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Application of the NSCD method to analyse the dynamic behaviour
of stone arched structures
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a b s t r a c t

In this paper, a masonry arch is simulated in order to assess both its structural and seismic
vulnerability. The non-smooth contact dynamics (NSCD) computational method is used to
simulate this type of structure as a collection of bodies under the hypothesis of unilateral
constraints and frictional contact, with or without cohesion. Sinusoidal oscillations in three
dimensions and real earthquake data have been applied to the supporting base element of
the arch model.
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1. Introduction

Masonry arches are one of the most familiar structural shapes present in the worldwide architectural heritage. Historical
domed buildings, arched stone bridges and vaulted tunnels are among the most common examples. The predictability of the
behaviour of masonry arches is still the subject of mechanical research (Acary et al., 1999; Brookes and Mullett, 2004; DeJong
et al., 2007; Drosopoulos et al., 2006; Drosopoulos et al., 2007; Drosopoulosa et al., 2006; Fanning and Boothby, 2001; Ford
et al., 2003; Gilbert and Melbourne, 1994; Heyman, 1982; Hofstetter and Mang, 1995; Idris et al., 2007; Melbourne and Gil-
bert, 1995; Ng and Fairfield, 2004; Orduna and Lourenço, 2005; Orduna and Lourenço, 2005; Winkler et al., 1995).

Over the last few years, the development of numerical tools in the field of structural analysis has enabled researchers to
establish approaches for the numerical modelling of masonry structures. However, an analysis of the mechanical behaviour
of such blocks and joint structures remains challenging due to the influence of numerous factors.

The limitations of analytical modelling enhance the usefulness of numerical modelling for URM structures. Advances in
non-linear finite element modelling have made it an increasingly more appropriate tool for the analysis of URM structures.
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The application of the discrete element modelling inherently captures the discontinuous nature of the masonry and allows
for a fully dynamic analysis with large displacements.

Several modelling approaches of masonry structures (continuous and discontinuous modelling) are currently under
development by several research teams (Idris et al., 2007). A number of masonry arch models have been proposed in order
to study their behaviour and some instability problems, Ford et al. (2003), Sumon and Ricketts (1995), Hughes and Davies
(1998), Bicanic et al. (1995) and Brookes and Mullett (2004).

By considering all of these studies, three basic modelling strategies for masonry structures can be identified:

1– Continuous methods: the finite difference method (FDM), the finite element method (FEM), and the boundary element
method (BEM).

2– Discrete methods: the discrete element method (DEM), and discrete fracture networks method (DFN).
3– Hybrid Continuous/Discrete methods (Jing, 2003).

In the present paper, our objective is to study the stability and collapse mechanisms of the masonry arch submitted to a
sinusoidal motion, as a first step toward the simulation of an earthquake loading.

The masonry arch is modelled with the discrete element method using the open platform program LMGC90� (Dubois,
2003), which is based on the NSCD algorithm. This code allows us to model granular materials, made of rigid or deformable
bodies, with complex mechanical behaviour (elasto-plastic, damaged materials) or interactions (frictional and cohesive con-
tacts). LMGC90� (Dubois, 2003) is based on a hybrid or extended FEM–DEM discretization, using various numerical strate-
gies, such as molecular dynamics MD or NSCD.

We will begin with a global presentation of the NSCD method, its main features and its advantages in comparison with
other discrete elements methods. Then, we will present the modelling results of two three dimensional models having the
same geometry but different conditions or parameters for the definition of the contact interactions. Finally, the results ob-
tained from these two rigid models will be compared.

2. The NSCD method

2.1. Parametrization and equation of dynamics

In computational mechanics, among well-suited approaches for the rigid body dynamics with contact, friction and im-
pact, there are two opposite approaches: compliant versus unilateral contact model and event-driven versus time-stepping
schemes. In the context of granular materials, where large collections of bodies are encountered, Cundall (1979) was the first
to propose a numerical tool, based on an Euler scheme, where contacts are governed by a compliant model. With a very dif-
ferent approach, Moreau (1998), Moreau (1988) and Jean (1999), Jean et al. (2001), Jean and Moreau (1992) exposed a
numerical treatment of rigid and deformable body collections with unilateral contact, Coulomb’s dry friction and impact,
in the framework of the non-smooth mechanics and convex analysis. This framework yields a time-stepping scheme (with-
out explicit event-handling) where velocities and impulses are the primary variables.

This section aims at representing the basic equations of the non-smooth contact dynamics method (NSCD). The formu-
lation of the NSCD method relies on a special formulation of the equation of motion. The term ‘‘non-smooth” refers firstly
to the mathematical and mechanical background allowing us to deal with some extended kinds of laws. For the non-smooth-
ness in time, the occurrence of velocity jumps is a well-known feature of the second order dynamics with unilateral con-
straints on the position, even with continuous media.

Additionally, the contact forces between two bodies are bound by the law of action and reaction. The calculation of con-
tact forces in the NSCD method is performed in two steps. First, the result of the interaction of the antagonist body Ba on the
candidate body Bc can be considered equal to the force ra acting at the contact point of these two bodies. At the contact point,
we can define a local frame composed of three vectors (in 3D model) including a normal vector na pointing from Ba to Bc and
two tangential vectors sa and ta, which define the tangential space by respecting this convention sa � ta = na. On the other
hand, we denote ga the gap distance between bodies along the normal direction. This value will be negative if there is inter-
penetration between the bodies.

In the second step, one defines a linear mapping Ha that relates the local forces to the global force by the following
equation:
Ra ¼ HaðqÞra ð1Þ
where Ha(q) is a mapping which contains the local information about contactors, where q is the configuration parameter
which can represent the discretized displacement or any generalized coordinates of the rigid motion. Finally the global con-
tact forces can be obtained by the relation
R ¼
X

a
Ra ð2Þ
The same procedure is employed for velocity calculation and the velocity of the bodies can be expressed in the local
frame. The relative velocity ua at the contact point is defined for two bodies in contact by the following equation:



ua ¼ HT
aðqÞ _q ð3Þ
where HT is the transpose of H, _q is the time derivative of q, and t is the time. The relative velocity is decomposed in a normal
component represented by ua,n and a tangential component ua,T = (ua,s,ua,t).

It should be noted that the derivative of the gap function is equal to
t ! gaðtÞ ua:na ð4Þ
During the evolution of the model with multi-contact systems, shocks may be expected. As a result, these shocks produce
velocity discontinuities and make it impossible to define the acceleration as the usual second time derivative of the config-
uration parameter. Hence, the equation, of motion will be written as
Md _q ¼ Fðt; q; _qÞdt þ dR ð5Þ
where dt is the Lebesgue measure on R, d _q is a differential measure denoting the acceleration measure and dR is a non-neg-
ative real measure representing forces and impulses. The matrix M in the Eq. (5) is the mass matrix and the vector Fðt; q; _qÞ
collects the internal and external discretized forces acting on the system.

2.2. Frictional contact laws

For determining the value of each component Ra, we need additional information about contact forces. These data are
primordial to complete Eq. (5) and also to describe the motion of the system in question.

The impenetrability of contact evoked previously means that it is impossible to have two bodies with crossing boundaries
in the system. In addition, it is also considered that the contacting bodies are not attracting each other. In other words, the
normal component of the reaction force is always positive or equal to zero when the contact vanishes. This contact behaviour
is known as the first unilateral constraint or Signorini condition:
g P 0 rn P 0 g:rn ¼ 0 ð6Þ
In the case of cohesive contact, shifting can be applied to rn and rt which represents a cohesive force respectively in the nor-
mal and tangential directions. This shifting is set to zero if the contact is broken.

The second unilateral constraint, in the case of Coulomb dry friction, can be summarized by the following equations:
if j kutk ¼ 0; krtk 6 lrn

if j kutk–0; krtk ¼ lrn; ut ¼ �krt; k P 0

�
ð7Þ
The friction force lies in Coulomb’s cone (krtk 6 l rn, l friction coefficient) and if the sliding velocity is different from zero,
friction force is opposed to the sliding velocity with magnitude lrn.

2.3. Numerical scheme for time integration

One of the most interesting features of the time-stepping integration scheme is included in the fact that it does not have
to handle explicitly the contact events, contrary to the usual event-driven scheme. When we proceed to a time discretization
on intervals [ti, ti+1] of length h, our contact problem is solved over the interval in terms of measures of this interval and not
in a point wise way. To achieve this property, the Eq. (5) is integrated on each subdivision, which leads to
Mð _qiþ1 � _qiÞ ¼
R tiþ1

ti
Fðt; q; _qÞdt þ Riþ1

qiþ1 ¼ qi þ
R tiþ1

ti
_qðtÞdt

8<
: ð8Þ
where the variable _qiþ1 denotes the approximation of the right limit of the velocity at the time ti+1, and qi+1 � q(ti+1). For the
contact dR, we approximate the measure of the time interval [ti,ti+1] by dR denoted by
dRð½ti; tiþ1�Þ ¼
Z
½ti ;tiþ1Þ

dR ffi Riþ1 ð9Þ
To approximate the two integrals of the system (8), we use a h-method, which is a first-order scheme using only the con-
figuration parameter and its first derivative. It should be mentioned that a h-method is an implicit scheme, identical to the
backward Euler’s scheme when h = 1. The stability condition of the scheme implies that h remains between 0.5 and 1. This
approximation leads to the following equation:
R tiþ1

ti
Fðt; q; _qÞdt ¼ hhFðtiþ1; qiþ1; _qiþ1Þ þ hð1� hÞFðti; qi; _qiÞ

qiþ1 ¼ qi þ hh _qiþ1 þ hð1� hÞ _qi

(
ð10Þ
To complete the discrete form of the dynamical equation, a discretization of the frictional contact law that is beyond of the
scope of this study, must also be performed. A more detailed discussion on the NSCD method can be found in Moreau (1998),
Moreau (1988), Jean (1999), Jean et al. (2001), Jean and Moreau (1992), Renouf et al. (2006a), Renouf et al. (2004b).



3. Numerical modelling

A masonry structure is a discontinuous medium consisting of blocks bonded to each other with mortar or without mortar.
In addition, this structure has an interface with the surrounding ground. The discrete element method (DEM) is a suitable
technique for modelling these structures. By means of the LMGC90 code, the discrete element analysis of a contact–friction
model of an arch structure subjected to a seismic event is described here.

The LMGC90� code is based on the NSCD method (Dubois, 2003). Using this code, we analyse the behaviour of an arch
whose geometrical characteristics are shown in Fig. 1. The model consists of an arch with 13 rigid blocks and a supporting
base that will be subjected to a sinusoidal vibration in three directions. The numbers beside the blocks in these figures rep-
resent the order of the blocks in the model, and these numbers will be referred to, in the post-processing section. The blocks
in the model are 0.30 m thick and 0.30 m wide, and their density is 2000 kg/m3.

This simple arch structure will be studied for different mechanical conditions affecting the behaviour of the model at the
level of the interface between the blocks, and also between the blocks and the supporting element (Table 1). Therefore, sev-
eral simulations are performed with the same geometrical configuration, first, with changes of interaction laws, and then, for
a given law, with changes of the value of different parameters, in order to perform a sensitivity analysis.

In this study, the contact law used for the cohesive models is the Mohr–Coulomb law: the status at the beginning of cal-
culation is thus a cohesive status. The normal and tangential cohesion thresholds for these models are presented in Table 1.
In all cases, the Mohr–Coulomb cone has an aperture half-angle u. In this study, we also arbitrarily chose to have the ratio
coh t/cohn = tan(u) where coh t is the tangential cohesion threshold and cohn is the normal cohesion threshold. Therefore,
for all the cohesive models, this ratio is considered equal to the static friction coefficient 0.7. Once, a cohesive contact is bro-
ken, it has a dry friction behaviour with two static and dynamic friction coefficients. More details about cohesive laws used in
the NSCD method can be found in Jean et al. (2001).
Fig. 1. Geometry of the arch with 13 blocks each 0.3 m wide and 0.3 m thick. The number beside the blocks indicates their order in the model.

Table 1
Interaction contact parameters used for the 10 models, (a) five cohesive models, (b) three dry contact models, (c) two embedded models, with dry contact
condition between block (dry friction coefficient 0.7)

Static friction coefficient Dynamic friction coefficient Normal cohesion (Pa) Tangential cohesion (Pa)

(a) Cohesive models
1 0.7 0.6 0.1 � 106 0.7 � 105

2 0.7 0.6 0.1 � 105 0.7 � 104

3 0.7 0.6 0.1 � 104 0.7 � 103

4 0.7 0.6 0.1 � 103 0.7 � 102

5 Blocks 0.7 0.6 0.1 � 104 0.7 � 103

G & B 0.7 0.6 0.1 � 106 0.7 � 105

Friction coefficient (blocks) Friction coefficient (G&B)

(b) Dry contact models
6 0.7 0.9
7 0.7 0.7
8 0.9 0.9

Static friction coefficient Dynamic friction coefficient Normal cohesion (Pa) Tangential cohesion (Pa)

(c) Embedded models
9 0.7 0.6 0.1 � 106 0.7 � 105

10 0.7 0.6 0.1 � 104 0.7 � 103



3.1. Sinusoidal oscillations

Regarding the seismic oscillation, hypothetical horizontal and vertical loadings based on a sinusoidal vibration of 2 Hz are
applied to the models as velocity functions at the foundation level. We first intend to investigate the behaviour of the struc-
ture for a simple sinusoidal vibration before applying a real earthquake loading. In this way, the effects of the different
phases of this excitation on the structure can then be distinguished and studied. The sinusoidal excitation is therefore ap-
plied in three distinct phases (Fig. 2) including a vertical vibration only during the first second, a horizontal vibration during
the second phase, and horizontal and vertical vibrations simultaneously during the last second. The supporting element in
the model is given continuous velocities in three dimensions as a function of time. In this way, the arch model is based on an
element that acts as a shaking table. The displacement values for the base element are obtained from the post-processing
data, recorded during the computation. The horizontal input is applied on both X and Y directions (Fig. 2).

A three-dimensional modelling of the arch structure, considering stone blocks as rigid elements, is performed with a cal-
culation time step equal to 1 e�4 s. The results obtained for the model, with dry friction contacts, are illustrated in Fig. 3 for
three different steps. The friction coefficient is 0.7 between the blocks, and 0.9 for the contacts between the lowest blocks
and the supporting base element (model 6 in Table 1). As can be seen in these figures, the arch with dry friction contacts
has a collapse mechanism similar to a five hinged failure mode. This can be clearly observed in Fig. 3c, and the model seems
to conform to Heyman’s experimental research on real bridge arches (Heyman, 1982).

Another simulation was performed by taking into account a cohesive law between the blocks with a normal cohesive
threshold of 1 KPa, a tangential threshold of 0.7 KPa, a static friction coefficient of 0.7 and a dynamic friction coefficient equal
to 0.6 (model 3 in Table 1). It should be noted that this cohesive law changes to the dry friction law once the detachment
force between two blocks exceeds the cohesive threshold. For the contact between the blocks and the support element
we consider the same cohesive law. The results obtained for this model are similar to those of the first model, but with some
differences for the mechanism of collapse. Fig. 4 illustrates the differences between the two models at 2.5 and 3 s of excita-
tion. At 2.5 s, it can be observed that the cohesive model (Fig. 4c) shows more vertical displacement for the central block in
comparison with the dry friction model (Fig. 4a), this issue can be clearly seen on the vertical displacement comparative
graph for these two models in Fig. 5c. As can be observed in Fig. 4b, in the model with dry friction, the blocks have no resis-
tance against the torsion induced by the sinusoidal vibration. In contrast, Fig. 4d shows the state of the blocks for the cohe-
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Fig. 2. Time history of input velocity in m/s and displacements caused by these velocities over supporting base element in m. (a) Vertical velocity, (b)
vertical displacements, (c) horizontal velocity, and (d) horizontal displacements.



Fig. 3. Collapse mechanism results for vertical displacements (in m) obtained by considering dry friction contact interaction between rigid blocks (model 6
in Table 1b). (a) 2.5 s, (b) 2.8 s, and (c) 3 s (the calculation time step is 1 e�4 s).
sive model: the arch in this model does not show any effect of torsion, and the mechanism of collapse happens without any
rotation of the blocks, around the axis parallel to the arch.

In addition, a series of simulations was carried out for the models with a strong cohesion between the blocks and the
foundation of the model. The results demonstrate that the arch structure remains stable for models 1 and 5 with the cohesive
law whose parameters are presented in Table 1. Fig. 5 shows the comparative graphs for the displacement of the 7th block in
the model for two simulations including the model with dry friction (model 6 in Table 1) and the model with a cohesive
threshold (model 3 in Table 1). As can be seen on these graphs, the central block shows nearly the same behaviour for
the vertical displacement for both models, with a larger displacement for the cohesive model around 2.5 s. Regarding the
horizontal displacement, the central block shows very different displacements for X and Y directions (Fig. 5a and b). In
the case of the cohesive model (model 3 in Table 1), the central block no longer follows the vibration caused by the sinusoidal
excitation after 2.5 s, contrary to the dry friction model. The differences in the horizontal displacements between these two
models are caused by the last 0.5 s of the sinusoidal vibration: at 2.5 s the direction of the horizontal vibration changes
(Fig. 2d).

3.2. Earthquake excitation

Since the aim of the paper is the study of the behaviour of this arch structure and its failure modes in the event of seismic
motion, in this section, the modelled structure is subjected to a real seismic excitation. The accelerogram of a real earthquake



Fig. 4. Collapse mechanism for two models with interaction parameters presented in Table 1. (a,b) Model 6, respectively, at 2.5 and 3 s (c,d) model 3,
respectively, at 2.5 and 3 s (the colours represent the displacement in the vertical direction). (For interpretation of color mentioned in this figure the reader
is referred to the web version of the article.)
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Fig. 5. Displacement variations in meters for both models: cohesive (model 3 in Table 1a) and dry friction (model 6 in Table 1b) versus calculation time for
the 7th block indicated in Fig. 1. (a) Displacement in X direction, (b) displacement in Y direction, and (c) displacement in Z direction.



with a maximum vertical acceleration of 0.7 g recorded for 64 s is used in this step (Zanjiran earthquake, Iran, June 20th
1994, an earthquake with an approximate magnitude of 6.1-mb ISMN, 1994). The graphs in Fig. 6 illustrate the recorded
accelerations in the three directions and are used to simulate the shaking of the supporting element of the model for the
first 15 s. Then a zero velocity is applied in all directions.

These oscillations were applied for all models presented in Table 1 including three categories: cohesive, dry contact and
embedded models. Fig. 7 shows the results obtained for five models with cohesive contact condition (Table 1a) at two times:
namely 6 and 7 s of the computation time. As it can be seen in these figures, the failure mechanism happens in three cases,
but with different characteristics.

With a high cohesive threshold at two levels, block–block contact as well as block–ground contact, the first model re-
mains stable during the 15 s of the seismic excitation. This can be observed on Fig. 8 that illustrates the comparative graph
for the vertical displacement of the central block for five cohesive models. The next three models (models 2, 3 and 4 in Table
1a) show instable states for this type of excitation, but each of them behaves differently, especially if we consider the dura-
tion of their resistance against the seismic excitation. As anticipated, model 2 resists longer than models 3 and 4. The graph
in Fig. 8 illustrates the order of collapse for these three models; the model 4 begins its failure from 5.5 s while the model 2
begins its collapse at 7 s. The mechanisms of collapse observed for these three models are very similar.

The fifth model is a more interesting case, in this model there are two different contact conditions. The cohesive threshold
condition used at the level of block–block contacts is weaker than the block–ground contact condition. In this way the effect
of a strong embedding over the ‘‘weak” structure is investigated. As can be observed in Fig. 7i and j, the model remains stable
during the seismic excitation. The graph in Fig. 8 illustrates that this model 5 and model 1 behave in a similar way. Therefore,
it can be observed in this type of masonry structure, that the embedding condition plays an extremely important role in the
structure stability. Even with weak mechanical characteristics within the structure components, it can resist a strong exci-
tation due to a good embedding condition.

The same procedure is applied for three models with dry contact condition (Table 1b). Fig. 9 shows the results obtained
for these models at 5.5 s of the excitation. All these three models show the same mechanism of failure, and none resists dur-
ing the excitation. The comparative graph for the vertical displacement of the central block (Fig. 9d) illustrates that in all
models the central block begins to fall down approximately at 5 s. However, it can be seen that model 6 resists a little longer
than the other models. The model 6 (Table 1b) has a higher dry friction coefficient at the level of the embedding. It seems
that this model 6 with more flexibility within the structure resist better than model 8.
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Fig. 7. Collapse mechanism characteristics for five cohesive models (Table 1a) at 6 and 7 s of seismic excitation. (a,b) Model 1; (c,d) model 2; (e,f) model 3;
(g,h) model 4; (i,j) model 5 (the colours represent the displacement in the vertical direction). (For interpretation of color mentioned in this figure the reader
is referred to the web version of the article.)
The dynamic behaviours of two embedded models (presented in Table 1c) during the seismic excitation are also inves-
tigated and compared. Fig. 10 shows the results obtained for these two models. It should be noted that in these models
the parameters considered for contact between blocks is dry friction with 0.7 as friction coefficient, and there are cohesive
contacts only between blocks 1 and 13 and the ground. The comparison between these two models demonstrates that the
model with strong embedding condition, model 9, resists during the seismic excitation, while model 10 with weak cohesion
at this level loses its stability. The comparative graph in Fig. 10(e) illustrates the vertical displacement of the central blocks of
these two embedded models. It can be observed that model 10 begins to lose its stability at 6 s.
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contact parameters used for these three models are presented in Table 1(b)), (d) comparative graph for vertical displacement variations in meters versus
calculation time for the 7th block indicated in Fig. 1.
In order to compare the maximum horizontal force generated by the seismic excitation on the two blocks in direct contact
with the ground, the evolution of the horizontal force before the failure of the arch is examined for the ten models presented
in Table 1. Fig. 11a and b shows the evolution of the horizontal force for the 8th model during the first 7 s of calculation,
respectively, for blocks 1 ant 13 as indicated in Fig. 1. These two graphs show a sharp increase of the horizontal force around
5.5 s which corresponds to the beginning of the arch failure as illustrated in Fig. 9c. The comparative histogram (Fig. 11c)
presents the maximum of horizontal force on the blocks 1 and 13, before the collapse of each model. The differences between
the two blocks in the same model can be explained by a possible imbalance of reactions on the two ‘‘feet” of the arch, as soon
as large relative movements of adjacent blocks happen, in an unsymmetrical way, in the arch. It is interesting to notice that,
when the arches remain stable, the two maxima are very similar (models 1, 5 and 9), whereas, when the structure starts to
collapse, the maxima on the two blocks are different.
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Fig. 10. Collapse mechanism characteristics for two embedded models at 6th and 7th second of seismic excitation (contact condition presented in Table
1(c)). (a,b) Model 9, (c,d) model 10, (e) comparative graph for vertical displacement variations in meters versus calculation time for the 7th block indicated
in Fig. 1 for these two embedded models.
4. Arles aqueduct

During the second century AD, the complete rebuilding of an aqueduct bridge at the Vallon des Arcs site near Fontvielle
(France) can be explained by the necessity to supply the Roman colony of Arles with water Leveau (1995). The site reveals
the presence of two parallel 325 m long aqueducts.

The western bridge was used by the aqueduct leading to Arles, and collected the waters gathered on the north side of the
Alpilles Mountains. The second bridge supported a conduit leading to the Barbegal mills. Its water was collected on the south
side of the Alpilles. The stone arches have different spans, from approximately 1.5 to 4.8 m, to follow the natural slope of the
hill, and the aqueduct consists of 36 piers. The average width of the aqueduct is 2 m (Fig. 12).

The foundations, the piles and the arches are in large assembled dry stone blocks (without mortar), whereas the conduit
walls are made of small block masonry. The sealing of the conduit was obtained by a layer of 25 cm of tile concrete and a
mortar coating of 5 cm. The large blocks used in the aqueduct construction are shelly yellow limestone, probably extracted
from the stone quarry located under the village of Fontvieille (Raffard et al., 1998).

One of the most plausible assumptions is that of a ruin accelerated by consecutive movements of the ground due to the
construction of the parallel aqueduct. The addition of stone mass could have involved a compression of the basement layers,
up to the limit of their bearing capacity. A seismic phenomenon is not to be excluded either, although the evidence on the
site is still missing.

In order to better understand the effect of a seismic excitation on such a structure, a 3D model with real dimensions is
studied. In this model, the rigid blocks with a density of 2000 kg/m3 are used by considering the contact interaction law of
dry friction with a friction coefficient of 0.7 between the blocks and of 0.9 between the blocks and the foundation of the
structure (model 6 in Table 1b). The same sinusoidal excitation, previously used for the simple arch structure, is also
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Fig. 11. Horizontal force generated by the seismic excitation during the first 7 s (in N) on the two blocks in direct contact with the ground. (a) Block 1 in the
8th model, (b) block 13 in the 8th model, (c) comparative histogram of the maximum horizontal force for ten models presented in Table 1.

Fig. 12. Arles aqueduct (a) actual state of the structure, with large blocks in the pillars of the arches, and (b) 3D model generated in Auto CAD environment
for two arches with 2974 discrete blocks and with an arch span of 4.8 m.
employed to investigate the seismic behaviour of the aqueduct. The horizontal displacements (perpendicular to the aqueduct
axis) at the 3rd second, obtained after a 3-s long sinusoidal oscillation (see Fig. 2) are illustrated in the Fig. 13.

Fig. 13a shows the displacements in the Y direction, from a lateral perspective view. As can be seen in this figure, a large
amount of block displacements is observed in parts of the pillars: this aspect is more obvious in Fig. 13b which displays the
structure from above. It should be remembered that the aqueduct width is 2 m. Numerous block detachments in the pillar
occur because of the direct contact of these parts of the structure with the support element, directly submitted to the exci-
tation. Therefore, it can be observed in Fig. 13b that there is a relatively high opening between the blocks located in these
parts. Fig. 13c shows a close-up view of the arch structure: block detachments are concentred in the outer parts, as can be
observed in the in situ structure. During the calculation over 50 s, the energy dissipated in the model is recorded and illus-
trated in Fig. 13d. This graph presents the amount of the energy dissipated by friction and shocks within the model. As can be
observed, this energy shows a high increase for the first 3 s, and then remains more or less unchanged.
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Finally, in order to better understand the block detachments caused by the seismic vibration, the evolution of the number
of contact points versus the calculation time is investigated. The contact point in 3D modelling can be classified in three
types: point–face, edge–face and face–face contacts. Therefore, the type of contact can be differentiated by the number of
points for each contact. For example, if there are two contact points, it is an edge–face type of contact, and for more than
two points, a face–face type is considered. Fig. 14a illustrates the graph of the number of contacts during the 50 s of the
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Fig. 14. Evolution of the number of contacts in the model of the Arles aqueduct, subjected to sinusoidal vibrations for 3 s, followed by 47 s of stabilisation.
(a) Over 50 s, (b) over the first 3 s.
calculation. As can be observed, the number of contact points before launching the seismic vibration is more than 50,000, but
this number drops sharply to less than 10,000 points in the first 3 s (Fig. 14b), i.e., the time during which the model is sub-
jected to seismic excitation. The number of contacts during the first 3 s, (see Fig. 14b) shows two sharp decreases corre-
sponding to changes in the excitation condition (see Fig. 2) after the first and second seconds. This shows a high
vulnerability of the masonry structure to such an excitation. The number of contact points then remains around 15,000 until
the end of the simulation.

5. Conclusion

In the present study a numerical investigation of a masonry arch subjected to a seismic load has been presented. A uni-
lateral contact friction model is used for the simulation of the arch, with and without mortar. The LMGC90� code is used to
model the behaviour of the masonry arch as an assembly of 3D rigid blocks during the seismic excitation. This code is based
on the NSCD algorithm that has an implicit algorithm to solve the dynamic equations and it is able to deal with shock events
produced within the discrete model during the simulation. One of the advantages of the NSCD method is that there is no
need to resort to artificial damping in order to secure its numerical stability (Moreau, 1998).

The seismic vibrations are simulated with the help of sinusoidal oscillations and a recorded accelerogram in the form of
the velocity input data that are applied to the base element of the model. The results obtained for several models of the arch
with the same geometry but with different contact parameters have been compared. The analysis of the results for the mod-
els with dry friction contact indicated that the 3D arch model with rigid blocks conforms to the results obtained for exper-
imental research done on failure mechanisms. The failure mode observed in this numerical case is similar to a five hinges
mechanism. Comparisons between the models with the cohesive and the non-cohesive contacts with the foundation show
that the arches with cohesive foundations, even those with a weak inner structure, can better resist intensive dynamic
excitation.

The behaviour of the historic Arles aqueduct, including several stone arches, subjected to dynamic excitation, was stud-
ied. The results obtained demonstrated in real scale the efficiency of the NSCD method for masonry structure simulations,
particularly when the structures are subjected to dynamic loads. A high number of block detachments occurred during this
short vibration. By considering the observed similarities between the simulated structure and the in situ one, it can be con-
cluded that a seismic event could be the reason for the destruction of the Arles aqueduct (circa 150 AD).
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