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Abstract: In 1963, Melamed proposed a model that ex-
pressed reflectance of a powder described as a population 
of spherical particles of unique diameter as a function of 
size, shape, and optical characteristics of the powder. This 
article shows how this model has been adapted to fit to 
industrial powders. An example of use for industrial quartz 
is given. 
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INTRODUCTION

For economic reasons, it becomes more and more important 
for industrial pigments and fillers producers to control the 
colour reproducibility of their products. But, as colour of 
pulverulents depends on many parameters such as optical 
constants of the material (refraction index n and absorption 
coefficient k), size, shape, and arrangement of the particles, 
it is difficult to achieve.

In 1963, Melamed1 developed a model that directly 
expresses reflectance (from reflectance data, we have the 
information about the colour) as a function of these 
different parameters. This model is very different from 
the well-known Kubelka–Munk’s model that is com-
monly used in industries for colour-matching problems. 
The Kubelka–Munk model is a “continuous” model, i.e., 
it considers that the medium, even if composed of dif-

ferent components, is one material with its own optical
properties. Its main advantage is to allow indirect reflec-
tance sum because the coefficient of diffusion S and the
coefficient of absorption K are additive and are related to
the reflectance trough the Kubelka–Munk function.

Melamed’s model is a “hybrid” model, since it can be
considered “discrete” because the material is assessed to be
composed of particles with their own physical and optical
properties and it can be considered “continuous” because
the sample is made of many particles in contact one with
each other. In the case of discrete models, the reflectance is
an individual property of the particle, and the aim is to make
it become a collective property of the material by taking into
account the arrangement of the particles, through the coef-
ficient xu In this article, we give a tool adapted from Mel-
amed’s model. It is necessary to fit Melamed’s initial model
because it has been developed for an ideal case that is
impossible to produce industrially. The adaptations are nec-
essary to take into account granulometric distribution of the
population (using the Kubelka–Munk function), other shape
and arrangement of particles, and practical measurement
geometry.

PRESENTATION OF MELAMED’S MODEL1,2,3

Melamed’s model can be said to be macroscopic as it
calculates reflectance of a global sample, taking into ac-
count all the rays that emerge upwards after one, two, or
more interreflections in the bulk of the powder. But Mel-
amed’s sample is made of particles with their properties,
whereas Kubelka and Munk, for example, in their well-
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known theory consider the sample as a continuous medium
with its own optical properties. This is very important for
us, for we plan to be able to see and then to predict the
influence of the modification of the properties of the parti-
cles on sample reflectance.

As Fig. 1 shows, Melamed established his formula by
distinguishing the sample first layer (the surface) from the
bulk of the powder, assumed to be a material of reflectance
R. The model is based on geometrical optics laws (internal
and external reflection, transmission, and absorption) so that
a limitation appears about particle size, which must be much
larger than the wavelength of the incident light.

Some authors have worked after Melamed on these types
of models.2,3 This study has been carried out using Mel-
amed’s model, once the typographical errors corrected. The
first attempt of Mandelis and all2 to improve Melamed’s
model did not let us describe strongly absorbing materials
and the second3 has not been studied yet.

Summing all the emerging rays, Melamed gets for reflec-
tance R the following:

R �

1 � me�A � B� � AC � ��1 � me�A � B� � AC�2

� 4�me � C��A � B��1/ 2

2�me � C�
,

(1)

where

A � 2xme

B � x�1 � 2xme�T (2)

C � �1 � x��1 � me�T.

The parameters T, x, and m are explained later. In his theory,
Melamed uses several parameters that have a physical
meaning.

Absorption Constant K

The absorption constant is classically given as follows:

K �
4�k

�
, (3)

where k is the absorption coefficient of the material and � is
the wavelength. In the model, the absorption constant is
always associated with the diameter of the particles to form
the dimensionless number Kd.

External and Internal Reflection Coefficients
me and mi

Both external and internal reflection coefficients have inte-
gral definitions derived from Lambert’s law and Fresnel’s
coefficient as follows:

me�n� � 2��
0

�/ 2

Rspec��, n�I� sin � d� (4.1)

mi�n� � 1 � sin2 �c � 2� �
0

�c

Rspec��, n�I� sin � d� (4.2)

where �c is the critical angle for total reflection and Rspec is
Fresnel’s coefficient so that we have the following:

I�Rspec �
1

�
cos � �

1

2 �sin2 �� � ��

sin2 �� � ��
�

tan2 �� � ��

tan2 �� � ��� . (5)

Coefficient M

The M coefficient contributes to transmission T and corre-
sponds to the part of a unitary internal radiation which
reaches the other side of the particle after one crossing. It
can be expressed as follows:

M �
2

�Kd�2 �1 � �Kd � 1� exp(�Kd�}. (6)

Transmission T

T is the part of an incident radiation transmitted by one
particle in any direction (i.e., not only in the forward direc-
tion). It can be expressed as a function of M and mi as
follows:

T �
�1 � mi�M

1 � miM
. (7)

x and xu

x is the probability that a ray emerges upward, taking into
account the nature of the material (its absorption) and the
neighboring particles. It depends on another coefficient, xu,
which is characteristic of the geometry of the assembly. For
spheres arranged in an hexagonal form, the value of xu will
be shown further to be 0.299 and

FIG. 1. Melamed’s formalism (see following text for expla-
nation of coefficients x, me, and T). The first layer has been
separated from the bulk for more clarity.



x �
xu

1 � �1 � xu�1 � exp(�Kd��}T
. (8)

Melamed developed his model for spheres, all of them of
equal diameter and arranged in a compact hexagonal form.
Since industrial powders never show such ideal properties,
we have to fit the model to make it suitable for industrial
powders. The fitting concerns the following parameters: d,
xu, and me.

FITTING OF THE MODEL

Particle Size d

Size of spherical particles can be described using their
diameter as a unique parameter. For particles of any other
shape, an optical equivalent diameter can be found which is
the diameter that a spherical particle should have to show
the same optical properties as the real particle. For this
study, we decided to measure particle size by the technique
of laser diffraction so that the equivalent diameter is the
diameter of the sphere which scatters light in the same way
as the particles. The instrument used was a Coulter LS 100.

To take into account the size distribution, the well-known
Kubelka–Munk4 theory was used, which gives the diffuse
reflectance as a function of two parameters, KKM and SKM,
which have an interesting property: they’re additive for a
mixture of different powders.

A product with a size distribution can be considered as a
mixture, dividing the size distribution function into m
classes constituted of particles of diameter di. Thanks to
Melamed’s model, reflectance Ri of the particles of this
class can be calculated. Then, we can get the (KKM/SKM)i

value of each class using Kubelka–Munk’s function as
follows:

�KKM

SKM
�

i

�
�1 � Ri�

2

2Ri
. (9)

KKM � �
i�1

m

ciKKMi

SKM � �
i�1

m

ciSKMi (10)

SKMi �
a

di
a � �

we can sum the (KKM/SKM)i to get the global (KKM/SKM) of
the product and using9 in reverse form, we calculate the
sample total reflectance, to which the previously removed
specular part is added.

Doing so we get the sample total reflectance, with the
contribution of the particles of different size.

Particle Shape

Particle shape is taken into account by Melamed’s model
through a coefficient called xu. It represents the probability
that a ray coming from the center of one particle emerges
upwards without meeting another particle on its way. xu is
therefore linked to the notion of solid angle occupied by
neighboring particles. Figure 2 shows that this solid angle
will depend on particle shape (through �).

Melamed calculated xu for a compact hexagonal assem-
bly of spheres (Fig. 3a). As ground industrial powders never
show such perfect properties, we have chosen to consider
revolution ellipsoids, arranged randomly (Fig. 3b). Two
assumptions are made: ellipsoids are disposed according to
their major axis and those of the upper layer are contained
in the same plane.

For spheres, the calculation is rather simple, thanks to
numerous symmetries.5 The solid angle 	 occupied by each
neighbor of the central particle is the same for the six
particles and is equal to 2�(1-cos �). This gives for xu the
following relation:

xu �

�2� � 6*
	

2�
4�

. (11)

In Eq. (11), 4� is the total space, 2� stands for the half top
space, and 	 is the solid angle occupied by one neighbour-
ing sphere. So, we get a theoretical value for xu, which is
0.299. This value is slightly different from Melamed’s,
which is 0.284.

FIG. 2. Angle � and its dependence on particle shape.

FIG. 3. Assembly of (a) spheres and (b) ellipsoids.

There’s a difference between reflectance according to 
Melamed and to Kubelka–Munk: it is the specular part, 
which is not taken into account by Kubelka and Munk
and has to be taken away when calculating KKM/SKM. The  
specular part in Melamed’s model can be expressed as
2xme: on Fig. 1, it corresponds to the part of the incident 
radiation that is reflected at the surface of the sample 
without interacting with the bulk of the powder. Then 
knowing the following:



FIG. 4. A few possible configurations for revolution ellipsoids (top). Labels and arrows are useful only for the calculation
code.

TABLE I. Variations of xu for different randomly chosen configurations and for two different shapes of ellipsoids
(long axis a/short axis b).

a/b Conf. n° Part. 1 Part. 2 Part. 3 Part. 4 Part. 5 Part. 6 Part. 7 Mean value

2.33

1 0.359 0.36 0.349 0.35 0.358 0.346 0.348 0.353
2 0.348 0.355 0.344 0.355 0.357 0.356 0.367 0.355
3 0.344 0.33 0.358 0.369 0.356 0.335 0.339 0.347
4 0.337 0.338 0.354 0.349 0.343 0.352 0.334 0.344
8 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.344

1.44

5 0.327 0.324 0.321 0.328 0.334 0.322 0.327 0.326
6 0.323 0.327 0.329 0.331 0.329 0.327 0.323 0.327
7 0.325 0.329 0.326 0.329 0.325 0.334 0.321 0.327
9 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324



For revolution ellipsoids, the problem is more compli-
cated because, following the relative position of the parti-
cles, the ray coming from one particle center will not “see”
all the neighboring particles in the same way (i.e., the solid
angle is not the same for all the surrounding particles). The
details of the calculation are given elsewhere.6

The general idea is to consider that, when a measurement
is done, a lot of particles are taken into account. Knowing
this, how does xu vary when more ellipsoids are accounted
for when estimating xu?

Different random configurations of revolution ellipsoids,
corresponding to two different shape of particles (long
axis/short axis) are presented in Fig. 4. Table I gives all the
calculated values of xu for each particle, and the mean value
obtained when making each particle is the center. We can
note that when the ellipsoid shape tends to the sphere, the
variations of the calculated values for xu are less important.

We can note too that, when more particles are taken into
account (seven instead of one), xu is less variable, particu-
larly for ellipsoids with an a/b ratio close to 1. So we
conclude that xu can be considered independent on the
chosen configuration. Then, Fig. 5 shows the variation of xu

versus the a/b ratio of the ellipsoids. xu first increases with
a/b until a maximum corresponding to a/b � 2. Then xu

decreases: the value for spheres (0.299) is found again for
a/b � 4.5.

To evaluate the influence of xu variations, reflectance
according to Melamed’s equation can be calculated using
with the different values of xu, all other variables of the
model kept constant.

It can be observed on results displayed by Fig. 6 that the
variations of reflectance are weak and justify the approxi-
mation : the value of xu can be taken equal to 0.299, for all
shapes of particles. Calculations have been made with usual
values for n(1.3 	 n 	 3.5), k(10�8 	 k 	 10), and d(5

m 	 d 	 300 
m).

Coefficient me

The me coefficient has to be fit because our measurement
apparatus cannot fulfill Melamed’s geometrical assess-
ments. Melamed considered that all the rays that emerge out
of the sample will be collected by the detector: without an
adequate device (e.g., an integrating sphere), this is impos-
sible. Because our purpose is to propose an industrial solu-
tion for controlling the reflectance of powders, we do not
want to impose lab conditions for the measurements. The
sample is placed in a room lighted only with two fluorescent
tubes, always in the same geometry. In this study we used a
PhotoResearch PR 650 spectroradiometer, which allows
reflectance spectrum measurement in any desired geomet-
rical configuration, under a chosen light source. The geom-

FIG. 5. xu as a function of the a/b (long axis/short axis) ratio
of the ellipsoids. FIG. 7. Experimental reflectance spectrum of a sample of

black coal.

FIG. 8. Size fraction 75–80 
m of quartz viewed through
an optical microscope

FIG. 6. Variation of reflectance as a function of the a/b 
ratio, with n�1.55, k� 1.10�4, d� 30�m, and �� 456 nm 
(valid for usual values of n, k, d, and �).



etry we chose allowed the detector to collect the rays that
emerged near the normal to the sample. In Melamed’s
model, the coefficient that takes this into account is me. Its
integral definition [Eq. (4.1)] accounts for all the rays (i.e.,
in any direction). Since it is very difficult to estimate math-
ematically the value of me corresponding to the measure-
ment geometry, we used an empirical method based on the
observation that when a product has a very strong absorp-
tion coefficient k, the reflectance according to Melamed
tends toward 2xume. We prepared and measured a sample of
finely ground black coal, which is a very strongly absorptive
product. As expected, the reflectance spectrum curve is
rather planar and has a weak value (Fig. 7). So, knowing xu,
we can deduce a value for me. The mean measured reflec-
tance for black coal is 0.0196. So we get the following:

me�ncoal� �
R

2xu
� 0.033 (12)

But me depends on the refraction index n of the material. We
then calculate the ratio between the theoretical coefficient
me and the real one as follows:

� �
me Fresnel

me estimated
(13)

The refraction index of coal is 2.197, which leads [Eq. (4.1)]
to a theoretical value for me of 0.186 and gives a value of �
ratio equal to 5.63. Because the difference is mainly linked
to geometrical considerations, we make the assumption that

this ratio does not depend on the refraction index n of the
material. Then, the condition to apply this ratio is that all the
measurements should be made in precisely the same con-
ditions, particularly concerning the source/sample/detector
geometry.

USE OF THE MODEL

To use the model, a calculation code has been developed. A
user interface is proposed to choose the calculation: predic-
tion of reflectance or calculation of absorption coefficient.

Four different size classes of a an industrial quartz were
first obtained by careful sieving of a commercial product.
These classes are named 40–50 
m, 50–75 
m, 75–80 
m,
and 80–125 
m according to the sieves used to separate
them. Figure 8 shows the 80- to 125-
m size fraction of this
quartz. The size distributions of the four fractions measured
by laser diffraction technique are shown on Fig. 9.

Figure 10 shows the four classes measured reflectance.
Reflectance increases as expected with decreasing particle
size. Using three of the four classes, three absorption spectra
were determined numerically, using the hypothesis that
Melamed’s equation can be used in a reverse way if n*, d,
xu, and � are known. The results of these calculations are
given on Fig. 11.

* For many minerals, n can be easily known7

FIG. 9. Size distribution of the four classes of quartz.

FIG. 11. Calculated absorption spectrum of the 40- to
50-
m, 50- to 75-
m, and 80- to 125-
m classes.

FIG. 12. Reflectance measure of the 75- to 80-
m class
compared to the simulations.FIG. 10. Measured reflectance of the four classes of quartz. 



Using these calculated absorption spectra, we can simu-
late the reflectance that the three classes would have if they
had the size distribution of the fourth class, 75–80 
m.
Figure 12 compares these three simulations compared to the
measured reflectance of the 75- to 80-
m class.

We have calculated the CIE color difference between
each simulation and the measure. They are given in Table II.

CONCLUSION

This work shows that Melamed’s model can be fitted to be
applied to industrial powders taking into account their size
distribution and nonspherical shape. The result that shows
that xu can be kept constant for revolution ellipsoids proves
that the individual property of shape of the particles is less
important than the collective properties of the population.

This model, thanks to the explicit expression of reflec-

tance as a function of physical parameters, provides better
control of the reflectance of the powder. It is possible to
envisage including it in a control system for the production
of industrial powders because it becomes possible to predict
the reflectance of a material knowing its size distribution
and the reflectance of another size distribution of the same
material.
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des poudres minérales. Ph.D. thesis, Ecole des Mines de Saint-Etienne
and INP of Grenoble, 2000.

7. Palik ED. Handbook of optical constants of solids. New York:
Academic Press; 1985.

TABLE II. 
E between measured and simulated
spectra using k values calculated from three samples.

80- to 125-
m
sample

50- to 75-
m
sample

40- to 50-
m
sample

0.768 0.374 0.326


