intense shallow fracturing, 

mainly caused by climate action, has developed a significant permeability especially 

near the hydrographic network. Groundwater recharge time in the champagne basin 

is estimated at 100 days in our study piezometer (Craie à Vailly (nouveau)) [29], and 

the underground levels can increase from 6 m to 25 m [23,30]. Groundwater levels, 

especially in the Barbuise catchment area, which is close to the study piezometer, are 

influenced by the shallow water [27]. Consequently, the Barbuise river discharge is 

strongly correlated to piezometric levels at Craie à Vailly [27,29].  
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2.2.2. Database Presentation 

Meteorological data are provided at three stations:  

1. Troyes-Barberey (RTB) (precipitation and potential evapotranspiration),  

2. Grandes-Chapelles (RGC) (precipitation), 

3. Mailly (RMA) (precipitation) 

Groundwater levels are available at the Craie à Vailly piezometer (LCV), and two dis-

charge stations are located in Pouan-les-Vallées in Barbuise catchment (DBP) and at Méry-

sur-Seine in the Seine catchment (DSM) (Table 1). 

Irrigation (I) information was calculated from cultivated area and agricultural data. 

The cultivated area can be estimated thanks to (RPG2017 from IGN [31]). Agricultural 

data contains monthly water demand for each crop type (OUGC84). Therefore, it is possi-

ble to establish the monthly water demand by crop type for the total area of the basin. 

Monthly irrigation needs were then resampled at 10-days sampling rate. 

Data ranges from 1977 to 2018 at a 10-day time-step, with a gap between August 1991 

and January 1995 and another one from January 2014 to May 2014. Smaller gaps exist in 

data but never exceed two months, as in April 1985, December 1995, and early 2003 and 

2005. Data from October to December 1990 have been set apart due to potential errors in 

groundwater level measurements, because the data are constant at 116.65 m.a.s.l. during 

this period. Even though short gaps (one or two time steps) were filled by simple interpo-

lations, the other more important gaps were not filled due to the lack of information about 

water table variability during these gaps. This is particularly true during periods of ex-

treme levels, such as during the test set, which has been shortened for this reason. Irriga-

tion data are provided on Appendix A Figure A1.  

Table 1. Simple statistics on Champagne chalk time series from 1977 to 2018. 

Station Name 
Measured 

Variable 
Unit 

Time 

Step 

Max  

Value 

Min 

Value 
Median Average 

Craie at Vailly (LCV) Level m.a.s.l. 10 days 134.75 109.75 119.95 120.558 

Barbuise at Pouan les Vallées (DBP) Discharge m3.s−1 10 days 4.50 0.00 0.67 0.836 

Seine at Méry-sur-Seine (DSM) Discharge m3.s−1 10 days 182.2 5.95 25.61 35.71 

Grandes-Chapelles (RGC) Rain mm 10 days 131.2 0.0 15.9 19.87 

Troyes-Barberey (RTB) Rain mm 10 days 86.4 0.0 13.2 17.29 

Mailly (RMA) Rain mm 10 days 138.8 0.0 17.0 21.50 

Troyes-Barberey (PET) 

Potential 

Evapo-tran-

spiration 

mm 10 days 64.7 0.0 19.0 21.20 

Bassin (I) Irrigation 
m3.ha−1.

month−1 
month 833.9 0.6 176.0 280.1 

Cross correlations between inputs and output were calculated to better understand 

the behavior of the basin. These provide information on input-output relationships by 

showing the response time (mean delay between rain peak and discharge/groundwater 

level peak, in number of time steps) and the memory effect [32]. They help define the 

reasonable lead-time that can be reached. Correlation analysis is synthetized in Table 2. 

Table 2. Correlation analysis. Diagonal shows the memory effect (in number of time-steps) when 

simple correlation is calculated (orange). When cross-correlation is calculated, blue cells show 

memory effect and green cells show response time. NC means that correlation score is always un-

der 0.2, showing a very weak correlation, leading to possible misinterpretations of the memory 

effect. 

 LCV ΔLCV DBP DSM RGC RTB RMA PET I 

LCV 17 6 2 5 21 22 15 12  16 

ΔLCV 15 4 −4 0 1 1 1 4 8 
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DBP 17 1 11 3 2 6 7 9 12 

DSM 19 4 15 5 1 1 1 3 7 

RGC NC 2 NC 3 0 0 0 0 27 

RTB NC 2 NC 3 1 1 0 0 27 

RMA NC 3 NC 3 0 1 0 0 33 

PET 19 11 16 9 NC NC NC 8 4 

I 22 14 19 12 NC NC NC 11 7 

Regarding the first line of Table 2 showing the response times of all variables over 

water levels at Craie at Vailly (LCV) piezometer, it appears that the shortest response time 

is two time-steps for the discharge at Barbuise at Pouan les Vallées (DBP). This indicates 

that, statistically, the discharges at Barbuise at Pouan les Vallées have a greater influence 

on the groundwater at Craie at Vailly after two time-steps delay. And that this response 

time is the shorter. This confirms the quick interaction between surface water and ground-

water. Regarding the impact of surface water on both the water quality and the ground-

water level, the two time-step lead-time was thus chosen. In this way, a lead-time of 20 

days (two time-step) is considered as a good compromise between model accuracy and 

end users’ needs. A shorter lead-time would reduce the interest of the forecast for the end 

users, while a longer lead-time would require the availability of the Barbuise at Pouan les 

Vallées discharge forecast. Thus, this lead time ensures that available inputs explain the 

output. 

2.3. Quality Criteria 

It is important to use impartial criteria to evaluate the quality of result. This study 

investigates two modeling goals: groundwater level prediction and uncertainty quantifi-

cation. As a result, two kinds of criteria will be used, as presented below. 

2.3.1. Quality of Fitting and Prediction 

The Pearson's correlation coefficient allows quantifying of the linear relation between 

two variables. It varies between −1 to +1, and is the covariance divided by the product of 

the standard deviations of the two variables (5). 

�� =
���(�, �)

����

 (5)

where ���(�, �) is the covariance between variables � and �, �� and ��, respectively, 

are their standard deviation. 

 The persistency criterion 

This criterion was proposed by [33] for prediction (6). It must be close to 1. A 0 value 

represents the score of the naive forecasting (prediction value = the actual value), and a 

negative value means that the forecasting is even worse than the naive forecasting. 

�� = 1 − 
∑ (���� −  �����)�

� ²

∑ (�� −  ����)�
� ²

 (6)

where ��  is the measured value at the discrete time k, ����� is the simulated value at the 

discrete time k, ����  is the observed value at the discrete time k+h, h, the lead time, and n 

the number of samples of the considered dataset. 

2.3.2. Uncertainties Quantification 

The following criteria assume that several models are available for prediction, and 

that a prediction interval can therefore be defined between the largest and smallest of the 

forecast values, at each time step. 

 Prediction Interval Coverage Probability 
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This criterion expresses the empirical probability that the prediction interval contains 

the measured value (7). It represents a kind of accuracy of the predicted value. In the 

(7) equation, f(.) is the function of belonging to the prediction interval [34,35]. 

����� =
1

�
� �(��, ���

���, ���
���)

�

�

 (7)

with the same notations as before, and �(��) = 1 if �� ∈  [���
���; ���

���], else �(��) = 0 

 Mean Prediction Interval 

The Mean Prediction Interval, CMPI, is the average of all the results set of the interval 

of prediction calculated at each time-step. It quantifies the mean scattering of the pre-

diction [34], following (8). 

���� =
1

�
�(���

��� −  ���
���)

�

���

 (8)

with the same notations as before, ��  the measured value at the discrete time k and ���
��� 

and ���
��� the upper and lower bounds of the forecast interval. 

 Prediction Confidence Criterion 

The Prediction Confidence Criterion, CPC, is a ratio quantifying the performance of a 

predictor for providing a prediction having the highest empirical probability of lying 

within the smaller prediction interval (9). It is simply defined by the ratio between 

the two previous criteria [13]. 

��� =
�����

����

=

1
�

∑ �(��, ���
���, ���

���)�
�

1
�

∑ (���
��� − ���

���)�
���

 (9)

with the same notations as before, ��  is the measured value at the discrete time k 

and ���
��� and ���

���
 the upper and lower bounds of the forecast interval at discrete 

time k. 

2.4. Uncertainties Linked to the Initialization of the Parameters and to the Spatial Variability of 

the Rains 

2.4.1. Variability Due to the Initialization of Parameters. 

As presented in Section 2.1.4, the implementation of an ensemble model makes pos-

sible a reduction in the variability of the outputs caused by the random initialization of 

the model parameters during the training step. However, the number of members in the 

ensemble model needs to be determined in order to sufficiently reduce this variability. 

The purpose is to obtain the smallest prediction interval, measured by the MPI criterion 

(Mean Prediction Interval) [34], whereas this interval includes a maximum of the observed 

values, measured by PICP criterion (Prediction Interval Coverage Probability) on the sub-

set of interest, considered as a whole [34,35]. Therefore, the optimal number of random 

initializations (members of the ensemble) can be determined thanks to the calculation of 

the CPC criterion (Prediction Confidence Criterion) [13] defined in Section 2.3.2, that syn-

thetizes both criteria. 

2.4.2. Spatial Rainfall Variability 

In order to approach the uncertainty caused by the spatial variability of rainfalls, 

usually poorly described by a small number of rain gauges, once the training is over, we 

propose to run permutations and substitutions of rain gauges applied to the model inputs. 
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This allows generation of another ensemble model of possible forecasts obtained in the 

test. As three rain gauges are available for the studied basin, 27 combinations, shown in 

Figure 3, composed the ensemble model. This new kind of ensemble model, whose mem-

bers differ by the combination of used rain gauges, is denoted as ensemble-RG. All the per-

mutations made give a range of outputs that can be considered as a prediction interval 

related to the spatial variability of rain. 

 

Figure 3. Combinations of rainfall input data with three rain gauges. 

2.5. Estimation of Empirical Confidence Intervals Using Probability Density Functions  

2.5.1. Method 

The purpose of this section is to present the method used to estimate a confidence 

interval for predictions achieved by the model. The original process consists in: 

- Establishing the frequencies of appearance of the water level classes histogram; this 

is then considered as an empirical probability density function (pdf) of the data; 

- Fitting a theoretical well-known pdf, for example the normal one, to the empirical 

pdf by adjusting its parameters. If necessary, thanks to the Expectation-Maximiza-

tion algorithm (EM) [36,37], the theoretical pdf can be a composition of several pdfs 

of the same type, each one having different parameters; this composite pdf is called 

the target pdf. The algorithm provides the constituent parameters of the theoretical 

elementary theoretical pdfs as well as the weights that enable them to be assembled 

to fit the target pdf; 

- Starting from target pdf, determining a probability of occurrence of the measured 

value inside the predicted interval for each class; 

- For a given confidence index (for example 95%), and for each class, supposing the 

data verify the constraints of a normal law and establishing a model of “correct-

ness” using the erf (error function). This provides the estimated error associated to 

each class; 

- Finally, drawing the possible errors on the water chart. 

The Expectation-Maximization algorithm follows two different steps: the expectation 

step and the maximization step. The expectation step consists in defining an expected 

value for log-likelihood parameters of the target pdf. The maximization step consists in 

obtaining parameters that maximize the expected value, using an iterative process [36].  

The Expectation-Maximization process is applied four times to four categories of 

samples: (i) samples with a negative slope (��
� − ��

��� > 0), (ii) samples with a positive 

slope (��
��� − ��

� > 0), (iii) samples included inside the MPI and (iv) samples not included 

inside the MPI. Discriminating between negative and positive slopes is useful in consid-

ering the current conditions in the system: decreasing water levels are the sign of a drain-

ing of groundwater whereas increasing water levels are the sign of a refill of groundwater 

stock. This corresponds to two different physical behaviors that should not be mixed to 

capture the guiding factors of the system. 

2.5.2. Chosen Probability Density Functions 

Nine probability density functions were chosen (Table 3) (Equations (10)–(18)). 
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Table 3. Equations of nine probability density functions. 

Name of pdf Law Formula Eq. References 

Normal �(�̅, ��) =
1

�√2�
 �

�
(���̅)²

��²  (10)  [38,39] 

Gumbel ���(�̅, �) =
�

�
(���̅)

� ���
�

(����)
�

�
 (11)  [40] 

Laplace ℒ��(�̅, �) =
1

2�
��

(|���̅|)
�  (12)  [41] 

Raised Cosine �ℴ��(�̅, �) =
1

2�
 (1 + cos �

(� − �̅)

�
 ��) (13)  [42,43] 

Cauchy ���(��, �) =
1

�� (1 + �
� − �� 

� �
�

)
 (14)  [44,45] 

Logistic ℒ�����(�̅, �) =
��

(���̅)
�

� �1 + ��
(���̅)

� �

� (15)  [46] 

Slash �ℓ�(�) =
�(0) − �(�)

��  (16)  [47] 

Bhattacharjee ℬ���(�̅, ��, �) =
1

2�
�Φ �

� − µ + �

�
� − Φ �

� − µ − �

�
�� (17)  [48] 

Huber 

ℋ��(�) =
1

2√2� �Φ(�)  −  
�(�)

� −  
1
2

�

 ����(�) 

(18)  [49,50] 

where x is the variable, x̅ its average, x0, its median, σ its standard deviation, σ² its variance, a, b, β and s scale parameters, 

φ the normalized normal distribution, ϕ the normal law, Φ the cumulative normal law, z the degree of robustness and ρz 

the Huber loss. The Huber loss depends on the degree of robustness and can be written following Equation (19) [49]. 

��(�) = �

�

�
��                    , |�| ≤ z

�|�|  −
�

�
��      , |�| > z

 , (19)

3. Model Design 

3.1. Definition of Subsets for Training Testing, Stop and Cross-Validation 

As presented previously in Section 2.1.4, it is necessary to define the training, stop 

and test sets. For this purpose, it is usual to split the database into three subsets. To be 

consistent with the needs of the end users, the test set is chosen as the driest period of the 

database: the 1988–1990 period. It will be used to assess the quality of the model general-

ization. Requesting that the model will be able to predict correctly the extreme dry period 

of the database is a strong requirement to ensure generalization capacity. The 2011–2013 

period is used for the stop set (12th subset). The remainder is the training set. Cross vali-

dation is used to select input variables and complexity, as presented in Section 2.1.5. To 

run cross-validation, we also have to define the cross-validation subsets inside the train-

ing set. Each one must contain a sufficient amount of data. A length of three years (108 

samples based on the 10-day time step) is thus chosen for each cross-validation subset. 

Thus, 13 cross-validation subsets are defined as shown in Table 4. They are used in vali-

dation of each one its turn, and for each turn all other cross-validation subsets are used in 

training (T on Table 4). Therefore, the training set is divided in two kinds of subset: 12 

training subsets and a cross-validation subset. At the end of the 13 sequences of training, 

13 cross-validation scores are calculated and the resulting global cross-validation score is 

calculated as follows (20): 
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��� =
1

�
������(���

) (20)

with D=13 the number of cross validation subsets, CP the score of persistency, and q the 

number of the considered subset. 

Table 4. Split subsets; T is for training, V for validation, S for stop, Te for test; ���
 is for the score calculated on the q subset. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Scores 

V T T T T T T T T T T S T T Te ���
 

T V T T T T T T T T T S T T Te ���
 

T T V T T T T T T T T S T T Te ���
 

T T T V T T T T T T T S T T Te ���
 

               … 

T T T T T T T T T T V S T T Te ����
 

T T T T T T T T T T T S V T Te ����
 

T T T T T T T T T T T S T V Te ����
 

                          Median SCV 

3.2. Choice of the Model and Complexity Selection 

A single hidden layer model is used because of its lower complexity whereas its per-

formance is sufficient for the modelling objectives. 

According to the recommendations made in Section 2.1.2, the chosen predictor is the 

feed-forward model because the measurement of water level is accurate, which is not the 

case for the rainfall-field estimation. Indeed, not only are the rain gauges inaccurate, but 

the rain also has a spatial variability not sufficiently described by the three available rain 

gauges. Therefore, it can be assumed that the noise affecting the output of the process (the 

water table) is lower than the noise affecting the inputs (the rain). 

Hyperparameters window-width ranges for rains, irrigation, and shallow water dis-

charge, were chosen using correlation analysis as shown in Table 5, suggested by [10]. 

For training, the Levenberg-Marquardt algorithm, which is a second order learning 

method [51,52], has been used with 100 epochs for each experience. 

Several architectures were tried with different complexities, and for each one the 

cross-validation score was calculated in order to select the best. Table 3 synthetizes the 

investigated architectures and the selected model for the two time-steps’ lead-time (justi-

fied in Section 2.2), in order to simulate groundwater levels at a middle term in a drought 

context. The selected model is also shown in Figure 4. Table 5 presents the selected hy-

perparameters during the design stage. 

Table 5. Selected architecture using the design procedure synthetized in 2.1.5. 

Model Element Selected Hyperparameters Tested Range Values 

Order r (LCV) 3 (3–6) (8–14) 

Exogenous input window-widths 

n1 (I) 8 (7–10)  

n2 (PET) 12 (9–12)  (9–12) 

n3 (DSM) 5 (2–5)   

n4 (DBP) 5 (2–5) (2–5) 

n5 (RGC) 2 (1–4) (7–12) 

n6 (RTB) 2 (1–4) (7–12) 

n7 (RMA) 3 (1–4) (7–12) 

Number of hidden neurons N 3 (2–10) (2–10) 
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Figure 4. Selected architecture. 

4. Results 

4.1. Optimal Number of Members in Ensemble Models 

Once the architecture is selected as presented in 2.1.5 and in 3.1.2, ensemble forecasts 

are calculated between 3 to 120 members in each (respectively 3, 5, 10, 20, 30, 40, 50, 60, 

80, 100 and 120 forecasts). CPC, Prediction Confidence Criterion, is calculated for each en-

semble, allowing definition of the optimal number of members, i.e., the number of mem-

bers whose parameters are randomly initialized (X in equation 4). 

Figure 5 presents the evolution of the CPC versus the number of members in the en-

semble models. Schematically, the curve can be approximated by two straight lines whose 

intersection is at around 40 members. The first line decreases when the number of mem-

bers in the ensemble increases, corresponding to a stage where the MPI increases. The 

second line corresponds to a plateau that indicates the stability of the two criteria that 

make up the CPC. The intersection of two lines corresponds to the minimal number of ini-

tializations for which the gain of ensemble starts to become stationary. We thus propose 

this value (40 members in Figure 5) as the number X of members. Although the CPC could 

possibly be enhanced by using more members, the cost-benefit ratio (especially regarding 

calculation time) pleads in favor of this choice. 
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Figure 5. CPC cross-validation score of ensemble models as a function of the number of members 

(X). 

4.2. Prediction Results 

The cross-validation persistency score for the architecture reaches Cp = 0.65 and the 

test score is Cp = 0.40. The performances are thus lower on the test set than on the other 

sets during cross validation. This is consistent with the choice of the test set, which corre-

sponds to the drier period of the database. Nevertheless, the quality of the forecast pre-

sented in Figure 6, made for the year with the driest summer in the entire database, shows 

that: (1) the model is capable of generalizing to periods of extreme behavior, (2) confirms 

the interest in being able to visualize uncertainty, so that the manager can analyze the 

most uncertain parts of the limnigram. As a reminder, the three last months of 1990 were 

not considered due to possible errors in piezometric levels.  

Figure 6 also shows the prediction interval for the test event. In this case, PICP = 0.39, 

MPI = 0.62 m, and CPC = 0.63 m−1. It appears that the prediction is fairly close to the meas-

urement except for the early spring of 1990, for which the forecast level is not low enough. 

On the other hand, the grey band showing the uncertainty is very thin and does not con-

tain enough observed values (PICP = 0.39) to be able to inspire confidence in the end users.  

 

Figure 6. Prediction of groundwater levels at 20 days lead-time on the test set. The three last months of 1990 were not 

taken into account due to possible errors in piezometric levels. Cp = 0.40; CPICP = 0.39; CMPI = 0.62 m. 
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4.3. Representation of Uncertainties Caused by the Initialization Parameters  

4.3.1. Theoretical Composite pdf for Four Distributions 

The empirical pdfs of training and stop sets are represented in one pdf using classes 

of observed water levels of 20-cm-wide. This interval is the result of a compromise be-

tween the class width and the number of samples in each class.  

Remember that we have chosen to represent four distributions: two for the sign of 

the slope of the groundwater evolution, and two for the belonging or non-belonging of 

the observed sample to the prediction interval. For each distribution, a theoretical compo-

site pdf is built as presented in Section 2.5.2.  

To illustrate the procedure, let us consider the specific distribution of water levels 

with a decreasing slope, using a Normal law as theoretical law. The obtained theoretical 

composite pdf is presented in (Figure 7). 

 

Figure 7. Theoretical composite pdf of piezometric levels, obtained using Esperance Maximization 

(EM) algorithm using a Normal law and applied to observed values having a decreasing slope and 

being inside the prediction interval. Each elementary normal law is represented with a different 

color and denoted as ”EM component.” 

One can note that the water levels from 115 to 125 m.a.s.l show the highest frequen-

cies whereas above 132 m.a.s.l. or under 115 m.a.s.l. observed groundwater values are 

underrepresented.  

According to the Figure 7, the Esperance Maximization (EM) algorithm provides the 

parameters for each elementary distribution. For the Normal law, these parameters are 

the mean, the variance and the lambda, which is the maximum amplitude of each elemen-

tary distribution. The theoretical mixed pdf, fitted by measured groundwater level distri-

bution classes, is obtained by the sum of the three components, as shown in Figure 7. This 

process is repeated for each of the three other groundwater levels configurations, and for 

the nine different studied laws (presented in Table 3). 

Let us now examine which of the theoretical laws presented in Table 3 provides the 

best CPICP on the Train+Stop dataset. To this end Figure 8 shows the representation, ex-

plained in Figure 7, for each one of the theoretical laws, regarding the two distributions 

of values inside the prediction interval (green) or outside this interval (red). Table 6 shows 

the correlations between the empirical distribution and the theoretical laws, for the meas-

ured groundwater levels inside the prediction interval (���
� ) and outside the prediction 

interval (����
� ). Best correlations are shown in green and worst in red. It appears in Table 

6 that the best adjustment is achieved by the Raised Cosine theoretical law. 
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Table 6. Pearson’s correlation coefficients between the distributions with negative slope of groundwater evolution, and 

the theoretical composite pdf; ���
�  applies to measurements inside prediction interval, ����

�  applies to measurements out-

side the prediction interval. 

Law Normal Gumbel Laplace 
Raised  

Cosine 
Cauchy Logistic Slash Bhatta-Charjee Huber 

���
�  0.62 0.74 0.66 0.76 0.69 0.75 0.64 0.64 0.50 

����
�  0.68 0.74 0.67 0.77 0.70 0.75 0.72 0.75 0.65 
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Figure 8. Composite pdf for decreasing measured groundwater distributions with (a) Normal law, (b) Gumbel law, (c) 

Laplace law, (d) Raised Cosine law, (e) Cauchy law, (f) Logistic law, (g) Slash law, (h) Bhattacharjee law and (i) Huber 

law. 

For measured water levels having negative slopes (Figure 8), CPICP = 0.51, meaning 

that the probability of the interval of prediction containing the observed value is similar 

to the probability of it not containing the observed value, whatever the groundwater level 

and theoretical composite pdf law selected. We can also notice that Normal, Bhattacharjee 

and Huber laws have the same kind of pattern whereas Logistic, Gumbel and Raised Co-

sine laws have similar shapes. This can be explained by the fact that Slash, Bhattacharjee 

and Huber are derived from the Normal law. Logistic, Gumbel and Raised Cosine laws 

seem to fit well with observed groundwater level distribution inside the prediction inter-

val, having a Pearson's correlation coefficient over 0.74 for measured water levels inside 

the prediction interval, whereas other laws provide correlations ranging from 0.50 to 0.69 

(Table 6 and Figure 8). 

Raised Cosine, Gumbel, Logistic and Bhattacharjee laws have the best linear correla-

tion with groundwater level distribution when they are outside the prediction interval, 

with a correlation from 0.74 to 0.77. 

For measured water levels having positive slopes (Figure 9), CPICP = 0.24, meaning 

that the observed groundwater levels outside the prediction interval are more numerous 

than groundwater levels inside the prediction interval. Pearson's correlation coefficients 

between the distribution of groundwater levels and the composite theoretical laws are 

shown in Table 7. 

Table 7. Pearson's correlation coefficients between the distributions with positive slope of groundwater evolution and the 

theoretical composite pdf; ���
�  applies to measurements inside prediction interval, ����

�  applies to measurements outside 

the prediction interval. 

Law Normal Gumbel Laplace 
Raised 

Cosine 
Cauchy Logistic Slash Bhatta-Charjee Huber 

���
�  0.43 0.41 0.47 0.44 0.45 0.44 0.43 0.43 0.42 

����
�  0.52 0.54 0.54 0.66 0.55 0.61 0.63 0.57 0.52 
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Figure 9. Mixed pdf for increasing groundwater distributions. with (a) Normal law, (b) Gumbel law, (c) Laplace law, (d) 

Raised Cosine law, (e) Cauchy law, (f) Logistic law, (g) Slash law, (h) Bhattacharjee law and (i) Huber law. 

As seen previously, Normal, Slash, Bhattacharjee and Huber laws have a similar the-

oretical composite pdf. Curves representing observed values outside the prediction inter-

val present a large bell around 119 m.a.s.l. for all of these four laws. This produces a lower 

correlation than for other laws (except for Slash law, which is smoother), with r2 varying 

between 0.52 and 0.57. Slash, Raised Cosine and Logistic laws seem to provide the best 
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correlated composite pdf, with a correlation between 0.61 and 0.66. On the other hand, the 

composite pdf representing observed values inside the prediction interval has two flared 

“peaks” at 117 m.a.s.l. and 127 m.a.s.l. for the nine laws. However, correlations are low 

due to the small frequencies of increasing groundwater levels inside prediction interval. 

Laplace and Cauchy laws appear to be the laws with the best fit, with a correlation above 

0.45. Raised Cosine and Logistic correlations reach only 0.44. 

This illustrates the model’s difficulties obtaining relevant prediction intervals when 

the slope of groundwater levels is positive.  

4.3.2. Error Margins 

The last step consists in calculating the models of correctness. This consists in calcu-

lating the probability that the measured value lies within the prediction interval, and in 

adding errors around this probability for each class, following the procedure presented in 

2.5.1. This is done for both increasing and decreasing measured groundwater level distri-

butions. For each distribution, the probability that the measured value belongs to the in-

terval of prediction is calculated by numerical integration, and the possible associated er-

ror is deduced using the number of samples inside the considered class using the erf (error 

function, the inverse of the Normal law), supposing that the data follows a normal distri-

bution, and for a predefined confidence index. Then, for each class, a model of “correct-

ness” is established and provides a confidence interval around the probability (shadow 

band around the probability in Figures 10 and 11). To provide the charts in Figures 10 and 

11, a predefined confidence index of 0.95 is chosen, and several specific considerations are 

adopted: 

- It is supposed that the distribution of samples inside a class follows a Normal Distri-

bution, 

- When a class contains no sample, for example, the class around 135 m.a.s.l., the error 

is maximum and is divided into two parts: 50% above 50% underneath the probabil-

ity. 

- When a class contains very few samples (less than three), this class is not considered 

for rC2 and ME calculations. 

Considering for example the distributions of increasing measured groundwater lev-

els (Figure 10), all models of correctness show a poor correlation with the CPICP (each cross 

is a CPICP calculated thanks to the ensemble model), always having a Pearson’s correlation 

under 0.3. This is consistent with the high dispersion of CPICP. However, the percentage of 

these CPICP included inside the calculated error margin seems to be a better indicator of the 

quality of the model of correctness. In this case, six laws have more than 75% of CPICP inside 

the error margin. Pearson's correlation coefficients and the error margin indicator for Cau-

chy and Slash law’s models of correctness are the highest, with, respectively, 0.25 and 75% 

and 0.22 and 80.3% values (Table 8). 

Except for the Cauchy and Slash models of correctness, the probability increases for 

highest groundwater values (over than 130 m.a.s.l). For all models of correctness, the 

probability of a correct prediction varies from 0.2 to 0.4. The low probability of correctness 

still shows the difficulty of the model in forecasting increasing groundwater levels, with 

a low prediction interval. 

Table 8. Error margin (��), and Pearson’s correlation coefficients (��
�) between the model of correctness and the empirical 

CPICP calculated for each 20-cm groundwater levels having a positive slope. 

Law Normal Gumbel Laplace 
Raised Co-

sine 
Cauchy Logistic Slash 

Bhatta-

charjee 
Huber 

��
� 0.15 0.04 0.24 0.19 0.25 0.24 0.22 0.16 0.20 

�� 76.3% 73.7% 72.4% 76.3% 75.0% 73.7% 80.3% 76.3% 77.6% 
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Figure 10. Models of correctness and Error margin (��), calculated from composite pdf of increasing levels and using a 

confidence index of 95% for (a) Normal law, (b) Gumbel law, (c) Laplace law, (d) Raised Cosine law, (e) Cauchy law, (f) 

Logistic law, (g) Slash law, (h) Bhattacharjee law and (i) Huber law. 

The same kind of models of correctness are made for decreasing groundwater levels, 

shown in Figure 11. 



Water 2021, 13, 1690 21 of 29 
 

 

Correlations between the CPICP and the model of correctness are still low, with an 

average value around 0.2 for all laws. The highest correlation comes from the model of 

correctness provided by the Slash mixed pdf. However, the crosses representing the CPICP 

inside the error margins, reaching more than 79% for Logistic law (Table 9), are slightly 

higher than the ones obtained for decreasing groundwater levels (Table 8). Figure 11 

shows that the models of correctness of the nine laws have a similar shape, with a stagna-

tion of probability for observed piezometric levels above 125 m.a.s.l. The probability of 

correctness, for each law and each groundwater level, is above or equal to 0.5. 

However, these models of correctness only consider the uncertainty linked to the pa-

rameter’s initialization before training. The uncertainty linked to the spatial representa-

tiveness of rain measurements is the next step, in order to consider and draw the two 

major origins of uncertainty. 

Table 9. Error margin (��), and Pearson's correlation coefficients (��
�) between the model of correctness and the empirical 

CPICP calculated for each class of 20-cm groundwater levels having a negative slope. 

Law Normal Gumbel Laplace 
Raised Co-

sine 
Cauchy Logistic Slash 

Bhatta-

charjee 
Huber 

��
� 0.02 0.21 0.16 0.21 0.23 0.23 0.30 0.28 0.27 

�� 74.4% 70.3% 70.3% 72.5% 70.3% 79.1% 71.4% 73.6% 70.3% 
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Figure 11. Models of correctness and Error margin (��), calculated from composite pdf of decreasing levels and using a 

confidence index of 95% for (a) Normal law, (b) Gumbel law, (c) Laplace law, (d) Raised Cosine law, (e) Cauchy law, (f) 

Logistic law, (g) Slash law, (h) Bhattacharjee law and (i) Huber law. 

4.4. Determination of Spatial Distribution of Rainfall Uncertainty 

In order to assess the uncertainty linked to the spatial representativeness of rain 

measurements, we propose the operation of permutations and substitutions of data be-

tween rain gauge inputs. Doing this, following Figure 3, we obtain 27 different datasets. 

As the method previously applied requires a subset devoted to its assessment, independ-

ent of training, test and stop sets, we reused the cross-validation process in order to esti-

mate the uncertainty in the 13 subsets used in cross-validation, which will then be used in 

cross-uncertainty assessment. This method also has the advantage of producing a suffi-

cient number of values in a validation situation, since 27 permutations are performed on 

the rain gauges for each one of the 13 cross-uncertainty assessment sets. Added to the 

variability due to the initialization of the parameters, which is also considered, this 

method generates an ensemble model integrating the two types of variability: that due to 

rainfall and that due to the initialization of the parameters (27*40 members for each vali-

dation set).  

Based on this ensemble, the prediction values are calculated: the median, higher and 

lower values, allowing the definition of a prediction interval for each time step and for 

each configuration. Thus, we find that the CPICP equals 0.49 for the test set, shown in Figure 

12. This was 0.39, considering only variability due to the parameter’s initialization. Re-

garding the prediction interval, it logically became wider when including the rainfall var-

iability, with CMPI criterion of 0.73 m and a CPC of 0.68 m−1. 
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Figure 12. Groundwater level forecasting with 20 days’ lead-time. Grey band shows the variability 

due to the parameter’s initialization and to the rain spatial variability. Cp = 0.40; CPICP = 0.49; CMPI = 

0.73 m.  

4.5. Impact of the Spatial Distribution of Rainfall Uncertainty on the Model of Correctness 

A new model of correctness is built as before, using the new ensemble model includ-

ing the uncertainty due to the parameter’s initialization, and the variability of rainfalls. 

In order not to lengthen the presentation of the work, only the results of the laws 

with the set of best fits are presented, i.e., Gumbel, Raised Cosine, Logistic and Slash laws. 

Table 10 presents the correlations and indexes in a similar way to the presentation of Ta-

bles 6–9. 

Table 10. Pearson’s coefficients of correlation (r2) between the measured water level distribution 

and the composite pdf; correlations between the model correctness and the empirical CPICP calcu-

lated for each class of 20-cm groundwater levels (��
�); and Error Margins (EM). 

Groundwater Level 

Class 
Criteria 

Laws 

Gumbel Raised Cosine Logistic Slash 

Positive Slope 

���
�  0.47 0.59 0.55 0.55 

����
�  0.52 0.56 0.53 0.54 

��
� 0.19 0.33 0.20 0.15 

%�� 60.5% 61.8% 60.5% 63.2% 

Negative Slope 

���
�  0.78 0.79 0.77 0.72 

����
�  0.74 0.79 0.77 0.71 

��
� 0.52 0.41 0.49 0.47 

%�� 70.3% 72.5% 71.4% 67.0% 

As outlined above, the permutations of rainfall logically increase the forecast inter-

val. Consequently, more observed values of water level belong to this interval. The Pear-

son correlation coefficients presented in Table 10 are therefore significantly higher than 

those of Tables 8 and 9. The Raised cosine law is that which clearly generates the highest 

correlations among the different composite pdfs. It will be thus used hereafter 

4.6. Definition of a Confidence Interval 

The model of correctness is calculated using a confidence index. This defines a confi-

dence interval for each measured water level regardless of its configuration (positive or 

negative slope, inside or outside the prediction interval). A predefined confidence index 

thus provides a confidence interval. 

Using the Raised Cosine’s models of correctness, which presented the best fit, we 

have varied the confidence index from 0.60 to 0.95 by steps of 0.5. The corresponding CPICP 

are gathered in Table 11, and Figure 13 shows the confidence interval obtained for the 

confidence index of 0.90.  
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Table 11. Evolution of PICP and MPI scores following confidence index. 

Confidence 

Index 

CPICP 

(Train + Test 

Datasets) 

CPICP 

(Test Set) 
CMPI (m) 

CMPI (m) 

(Without Extreme 

Values) 

0.60 0.60 0.42 2.51 2.20 

0.65 0.65 0.45 2.80 2.45 

0.70 0.70 0.52 3.18 2.78 

0.75 0.75 0.58 3.75 3.28 

0.80 0.81 0.62 4.66 4.08 

0.85 0.86 0.68 6.14 5.37 

0.90 0.91 0.81 8.47 7.42 

0.95 0.95 0.94 17.44 15.27 

 

 

Figure 13. Groundwater level forecasting for 20 days’ lead-time and confidence interval calculated with 0.90 confidence 

index. Cp = 0.40; CPICP = 0.81; CMPI = 8.47 m. 

As expected, one can note in Table 11 that the confidence interval is wider when the 

confidence index is higher. The confidence interval associated with the highest confidence 

index (0.95) is very high (17.44 m) and probably not so useful to an end user. Nevertheless, 

the CMPI decreases more quickly than the confidence index, which allows the manager to 

choose a compromise according to his requirements.  

5. Discussion 

5.1. Role of Rain in the Forecast Interval 

Considering the two visualisations of the prediction intervals presented in Figure 6 

and Figure 12, it appears first of all that the latter are rather weak, in particular if expressed 

as a percentage of the maximum water table beat (25 m; cf. Table 1), CMPI = 0.62 m (2.5%) 

for the first and, respectively, CMPI = 0.73 m (3%) for the second. These small intervals seem 

to be very accurate, but they do not provide any real added value for the user, since the 

measured water level does not always fall within this interval. On average, the CPICP pro-

vides the probability that the prediction interval from the model contains the measured 

value; this is 39% for the former and 49% for the latter. Thus, even considering the uncer-

tainty caused by the measurement of rainfall variability (Figure 12), the model is only 

correct, on average, one time out of two. 

Looking more specifically, in the test set in Figure 6, the model is better at predicting 

recessions. Both predicted values, water levels and confidence interval, are low during 
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recessions. This is also shown by the correlations calculated on the composite pdf when 

the slopes are negative (Tables 6–9). For this reason, two different configurations have 

been separated to calculate the pdf: the case where the slope is positive, and the case where 

the slope is negative.  

On further refinement, the measured and predicted water level curves deviate from 

each other mainly as a result of a strong rainfall pulse (p > 40 mm/day). This suggests that 

a specific phenomenon occurs in this configuration, which could be related to the influ-

ence of the Barbuise River. Indeed, if we refer to Table 2, we note that the response time 

linking the Discharge of the Barbuise and Pouan les Vallées (DBP) is 2 decades; however, 

in Figure 6, we can see that the most important rainfall episode of February 1990 (p > 60 

mm) influences the water table in less than one decade, its maximum effect appearing at 

2 decades. It thus appears that infiltration with faster dynamics occurs during heavy rain-

fall episodes and that the model has difficulties in representing these fast and rare infil-

trations. Moreover, the prediction interval is rather smaller for the responses to these ep-

isodes than for the other configurations, both for Figure 6 and Figure 12, suggesting that, 

during very wet episodes, the spatial variability of the rainfall events, at the decadal step, 

does not have a great impact on the response. Given the objective of the modelling, which 

is to predict low water, this double property, errors in prediction and low uncertainty 

during high rain pulses, can be considered as not being prohibitive. 

Even so, in order to improve the representation of an uncertainty that would be more 

useful to managers, for example that would allow manager to choose the confidence in-

terval that suits him, we have introduced the correctness models, delivering an "error 

margin" reported for the forecasts in the form of a confidence interval. This error margin 

is itself controllable by a user-defined confidence index. This addition has the same short-

comings with respect to major rainfall events but allows the manager to adapt the visual-

isation of the uncertainty to his needs. It could be used for managing pollutant intrusion 

during floods and for low levels anticipation, by choosing different confidence indices for 

these different uses. 

5.2. Role of the Amount of Data 

An important limitation to note is the amount of extreme data. While the range de-

fining the water level classes of the training set has been chosen to contain at least 10 

measurements per class, it can be noted that the data for the extreme class is only observed 

once. There is a lack of extreme data to be able to build reliable pdf. In particular, the cho-

sen test set contains the lowest data over the entire history of the database (1997–2018), 

and the number of samples in the lowest groundwater levels classes is therefore very low; 

0 for the lowest, and a few units for the others. Remember that the calculation of the cor-

rectness model assigns the maximum uncertainty when there has never been any meas-

ured value. This is the case for the dry period of the test set and this explains why the 

visualized confidence intervals for the summer 1990 are so large while the measured and 

predicted values are very close. 

An improvement could be obtained by choosing different laws of probability in order 

to minimize the uncertainties in this specific condition. For example, in Figure 11, it can 

be seen that Gumbel's law gives the smallest error margin. This result is consistent with 

the application domain of Gumbel's law, which is aimed at distributions with extreme 

events. The confidence interval thus could be improved by using this specific law for very 

low and very high water level values. 

6. Conclusions 

The goal of this paper was to define a generic method able to estimate the uncertainty 

generated by both the neural network model itself and by the non-measured spatial het-

erogeneity of rainfalls. This work was carried out on the Champagne chalk aquifer (North-

ern France), at a 10-day time-step up to 20 days lead time and could be used for the pur-

pose of tap water production and agriculture groundwater management.  
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A reliable enough ANN model to forecast groundwater level at “Craie à Vailly” pie-

zometer was built, and tested on the driest summer of the entire 40 years database. The 

uncertainties due to the model parameters were then estimated following a simple 

method that takes into account the variability caused by the initialization of parameters. 

Added to this variability, the paper investigated the impact of the non-measured spatial 

variation on rainfall.  

For this purpose, a set of permutations and substitutions of measurements at rainfall 

stations, combined in an original way with the implementation of the cross-validation 

process, was proposed and allowed the calculation of forecasts and uncertainties on a test 

set, never used in training, stopping, nor in cross-uncertainty assessment subsets. This test 

set contains the data for the most severe drought in the database. From the uncertainties 

found on this test set, a correctness model was proposed which provides, for the require-

ment of a global confidence index, a confidence interval to be applied to each forecast 

value.  

Several limitations were identified. The main one is related to the amount of data: 

when there is no historical data in the range of values considered by the prediction, the 

uncertainty is maximal. It would be possible to improve the correctness model by choos-

ing a more appropriate statistical law.  

This methodology is original and can be deployed on other hydro-systems having 

other types of surface or subsurface features and different climate contexts. Applications 

may either make forecasts or propose a confidence interval associated with these forecasts, 

with the degree of confidence chosen by the user. These methodologies have proved sig-

nificant advantages: the rigorous design of the neural network model has allowed the re-

alization of a model capable of generalizing to a range of data that exceeded the range of 

the training set. Furthermore, it is possible to flexibly choose the confidence index accord-

ing to the hydrological configuration (e.g., recession or rising water table). 

Thanks to this methodology, a mid-term groundwater forecast with its own uncer-

tainty can be provided. Our model, specialized for droughts showing as driest events on 

test dataset, allows for prevention of dry events, which can be anticipated nearly three 

weeks before, allowing agricultural and water supply end users to anticipate this risk, by 

issuing, for example, water withdrawal restriction orders or by carrying out water trans-

fers from dams and reservoirs. 
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Appendix A 

 

 

Figure A1. Details of the construction and of the values of the irrigation inputs for the different types of crops as a function 

of the surface, the water requirement and the season (by months). 
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