
HAL Id: hal-03248524
https://imt-mines-ales.hal.science/hal-03248524

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparison of OpenCV Algorithms for Human
Tracking with a Moving Perspective Camera

Olfa Haggui, Matossouwé Agninoube Tchalim, Baptiste Magnier

To cite this version:
Olfa Haggui, Matossouwé Agninoube Tchalim, Baptiste Magnier. A Comparison of OpenCV Al-
gorithms for Human Tracking with a Moving Perspective Camera. EUVIP2021 - 9th European
Workshop on Visual Information Processing, Jun 2021, Paris (virtuel), France. �10.1109/EU-
VIP50544.2021.9483957�. �hal-03248524�

https://imt-mines-ales.hal.science/hal-03248524
https://hal.archives-ouvertes.fr

1

A Comparison of OpenCV Algorithms for Human
Tracking with a Moving Perspective Camera

Olfa HAGGUI, Matossouwé AGNINOUBE TCHALIM and Baptiste MAGNIER
EuroMov Digital Health in Motion, Université de Montpellier, IMT Mines Alès, Alès, France
{Olfa.Haggui, Baptiste.Magnier}@mines-ales.fr, Agninoubetchalim@gmail.com

Abstract—Visual tracking has received much attention in
recent years, especially pedestrian tracking. People tracking
represents an important computer vision problem with numerous
real-world applications. While significant progress has been
achieved for human tracking and detection, trackers are still
prone to failures and inaccuracies to master all difficult situations
that may arise during the process: changes in appearance, illumi-
nation, occlusions, camera movement or cluttered background.
To overcome these limitations, tracking algorithms offered by
the OpenCV software library are evaluated through this paper.
These trackers are fast and easy to use. However, pedestrians are
particularly difficult to track with a moving camera. This paper
brings a benchmark of human tracking algorithms implementa-
tions using moving camera. Here, we propose a qualitative and
quantitative assessment followed by a comparison with a particle
filter algorithm based on histograms of both color and texture
features. Finally, in order to compare to new developed tracking
algorithms in the framework of a pedestrian tracking accuracy
in an unknown environment, experiments with a new available
dataset validate either the reliability of OpenCV trackers or an
easy-to-use particle filter.

Index Terms—Human tracking, OpenCV, particle filter.

I. INTRODUCTION AND MOTIVATIONS

Visual object tracking is one of the most active research
topics in computer vision. In this respect, commercial develop-
ment as well as academic research contribute intensively in this
area. Consequently, many visual trackers have been proposed
[1][2] [3]. A specific issue concerns real time human tracking
which represents a predominant and challenging task. The
main goal is to automatically identify a human shape and local-
ize him/her in each frame of a video sequence [4][5][6]. It has
attracted researchers interest for decades an immense variety of
applications such as robotics, smart video surveillance, patient
monitoring, accident prediction, etc. Moving object may be
detected by frame difference methods [7]. In order to track
a person in a long-term sequence of a real-world scenarios,
a number of issues need to be resolved, and almost every
video is a special case, especially when the camera is moving
because the background is constantly changing (excepted
background composed by large homogeneous regions).

In this context, the tracking reliability depends of the
situation of video acquisition: degree of camera movement
and level of background change. This gets worse when, in
the meantime, the person appearance changes in color or
shape (because of shadow, displacements or movements),
making the reference image irrelevant. Elsewhere, the clutter
of the background may provide a lot of parasitic information
disturbing the detection, as well as the presence of other

0

50

100

150

200

250

300

2
0

0
1

-0
9

2
0

0
2

-0
3

2
0

0
2

-0
9

2
0

0
3

-0
3

2
0

0
3

-0
9

2
0

0
4

-0
3

2
0

0
4

-0
9

2
0

0
5

-0
3

2
0

0
5

-0
9

2
0

0
6

-0
3

2
0

0
6

-0
9

2
0

0
7

-0
3

2
0

0
7

-0
9

2
0

0
8

-0
3

2
0

0
8

-0
9

2
0

0
9

-0
3

2
0

0
9

-0
9

2
0

1
0

-0
3

2
0

1
0

-0
9

2
0

1
1

-0
3

2
0

1
1

-0
9

2
0

1
2

-0
3

2
0

1
2

-0
9

2
0

1
3

-0
3

2
0

1
3

-0
9

2
0

1
4

-0
3

2
0

1
4

-0
9

2
0

1
5

-0
3

2
0

1
5

-0
9

2
0

1
6

-0
3

2
0

1
6

-0
9

2
0

1
7

-0
3

2
0

1
7

-0
9

2
0

1
8

-0
3

2
0

1
8

-0
9

2
0

1
9

-0
3

2
0

1
9

-0
9

2
0

2
0

-0
3

2
0

2
0

-0
9

D
o

w
n

lo
ad

 p
er

 m
o

n
th

((
in

 t
h

o
u

sa
n

d
s)

Time

Fig. 1. OpenCV logo and timeline statistics, between years of 2001 and 2020.
Source: https://sourceforge.net/projects/opencvlibrary/files/stats/timeline

moving objects, new object(s) in the scene and/or partial/total
occlusions. Moreover, for optimal performance, the tracking
algorithm [1][8] needs to run in real time, or by default, with
a maximum of frames per second, depending on the desired
application. Typically, these algorithms estimate the tracking
of the target in a long sequence of images by trying to detect
the target in each image, frame by frame.

The issue of analyzing and interpreting images and videos
is a real challenge. Several programming libraries mainly in-
tended for computer vision, some with real-time calculations,
have been created. Hence, for its performance in computing
time, the utilization of this library with minimal restrictions
and also its large number of available free functions, OpenCV1

is the most used: more than 100K download per month, since
10 years (see download statistics in Fig. 1). Basically, this
library of programming functions mainly aims at real-time
video and image processing and analysis. As a consequence,
to obtain good execution time of an OpenCV program, the
main language is C++ [9], but it supports a wide variety
of other programming languages, with binding for Python,
Java, Matlab, etc. Moreover, OpenCV libraries are designed
for a way allowing to take advantage of hardware acceleration
and expansion of multi-core systems. Also, OpenCV version
4.2.0 offers access to over 2,500 algorithms to be used for
deployment of various machine learning and computer vision
capabilities. Besides, it contains a tracker class, with several
different trackers based on different tracking algorithms, such
as TLD, Boosting, KCF, CSRT trackers. They all have their
own pros and cons. Some run fast but not as accurate as
others. Alternatively, some are accurate and more efficient
but may run slowly. These OpenCV trackers are presented
through this paper, with their computational time and reporting
their quantitative and qualitative results on a database of
videos containing human(s) walking acquired with a moving
camera. In this framework of human tracking with moving

1https://opencv.org/about/

https://sourceforge.net/projects/opencvlibrary/files/stats/timeline
https://opencv.org/about/

2

camera, particle filter [10] [11] tracking algorithm can take
into account the target and background appearance variations.
Moreover, modelling a human appearance is difficult due
to various issues such as variation in pose, clothing, scale
change, illumination, and sometimes, partial/total occlusion.
For the tracking process, particle filters may be based on
color histograms, texture analysis or other features extraction
in order to estimate the position of the desired target in several
frames over the long term. This type of algorithm seems more
reliable in the context of camera in movement, this study
will also justify how to select the original target for a robust
tracking in difficult conditions of video acquisition.

In this paper, the effectiveness of OpenCV trackers are
reported in the framework of human tracking with a camera
in movement. Thus, this study allows to justify whether it is
necessary to compare new trackers with those implemented in
the OpenCV library, or else, to use a straightforward particle
filter to perform this comparison. In the next Section, the
tracking methods implemented in OpenCV version 4.2.0 are
detailed. Then, Section III is devoted to the basis of the particle
filter algorithm and explanations how to apply this computing
technique for tracking. In Section IV, the experimental tests
of the algorithms are presented, by evaluating and comparing
their performances on a real human tracking scenarios. Finally,
Section V concludes this paper.

II. USUAL TRACKING METHODS IN OPENCV
OpenCV offers the possibility to compare a new method

with other referenced algorithms [12]. Unfortunately, only
few tracking algorithms are available in this library; they are
presented in this section.

A. Tracking, learning, and detection (TLD)
TLD [13][14] decomposes the long-term tracking task into

three components: (short-term) tracking, learning, and detec-
tion. In practical terms, TLD is based on the appearances, by
re-sampling the bounding box of the target to a normalized
resolution, regardless of the aspect ratio of the patch. Thus,
the algorithm tries to track a blob of pixels from one frame to
another. Then, the detector localizes all appearances that have
been observed so far and corrects the tracker if necessary, and
the learning estimates the detectors errors and updates it in
order to avoid future errors. TLD provides stable tracking in
the long-term when the object is visible. On the other side, the
output of this tracker tends to jump around a bit. For example,
it may fail when a pedestrian is tracked and there are other
pedestrians in the scene.

B. Minimum Output Sum of Squared Error (MOSSE)
MOSSE [15] uses an adaptive correlation for object tracking

which produces stable correlation filters when initialized using
the first 7 frames. The major contribution of the MOSSE-based
tracker is robust to variations in lighting, scale, pose, and non-
rigid deformations. It also detects occlusion based upon the
peak-to-side lobe ratio. Hence, the tracker is able to pause and
to resume where it left off when the object reappears. MOSSE
tracker is fast and can operate at a higher fps as represented
in Fig. 3. Lastly, it is also very easy to implement.

C. Boosting

Tracker Boosting is based on an online version of AdaBoost
[16][17]. This classifier needs to be trained at run-time with
positive and negative examples of the object. The initial
bounding box is taken as a positive example of the object using
semi-supervised learning, and many image patches outside the
bounding box are treated as the background searching regions
of the same size as the target window from the surrounding
background. Given a new frame, the classifier is run on every
pixel in the neighborhood of the previous location and the
score of the classifier is recorded transferring appearance
changes, and also new observations. The new location of the
object corresponds where the score is maximized.

D. Kernelized Correlation Filter (KCF)

KFC is built on the ideas presented in the previous de-
tailed tracker (Boosting). Indeed, initially, KCF tracks the
object based on Kernel [18], it extracts characteristics from
Histogram of Oriented Gradients (HOG) to improve tracking
accuracy [12]; it has a high processing speed and is superior
for tracking the object in real time, as reported in Fig. 3.
This tracker utilizes the fact that the multiple positive samples
used in the Boosting tracker have large overlapping regions.
Hence, this overlapping data leads to some properties that
are exploited by this tracker to make tracking faster. Despite
this speed of execution, the ordinary KCF tracker has certain
shortcomings. As an example, edge effects that do not allow
optimal tracking of the object when it is close to the image
border, or, unfortunately, the inability to manage changes in
target size.

E. Channel and Spatial Reliability Tracker (CSRT)

CSRT improves the Discriminative Correlation Filter (DCF)
algorithm by introducing spatial and channel reliability [19].
The spatial reliability map is used to find out the optimal filter
size, which makes the CSRT tracker better than the traditional
DCF algorithm by adjusting non-rectangular targets. Actually,
the spatial reliability map is used to adjust the filter support
to the selected region for tracking. The channel reliability is
measured to weigh the importance of each channel filter, then
combines them to get the final response map. Using only the
HOG and color histograms, the CSRT tracker achieves a high
accuracy for object tracking with fast computational time (but
less than previous algorithms, see Fig. 3).

III. PARTICLE FILTERING FOR TRACKING

Particle filter is widely used for tracking problems. Each
particle models the probability to find the desired object based
on specific features in a Bayesian framework [20][6]. The
main idea is to represent the posterior density by a set of
random particles with associated weights and, then, to compute
estimated positions based on these samples and weights.

3

A. Particle filtering basis
Particle filtering also called Sequential Monte Carlo method

[11] has been widely described in the literature [10]. This is
a useful algorithm in vision-based applications because it is a
simple way to find an optimal solution for multidimensional
problems by randomly generating a large number of possible
system states. The main ideas of particle filter approach are
recalled here. The question of state Xk estimation given the
comments z1:k, can be considered equivalent such as the
estimation of the probability density function p(Xk|z1:k−1),
where z1:k represents (z1,, zk). Assuming that these ob-
servations are independent and the system is Markovian, thus:

p(Xk|z1:k)∝p(zk|Xk)

∫
p(Xk|Xk−1) · p(Xk−1|z1:k−1) dXk. (1)

Thus, the Bayesian framework provides an optimal recursive
solution to this problem based on two steps as illustrated by:

p(Xk−1|z1:k−1)
prediction−−−−−−→ p(Xk|z1:k−1)

correction−−−−−−→ p(Xk|z1:k).
(2)

The idea of the particle approximation is based on the strong
law of large numbers according to which the expectation
calculated on the samples is an estimator of the expectation
of the real density. Formally, denoting p(X) the probability
density that we are trying to approach, and

{
s(i)
}N
i=1

a set of
N independent and identically distributed samples according
to p, then we have for any continuous and limited φ function:

1

N

N∑
i=1

φ(s(i)) −−−−→
N→∞

Ep[φ(X)] =

∫
φ(X) · pN (X)dX, (3)

where Ep designates the expectation taken in relation to
density p. Let us note the quantity pN (X) defined by:

pN (X) =

N∑
i=1

π(i) · δs(i)(X), (4)

with π(i)>0,
∑N

i=1 π
(i)=1 and δs(i) a Dirac distribution

centered on a particle s(i). Thus, it is possible to associate
a weight π(i) to each particle s(i) by computing:

π
(i)
k =

π
(i)
k−1 · p

(
zk|Xk = s

(i)
k

)
∑N

i=1 π
(i)
k−1 · p

(
zk|Xk = s

(i)
k

) . (5)

Consequently, for every φ, the estimation state is given by:

Ep[φ(X)] ≈
∫
φ(X) · pN (X)dX =

N∑
i=1

π(i) · φ
(
s(i)
)
, (6)

representing the expectation of the particles s(i) depending
on their weights and the density p. Finally, the algorithm 1
summarizes its basic form.

B. Particle filter implementation

In practice, the algorithm obtained by adding a resampling
step is known as SIR (Sampling Importance Resampling),
Bootstrap or Condensation. Knowing that the probability of
a drawn particle is proportional to its weight, the crucial
stage of resampling consists in a weighted draw among a
choice of N particles. Hence, low-likelihood particles will
therefore have little chance of being selected by the resampling
step, while high-likelihood particles will be duplicated and
then increase their chances of selection. Thereafter, a new

Algorithm 1: Particle Filter, usual framework

Require N particles
{
si0
}N
i=1

, at time k, and weight πi
0= 1

N

Prediction, see eq. 2
for i=1 to N do

Generate s(i)k according to p(Xk|Xk−1 = s
(i)
k−1)

Correction, see eq. 2
Update the particle weights
for i=1 to N do

Compute π(i)
k , eq. 5

Estimated particles at time k − 1:
{
(s

(i)
k−1, π

(i)
k−1)

}N

i=1

State estimation at time k: Ep[Xk]=
∑N

i=1 π
(i)
k · s(i)k , eq. 6

Particle resampling:
{
(s

(i)
k ,

1
N
)
}N

i=1

equivalent weighting is given (an equivalent weight of 1/N
for the N particles). Usually, in the event of the target loss,
the tracker attempts to reacquire the target: the particles are
uniformly distributed over the image area and the filter is
allowed to converge again. Consequently, the stability of the
filter depends on the number of particles: in the one hand, the
more the number of particles increases, the more stable the
filter is. On the other hand, the compilation time increases.

Here, the output of the considered particle filtering is the
expectancy of the estimator: Ep[Xk] = 1

N

∑N
i=1 s

(i)
k . Other

estimators can be used, such as the best particle (in term of
likelihood), or the average in a portion of the reduced from the
status space. However, the first leads to more outliers and the
second takes more computational time. Here, the implemen-
tation of object tracking is based on a combination of color
histograms [20] and LBP texture features [21] with popular
Bhattacharyya coefficient [22] (each histogram contains 32
bins). Technically, this particle filter is implemented in C++
and runs with OpenCV.

IV. EXPERIMENTAL RESULTS AND EVALUATIONS

A. Dataset: pedestrians, moving camera and ground truth

To assess the detailed approaches, a new dataset of videos
has been created regarding human tracking with a perspective
moving camera. Tab. I reports the details of 6 sequences
under different climate conditions. The ground truth (the
box containing the target) which is used for quantitative
assessment is annotated manually for each frame (x and
y coordinates, height and width of the box). In addition,
videos and coordinates of these boxes are available online:
https://github.com/agnihsv/human-walking-ground-truth.

Video #person(s) #frames fps Challenges
walk1 2 1250 20 Person walking against a similar target and crossing

another person (occlusion) with changing background
walk2 1 405 20 Strong occlusion and shadow, low luminosity, similar

color/texture between the target and the background
walk3 1 350 20 Person walking, backlighting and low luminosity
walk4 1 300 20 Person walking and rotating, target scale change,

occlusion and no distinct color for the target
walk5 1 1279 20 Person walking alone, rotating camera, strong scale

change of the target, high background change
walk6 2 1232 20 Target walking in the same direction as a similar person

then the second person pass the target (occlusion)

TABLE I
DESCRIPTION OF VIDEO SEQUENCES AND THEIR TIED CHALLENGES

https://github.com/agnihsv/human-walking-ground-truth

4

Ground truth box

(handmade)

Box obtained by the

tracking algorithm

True Positive pixels (TP)

False Positive pixels (FP)

False Negative pixels (FN)

True Negative pixels (TN)

Im
ag

e b
o
u

n
d

ary

Fig. 2. Example of ground truth versus a desired bounding boxes.

B. Evaluation method: unbiaised Intersection over Union
To quantify the percentage of overlap between the target

mask (i.e., handmade Ground Truth) and the prediction results
(computed by a tracker), the unbiased ”Intersection over
Union“ (IoU) measure developed in [23] is used by counting
FN (False Negative), TP (True Positive), TN (True Negative)
and FP (False Positive) points, as illustrated in Fig. 2. This
metric is closely related to the Dice coefficient and computes
an unbiased overlap score for large and small objects in the
image with the following formulae:

Score =
TP

TP + FP + FN
· w0 +

TN

TN + FP + FN
· wbg , (7)

with w0 =
(TP+FP+FN)2

(TP+FP+FN)2+(TN+FP+FN)2
and w0 = 1− wbg .

This measure assesses the trackers efficiency by computing
a score between 0 and 1:

• a score close to 1, the tracker is qualified as suitable,
• a score close to 0 corresponds to a poor tracking.

Thus, the compared algorithms are evaluated by the scores
computed by eq. 7 frame per frame and plotted in Fig. 4.

C. Reliability tests of OpenCV tracking methods
Tracking algorithms described in section II, namely, CSRT,

TLD, KCF, MOSSE, Boosting and particle filter are quali-
tatively and quantitatively compared. To evaluate the perfor-
mance of the these tracking methods, 6 videos containing
human walking and captured with a moving camera were
produced (namely walk1, walk2, walk3, walk4, walk5 and
walk6, see Fig. 4). Each video contains different levels of com-
plexity with challenging situations for detection and tracking.
As detailed in Tab. I, these videos contain object similarities,
target occlusions, background changes in the scene, decreased
lighting, or scale changes of the target.

Firstly, Fig. 4 reports the qualitative and quantitative results
of the different approaches using the experimental dataset.
Hence, images on the left present the initial constraint boxes
with the cyan color (handmade ground truth) and the predicted
constraint boxes in the different frames for each compared
detector. Usually, our experiments have shown that the ma-
jority of the tracker algorithms are inefficient with respect
to total target occlusion on video walk2 (Fig. 4-a2), to the
changes of scale of the target, to the low luminosity and
to the presence of objects resembling each other on video
walk1 (Fig. 4-a1). Moreover, the experimental results show
that MOSSE is reliable in the face of low luminosity (Fig. 4-
a3) and background changes in the image of the walk3 video.
In contrast, the CSRT obtains a robust tracking of the target
even in the presence of similar objects, low brightness and
background changes in the scene and scale changes, Fig. 4-
a1 of the walk1 video and 4-a6 of the walk6 video, but, is
inefficient, with a total occlusion (Fig. 4-a2) on video walk2.

0
5

10
15
20
25
30
35
40
45
50

N
um

be
r o

f f
ra

m
es

 p
er

 s
ec

on
d

(im
ag

e
si

ze
 7

20
×1820)

Fig. 3. Number of treated frames per second for the compared trackers under
Ubuntu 18.04.5 LTS, Intel®, Core™ i7-9850H CPU@2.6GHz, 4Go RAM.

In terms of accuracy metric (eq. 7), the basic evaluation
of the tracking algorithms is correlated with the overlap rate
calculated for each frame of the video sequence. Figs. 4-
bi,i∈{1,...,6} shows the overlap for each video sequence.

1) Video walk1: Regarding this video, 2 similar persons are
crossing CSRT (blue curves in Figs. 4-b) gives a score close
to 1 and is therefore the most accurate compared to other
OpenCV trackers. In contrast, the scores of TLD (in yellow),
show that it is the most vulnerable tracker, because several
false positives appear in the video, see all screened frames.
Also, for KCF, MOSSE and Boosting, the curves highlight that
they are unreliable for this dataset, i.e., they lose the target and
the scores fall back to zero with the presence of two crossing
persons in the video (besides MOSSE loses the target before
crossing). Indeed, KCF and MOSSE calculate respectively the
correlation and a mean square error, but here a similar person
is hiding the target, so the matching remains always high and
the trackers follow the undesirable crossed person instead of
desired the target. Boosting behaves quite identically, when
two similar persons meet and the second person hides the
desired target, it will update the classifier taking into account
the second person, hence the failure of the tracker for this
sequence. TLD behaves also well until the crossing of persons,
then tracks only the undesirable target.

2) Video walk2: There are two main difficulties in this
video. Firstly, it contains an occlusion of the target, as illus-
trated in Fig. 4-a2. Secondly, both the color and the texture of
the target are not discriminated, compared to the background.
Consequently, the total occlusion provides the loss of the target
with all the trackers and decrease the score at a glance until
0 for the remaining frames (Fig. 4-b2).

3) Video walk3: Fig. 4-a3-b3 exhibit the performance of the
trackers for this third video. Clearly, due to the back-lighting
and the low luminosity, all the algorithms fail here around half
of the video, excepted MOSSE. Indeed the decreasing bright-
ness acts on the target colors, which considerably changes the
appearance of the target during the tracking.

4) Video walk4: In this video, the person if turning on
himself and, at the same time, going away (Fig. 4-b4). All
the trackers lose the target before the half of the video,
excepted MOSSE after 200 frames. Indeed, especially based
histogram of gradient, KCF tracker fails from the outset
to update the filter because of the person rotation and has
no background learning. Therefore, the background change
causes the correlation rate values to drop considerably and the
loss of the target (therefore a null score). These difficulties are
the same for the Boosting classifier. Here, TLD is especially
disturbed by the particular movements of the target and its
scale changes.

5

5) Video walk5: This video allows to evaluate the tracker
effectiveness in the presence of high scale changes of the target
(camera close to the person, or people walking towards the
camera), with slow movements and no occlusion. In this way,
Fig. 4-b5 reports the evaluation of the different trackers. Here,
TLD is the worse tracker because it loses totally the target.
Alternatively, CSRT, MOSSE and Boosting are relatively
effective, and their scores are always close to 1. Nevertheless,
KCF obtains a tolerable tracking, but less suitable than the 3
previous trackers. Note that all the trackers (excepted TLD)
are able to capture the target at the end of the sequence.

6) Video walk6: This last video contains two similar
persons walking in the same direction. Here, most of the
algorithms correctly track the target until the second person
passes the first one, creating an occlusion (Fig. 4-a6-b6). The
curves clearly highlight that they are unreliable, where CSRT,
TLD and MOSSE track the wrong person while both Boosting
and KCF do not track anybody.

7) Evaluation of particle filter: The detailed particle filter
based tracker is also implemented in C++ and runs with
OpenCV. It has been tested and evaluated on the 6 same
videos, see Fig. 4-ci,i∈{1,...,6} for the quantitative evaluation.
Clearly, the robustness of the particle filter is highlighted here
for each walk video, compared to other OpenCV trackers.
Indeed, curves for the particle filter show a good precision
compared to other trackers. One key parameter of particle
filters is the number of particles; here it is tested by tuning the
filter with 10, 75 and 500 particles respectively to evaluate the
performance of the implemented particle filter. Hence, scores
corresponding to 10 and 75 particles are more unstable com-
pared to with 500 particles which obtains a very good tracking
precision. With 75 or 500 particles, it enables to correctly
distinguish the target even in the presence of similar person.
These experimental results are confirmed by the performance
curves in Fig. 4-ci,i∈{1,...,6} where the score is very close to 1
during of target tracking. In the presence of an occlusion (Figs.
4-a1-a2-a5), the filter widens its search area to find again the
target. While the target has not yet appeared in the search area
of the target, the filter is not updated, so, the likelihood that
the particles decrease thus drastically. The tracking particle
filter provides also a good reliability to the brightness change
and low luminosity (Figs. 4-a2 and a3).

Generally, the more the number of particles increases, the
more the tracked box tends towards its desired position,
thus illustrating the interest of using a large number of
particles. This result is confirmed by the plotted curves in
Fig. 4-ci,i∈{1,...,6}. With these curves, the obtained scores
have frequent oscillations using 75 particles and are null for
curves tied to 10 particles. Actually, a higher number of
particles can improve the estimated bounding box of the target
but, unfortunately, sacrifices performance speed, because the
algorithm has to process more particles. It may result in a
strong disadvantage; the consumption at computing time can
technically interrupt the tracking. To that end, quantitative
results obtained by the particle filtering with 75 particles
demonstrate a suitable tracker with reasonable execution time
(similar to Boosting, see Fig. 3). Consequently, the detailed
particle filter based on both color histogram and LBP texture

descriptor using 75 particles is a good compromise between
tracking performance and execution time, compared to other
tracking algorithms. Note that the execution of this filter is fast
for 75 particles (see Fig. 3), it is also fast by down-sampling
the image and choosing 500 particles (40 fps, 78 fps and
150 fps for images of size 960×590, 640×360 and 320×180
respectively, computation on video walk2 with the same com-
puter characteristics as in Fig. 3). Another point is that the
reference image is a crucial element for the initialization of
this particle filter. Indeed, as these features relate to the color
histogram and the LBP descriptor, the original selection zone
must (imperatively!) be contained inside the target. As soon as
pixels belonging to the reference image are not contained in
the current target (and inversely), the tracking is less reliable
and may fail, especially when the target passes through an
area with a change in brightness or after an occlusion.

V. CONCLUSION

This study presents a comparison of commonly used
OpenCV trackers in the framework of human tracking with
a perspective and moving camera, namely: TLD, Boosting,
KCF, MOSSE and CSRT. These algorithms serve as references
to compare news trackers. Even though their computational
time is fast, they are not reliable to track human (deformable
targets) using a camera in movement. Indeed, several scenarios
through these videos (backlight, low luminosity, occlusion,
background...) highlight the defectiveness of these algorithms.
Nevertheless, experiments and evaluations provided by this
study advise to compare this tracking sort using particle filters
based on both color and texture descriptor (LBP) histograms
and outperform trackers available in the OpenCV library
software regarding many complex scenes.

Eventually, a new dataset of videos has been created regard-
ing human tracking with a perspective moving camera video.
The ground truths of this database are also available online.

REFERENCES

[1] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
CSUR, vol. 38, no. 4, pp. 13–es, 2006.

[2] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,
and M. Shah, “Visual tracking: An experimental survey,” IEEE TPAMI,
vol. 36, no. 7, pp. 1442–1468, 2013.

[3] M. Ullah and F. Alaya Cheikh, “A directed sparse graphical model for
multi-target tracking,” in IEEE CVPR Workshops, 2018.

[4] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person
2d pose estimation using part affinity fields,” in IEEE CVPR, 2017, pp.
7291–7299.

[5] A. Khalifa, I. Alouani, M. A. Mahjoub, and N. E. B. Amara, “Pedestrian
detection using a moving camera: A novel framework for foreground
detection,” Cogn. Syst. Research, vol. 60, pp. 77–96, 2020.

[6] A. Mekonnen, F. Lerasle, and A. Herbulot, “Cooperative passers-by
tracking with a mobile robot and external cameras,” CVIU, vol. 117,
no. 10, pp. 1229–1244, 2013.

[7] B. Magnier, G. Ekszterowicz, J. Laurent, M. Rival, and F. Pfister, “Bee
hive traffic monitoring by tracking bee flight paths,” in VISAPP, 2018,
pp. 563–571.

[8] M. Fiaz, A. Mahmood, and S. K. Jung, “Tracking noisy targets: A review
of recent object tracking approaches,” arXiv:1802.03098, 2018.

[9] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Energy efficiency across programming languages: how
do energy, time, and memory relate?” in ACM SIGPLAN International
Conference on Software Language Engineering, 2017, pp. 256–267.

[10] M. Isard and A. Blake, “Condensation—conditional density propagation
for visual tracking,” IJCV, vol. 29, no. 1, pp. 5–28, 1998.

6

Ground truth TLD Boosting KCF Mosse CSRT Particle Filter

Frame number 9 Frame number 93 Frame number 164
0 40 80 120 160 200

FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

KCF
CSRT
BOOSTING
MOSSE
TLD

0 25 50 75 100 125 150 175 200
FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

 10 particles

 500 particles
 75 particles

(a1) Behavior of trackers in the walk1 video (size 720×1280), particle filter with 500 particles (b1) OpenCV trackers (c1) Particle filters

Ground truth TLD Boosting KCF Mosse CSRT Particle Filter

Frame number 14 Frame number 70 Frame number 110
0 50 100 150 200

FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

KCF
MOSSE
CSRT
BOOSTING
TLD

0 50 100 150 200
FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

10 particles
75 particles

500 particles

(a2) Behavior of trackers in the walk2 video (size 720×1280), particle filter with 500 particles (b2) OpenCV trackers (c2) Particle filters

Ground truth TLD Boosting KCF Mosse CSRT Particle Filter

Frame number 5 Frame number 57 Frame number 90
0 20 40 60 80 100

FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

KCF
CSRT
Boosting
MOSSE
TLD

0 20 40 60 80
FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

500 particles

 10 particles
 75 particles

100

(a3) Behavior of trackers in the walk3 video (size 540×960), particle filter with 500 particles (b3) OpenCV trackers (c3) Particle filters

Ground truth TLD Boosting KCF Mosse CSRT Particle Filter

Frame number 11 Frame number 89 Frame number 420
0 100 200 300 400

FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

KCF

MOSSE
Boosting
CSRT

TLD

0 100 200 300 400
FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

 10 particles
 75 particles
500 particles

(a4) Behavior of trackers in the walk4 video (size 540×960), particle filter with 500 particles (b4) OpenCV trackers (c4) Particle filters

Ground truth TLD Boosting KCF Mosse CSRT Particle Filter

Frame number 5 Frame number 224 Frame number 1270
0 200 400 600 800 1000 1200

FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E CSRT

KCF

MOSSE
Boosting
TLD

0 200 400 600 800 1000 1200
FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

10 particles
75 particles

500 particles

(a5) Behavior of trackers in the walk5 video (size 720×1280), particle filter with 500 particles (b5) OpenCV trackers (c5) Particle filters

Ground truth TLD Boosting KCF Mosse CSRT Particle Filter

Frame number 7 Frame number 56 Frame number 130
0 50 100 150 200

FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

KCF
MOSSE
Boosting
CSRT
TLD

0 40 80 120 160 200
FRAMES

0.0

0.2

0.4

0.6

0.8

1.0

SC
O

R
E

 10 particles
 75 particles
500 particles

(a6) Behavior of trackers in the walk6 video (size 720×1280), particle filter with 500 particles (b6) OpenCV trackers (c6) Particle filters

Fig. 4. Comparison of particle filter and tested OpenCV trackers on videos containing human(s) acquired with a moving camera.

[11] J. S. Liu and R. Chen, “Sequential monte carlo methods for dynamic
systems,” J. of the American Stat. Assoc., vol. 93, no. 443, pp. 1032–
1044, 1998.

[12] V. Lehtola, H. Huttunen, F. Christophe, and T. Mikkonen, “Evaluation
of visual tracking algorithms for embedded devices,” in SCIA. Springer,
2017, pp. 88–97.

[13] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
IEEE TPAMI, vol. 34, no. 7, pp. 1409–1422, 2011.

[14] W. Hailong, W. Guangyu, and L. Jianxun, “An improved tracking-
learning-detection method,” in CCC. IEEE, 2015, pp. 3858–3863.

[15] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in CVPR. IEEE,
2010, pp. 2544–2550.

[16] C. Gao, N. Sang, and R. Huang, “Online transfer boosting for object
tracking,” in ICPR. IEEE, 2012, pp. 906–909.

[17] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line
boosting.” in BMVC, vol. 1, no. 5, 2006, p. 6.

[18] J. Shin, H. Kim, D. Kim, and J. Paik, “Fast and robust object tracking
using tracking failure detection in kernelized correlation filter,” Applied
Sciences, vol. 10, no. 2, p. 713, 2020.

[19] A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kristan,
“Discriminative correlation filter with channel and spatial reliability,”
in CVPR, 2017, pp. 6309–6318.

[20] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and
L. Van Gool, “Robust tracking-by-detection using a detector confidence
particle filter,” in ICCV. IEEE, 2009, pp. 1515–1522.

[21] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE TPAMI, vol. 24, no. 7, pp. 971–987, 2002.

[22] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,”
IEEE TPAMI, vol. 25, no. 5, pp. 564–577, 2003.

[23] G. Häger, M. Felsberg, and F. S. Khan, “Countering bias in tracking
evaluations,” in VISAPP, vol. 5. SciTePress, 2018, pp. 581–587.

	Introduction and motivations
	Usual Tracking Methods in OpenCV
	Tracking, learning, and detection (TLD)
	Minimum Output Sum of Squared Error (MOSSE)
	Boosting
	Kernelized Correlation Filter (KCF)
	Channel and Spatial Reliability Tracker (CSRT)

	Particle Filtering for Tracking
	Particle filtering basis
	Particle filter implementation

	Experimental Results and Evaluations
	Dataset: pedestrians, moving camera and ground truth
	Evaluation method: unbiaised Intersection over Union
	Reliability tests of OpenCV tracking methods
	Video walk1
	Video walk2
	Video walk3
	Video walk4
	Video walk5
	Video walk6
	Evaluation of particle filter

	Conclusion
	References

