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Abstract

We propose a method for reconstructing the thickness variation of
one layer of interest inside a multi-layered structure. This reconstruc-
tion is based on inverting far-infrared reflection measurements at a few
distinct frequencies. This real-time method allows non-destructive eval-
uation of a multi-layered structure to better control its manufacturing
process, whereas other methods have acquisition or computation times
that are not compatible with real-time non-destructive evaluation. Two
simulated data and one real data based experiments revealed that the
method we propose is robust against measurement noise.

1 Introduction

Inspection is an essential aspect of the multilayered structure (MLS) creation
process to address modern challenges. When using this type of structure the
thickness of each of its layers has to be closely controlled during its manufac-
turing. Such structures have many applications. For example, in the aerospace
sector, heat shields are multilayered. If one of the layers in this functional MLS
is too thin or too thick, it could compromise the isolation property of other lay-
ers. Non-destructive evaluation (NDE) of such structures helps to better control
their manufacturing process. This has a positive impact on both profitability
and ecology.

This paper presents a fast convenient solution for inspecting one layer of an
MLS when its computer-aided design (CAD) model is known.

By analogy to X-ray imaging, which provides images of material absorption,
no technologies are available for qualitative and quantitative imaging of polymer
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and ceramic type materials, i.e X-rays are not sensitive enough to the absorption
of such materials. Furthermore, NDE of complex structures usually requires
a reflective setup (sensor and source on the same side of the sample), thus
limiting the technological solutions for such a task. Far-infrared wavelengths
have been shown to be effective in imaging such materials in a reflection setup
but only with a qualitative approach. Perturbations occur in the far-infrared
reflection images, known as Fabry-Pérot interference [1] [2], which complicate
unsupervised evaluation (e.g detection of structural defects are only possible via
expert assessment).

Physical modelling of those perturbations is however possible by using Maxwell’s
equations. Comparisons between theoretical models and actual observations
through multiple frequencies are common in time-domain spectroscopy (TDS)
and frequency-modulated continuous-wave (FMCW) approaches [3, 4]. Nev-
ertheless, the broad range of frequencies used by TDS and FMCW systems
requires high sweep acquisition times compared to fixed-frequency imaging.
Therefore, simply using several frequencies could be a trade-off solution to gen-
erate accurate results in reasonable time, as implemented in the genetic and
evolutionary material parameter reconstruction field [5, 6, 7, 8]. In these latter
studies, the authors solved the inverse problem by giving hints about the param-
eters or using adaptative learning algorithms. Here we propose to compensate
for the lack of information caused by the frequency restriction, which decreases
the precision of quantitative measurements, by using optimum analysis and spa-
tial regularisation rules.

The rest of the paper is divided as follows. Section 2 presents some of the
most recent work on NDE applied to MLS thickness measurement, including
recent far-infrared solutions. In Section 3, we discuss the difficulty of measuring
thickness variations in a layer by using far-infrared due to the multivocity of this
measurement. The solution we propose is based on modelling an MLS reflective
response to a far-infrared beam. This modelling is given in Section 4. Section 5
presents our proposed solutions. Section 6 presents, through experiments, the
thickness map reconstruction of two simulated and one real MLS. This highlights
the properties of the solutions we propose for different noise levels. In section 7
we present our conclusions

2 Related work

NDE of complex MLS has been a major research focus in recent decades and has
been approached in two different ways. The first is the classification solution,
i.e. detecting whether or not the fabricated structure complies with an initial
set of constraints. The second is the measurement solution, whereby a map
of at least one MLS parameter variation is created. This article focuses on
this second approach and involves creating a map of the thickness of a layer of
interest (Lol).

Different technologies have been proposed in the relevant literature to obtain
such a map: ultrasound [9], eddy currents [10], X-ray fluorescence [11], optical



coherence tomography [12], and photothermal methods [13]. For a complete
overview of MLS NDE technologies see [14].

Each of these methods has caveats, as explained by J. Jonuscheit [15]: They
can either not resolve multilayer coatings (such as the eddy current and pho-
tothermal methods), or they penetrate relevant materials insufficiently (such as
optical coherence tomography), or the process involves contact (such as ultra-
sound measuring technology). Only X-ray fluorescence could be used in this
case, even though it is often unavailable due to radiation protection problems.
Far-infrared technology is a promising candidate to address this measurement
problem. Far-infrared can penetrate through most non-conductive materials,
accounting for a vast majority of MLS.

Far-infrared technologies have achieved multiple great results in addressing
this problem [16, 17, 18, 19, 20, 21]. In [3], Ellrich et al. proposed an appli-
cation of FMCW heterodyne measurement and TDS systems to deal with the
thickness measurement problem. In [4], Schreiner et al. attempted thickness
measurement using FMCW data with a brute-force comparison to theoretical
data, thus effectively overcoming the Rayleigh resolution limit. However, both
TDS and FMCW based solutions are time-consuming since both systems must
sweep through an entire frequency band to acquire observations. In [5], Zwick
et al. compared simulation and observation in a reflective setup of a sample
at discrete frequencies or discrete observation angles. They retrieved material
parameters for all layers of an observed MLS via genetic algorithm optimisation
when the number of layers composing that MLS and their respective thicknesses
were known. This method, in contrast to TDS or FMCW systems, could gener-
ate real-time observations. However, real time assessment is hampered by the
use of genetic algorithms which are known to converge slowly and require tuning
of multiple hyperparameters. The research of Zwick et al. has been followed
by studies by numerous authors using genetic or evolutionary algorithms and
artificial neural networks to retrieve material parameters [6, 7, 8]. In addition
to the fact that these methods cannot be used for real-time imaging, they also
dedicated to single-location assessment, not to complete MLS assessment.

Far-infrared active imaging allows real-time studies of samples at given fre-
quencies and at multiple locations [22, 23, 24]. However, the obtained images
(2D matrices of reflection or transmission measurements) do not allow precise
visual assessment since Fabry-Pérot interference occurs which impedes conven-
tional image processing techniques.

Fabry-Pérot interference has been studied by numerous authors. In [1],
Costa et al. used a basic C-scan setup and showed that this interference hap-
pens because of the aggregation of the different responses of the materials with
the cavities in the optical system itself. Lin et al. propose in [2] to take those
effects into account with a frequency-domain spectrometer using acquisition
paths of different lengths, thereby enhancing the material parameter measure-
ment precision. In [25], Wang et al. showed that controlled phase unwrapping in
low-loss media disambiguates the problem when phase information is available.

The solution we propose in this paper takes advantage of far-infrared imaging
and allows real-time data processing. The methodology is similar to that of [4]



Figure 1: 3D Visualisation of a multi layered structure (MLS).

and [5] but only a few frequencies are used, exploiting the speed of active imaging
systems and using the phenomenology causing the perturbations, as studied in
[1] and [2], at different sampled locations to create a precise measurement map
of a layer of interest’s thickness variations within a multilayered structure.

3 Proposed setup

The goal of our study was to estimate a thickness map of a layer of interest (LoI).
The reconstruction of this map is based on measuring the reflection response of
the MLS at N x M regularly spaced locations. Those measurements are obtained
by emitting a far-infrared beam at fixed frequencies at a particular location,
focusing the beam on the sample at normal incidence and measuring the reflected
electromagnetic field. Let I be the far-infrared reflection image collecting these
measurements. I(7,7) is the reflective response at location (x;,y;), ¢ =1... N,
j=1...M for a particular wavelength .

Fig.1 shows a representative view of the CAD model of an MLS sample.
Fig.2 shows a slice of that model in the (z,x) plane, at position y = yo. The
yellow layer (layer 3) is the Lol.

Let 7(x,y) be the thickness of the Lol at position (z,y) of the MLS to be
inspected.

Fig.3 shows a far-infrared reflection image at 284 GHz of a silicone wedge
linearly growing in thickness from 0.4 mm on the left to 1.5 mm on the right,
between two polycarbonate (PC) slabs. Looking at the two highlighted area, we
note that two different thicknesses exhibit the same reflective response. Finding
thickness from measurement is therefore an ill-posed problem and must be solved
by combining multiple sources of information.

A way to increase the information is to acquire f different far-infrared re-
flection images I ... Iy associated with f different wavelengths A; ... Af. If the
wavelengths are suitably chosen, then for each (7,j) the f equations I, (i, ) =
M(z, M) (n=1...f) have a single solution £(¢, j) = 7(x;,y;), with M(z, A\,)
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Figure 2: A slice of the MLS represented in Fig.1.

being a function that models the reflection response of a theoretical object rep-
resenting our real object at position (z;,y;) with an Lol measuring z mm at
wavelength A,,.

4 MLS Modelling

We propose to model the MLS to be inspected as a stack of L semi-infinite layers,
characterised by their thickness and their complex refractive index, as shown in
Fig.2. The decrease in the speed of light in the material is characterised by the
real part of the refractive index and the extinction coefficient by it’s imaginary
part.

Different methods can be used to simulate the reflective response of this
structure when exposed to far-infrared light, such as finite-dimension time-
domain simulations, finite-element methods, method of moments, etc. In this
study, since we aimed at achieving a real-time solution, we used the one di-
mensional propagation method similar to the Rouard method described in S.J
Orfanidis’s book ([26]). This modelling was chosen because it just involves a
few simple operations.

Let us suppose that the assessed MLS is made of L homogeneous dielectric
layers. Each layer has a complex refractive indexn; (I =1...L) and a thickness
t;. The structure exists between two semi-infinite media having a refractive
index of ng and ny,;. Let us suppose that the Lol is the K** layer. Its
thickness is unknown but its refractive index is known. Let p; = Zi:;gi be the
Fresnel reflection coefficient at interface [ (I =1...L + 1). Computation of the
reflective response of this structure to far-infrared radiation of wavelength A in
free space at location (z,y) can be obtained by the following backward recursion
(see [26]):
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This method enables us to model the reflective response function M at any
location (z,y) of the MLS by: M(7(z,y),A) = I'1, supposing that the thickness
of the Lol at location (x,y) equals 7(z,y). Finding 7(x;,y;) amounts to finding
the value 2(i, j) such that I, (i, j) = M(2(¢,5), Ap) forn=1... f.

5 Proposed method

For clarity, we propose to illustrate our method with a simulated MLS made
of two 2.15mm PC slabs, with a silicone-type material sandwiched in-between.
The silicone layer is linearly tapered from Omm on the left of the sample to 3mm
on the right. This is a particular case of the MLS presented in section 4 with L
= 3, and K = 2 and the silicone layer being the Lol.

5.1 Direct solution

We first consider estimating the thickness of the Lol at each measurement point.
Let us suppose that the thickness at location (z;,y;) is known to belong to an
interval (a,b). Let us divide this interval into P values z;, (k=1...P).

The method we propose is based on computing the quadratic difference be-
tween the f real measurements {I, (7, j) }n=1...r at location (x;, y;) obtained for f
different wavelengths {\,, },=1...y and the theoretical values {M (2, \p)}n=1...f
obtained by using a function M that models the reflection response of the MLS
based on its CAD model:

f

Q1) = = 3 (Tnis ) = M(z1, An)?
f n=1

As Q; j(zr) decreases, the probability that the value 2y is the thickness of the
Lol at location (z;,y;) increases. Naturally, using multiple frequencies (i.e. the
higher f) increases the strength of this function by lowering the probability of
finding wrong solutions. However, the acquisition system we used did not allow
for real-time acquisition at more than 3 fixed-frequencies. We thus set f < 3.
Fig.6 illustrates the strength of this function, for f = 1...3, by computing
Q;,j (1) for the central point (%7 %) of the proposed sample. In this experiment,
7(x;,y;) = 1.5 mm, ¢ = 0 mm and b = 3 mm. For f = 1, the multivaluedness
of the solution is high, i.e. the quadratic error crosses zero at several locations,
but low for f = 2, with only one location (1.5 mm) crossing zero but a few
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Figure 6: Plot of the mean quadratic difference with f = 1(blue), 2(red),
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Figure 7: An (x,z)-slice of the local minima of @; ;(z;) when considering the
proposed three-layered MLS. Local minima are represented in white.

other very close to zero, and 1.5 mm clearly seems to be the solution for f = 3.
Hereafter we assume, without any loss of generality, that \; < Ay < As.

Thus the direct solution to this problem would consist of computing 2(4, j)
at each location (z;,y;), representing the global minimum of @; ;(z), the Eu-
clidean distance between the measurements and the model: 2(, j) = arg min{Q; ;(zx)}.

yeeny

However, computing this solution could lead to unstable solutions due to
discretisation of the [a, b] interval in P samples.

5.2 Regularisation by connectivity

The direct solution is not stable enough to be used without regularisation. This
instability is due to discretisation of the solution space w.r.t. the continuous
nature of the problem to be solved. In addition, measurement noise could
transform a local minimum into a global minimum.

The regularisation by connectivity we propose is based on the hypothesis
that the thickness variation of the Lol is continuous, i.e. this function cannot
have any sharp changes. This would not be true if this layer were broken, but



(d)
Figure 8: (a) Original projection of @; ;(zx). (b) Mean with a range of 3. (c)
Mean with a range of 6. (d) Mean with a range of 12.

an assessment of this situation would be beyond the scope of this study.

The regularisation by connectivity we propose involves two steps.

The first step consists of finding, for each (4, j) location of the image plane,
any value that is a local minimum of the quadratic function @Q; ;. A value z is
said to be a local minimum if it is a global minimum of the quadratic function
in the interval [z — €, z 4 €], where € equals half of the smallest quarter effective
wavelength with respect to the Lol complex refractive index. We thus obtain a
discrete set of local minima, as represented in Fig.7.

As can be seen in this Figure, the local minima define discrete planes of
connected points. We say that two local minima are connected if they are
associated with two connected pixels and if their distance (in z-value) is lower
than e. For each set of connected minima, we can compute the mean of the
quadratic function of its elements.

The second step of the method consists of finding the set of connected minima
that minimises the average quadratic error of its elements. This set is retained
for representing the thickness surface of the Lol.

At this stage, there can be some measurement locations with no thickness
estimate. This occurs when the reflection measurements are affected by noise
that is strong enough to offset the zj array by more than e. In that case, we can
interpolate the current solution. For a complete description of the mathematical
process underlying this first regularisation, see Appendix A.

5.3 Regularisation by smoothing the quadratic function

As stated previously, computation of Q; ;(z) is sensitive to noise. Noise can
come from the far-infrared sensors and sources, or from any external source not
accounted for, such as room temperature and electromagnetic perturbations
in the acquisition process. Excessive noise may break the thickness continuity
we described in section 5.2 by offsetting the minima locations. Therefore the
method only works in low-noise environments and requires additional processing
to be noise-resilient.



Figure 9: The non isotropic neighbourhood Vg (4, j, k) with orientation 6, ¢

A common way to be noise resilient is to smooth the analysed function
(here Qi j(2x)). The simplest treatment to get a smoother discrete function is
to replace each value Q; ;(z;) by a value Q; j(z;) obtained by averaging the
original function in a discrete neighbourhood of each location (i,j,k). Note that
the smoothing improves as the neighbourhood widens.

Fig.8a shows the projection of Q; j(zr) on the xz plane, in which there are
many locations where noise would hamper the methodology proposed in Section
5.2 (note that every projection shown in this section was square rooted after the
applied treatments for visualisation purposes, real valued square root preserving
numerical order). Fig.8b shows a smoothed image with an averaging range of 3
pixels (i.e. averaging in a [—3;+43] cube around i, j, k). In that case, the range
is too short to provide significant effects. In Fig.8c, smoothing is performed by
averaging in a range of 6 pixels. In that case, smoothing is sufficient to identify
the thickness slopes we seek but some bridges between solutions start to appear.
In Fig.8d, averaging was achieved with a range of 12 pixels. The thickness slopes
almost disappear in this case. The stronger the smoothing, the more likely it
is to see the information on the Lol thickness slope disappear, thus rendering
Method 5.2 inoperable when strong smoothing is needed (strong noise).

We suggest offsetting the loss of information due to strong smoothing by
using a non-isotropic neighbourhood whose orientation in each (i, 4, k) loca-
tion will depend on the thickness slope recovered. The neighbourhood we are
proposing has a cylindrical shape with thickness e, thereby allowing information
to be collected with a precision at effective quarter wavelength precision. The
smoothing improves as the cylinder diameter increases.

Let 6 and ¢ be respectively the orientation of this cylinder in the x and y ori-
entation. Vg 4(1, j, k) denotes the non-isotropic neighbourhood, with orientation
0, ¢ at location (4, j, k) (see Fig. 9).

For this non-isotropic neighbourhood to achieve smoothing in the direction
of the slope, the appropriate angles 6 and ¢ may be found at each location
(4,4, k). By construction, these angles appear to be the angles that minimise
the mean quadratic function inside the considered neighbourhood:

JUIA 1
0,9 = argmln(ik Z (Qqir ) (21))),
|V9 ¢(Z Js )‘ (4,57 K'Y E Vo, (5,5,k)
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Figure 10: (a) Original projection of @Q; j(zx). (b) Method 5.3 with a range of
3. (¢) Method 5.3 with a range of 6. (d) Method 5.3 with a range of 12.

where 6,¢ € [0,5]? and |V (i, 4, k)| is the cardinal of the considered neigh-
bourhood. X
The smoothed quadratic function () is now expressed as:

Qunr) = 3 (Qu ).

- . . k
V.0, 3, )|(i',j',k')eve,¢(i,j,k)

Let us compare the results obtained by using isotropic smoothing (see Fig.8)
with those obtained by using the proposed non-isotropic smoothing (see Fig.10).
When comparing Fig.8c and Fig.10.d, non-isotropic smoothing with a range of
12 leads to a loss in information comparable to that of isotropic smoothing with
a range of 6. Smoothing with a non-isotropic neighbourhood allows stronger
smoothing with less information loss. Thus, replacing @ by Q in the regulari-
sation by connectivity explained in section 5.2 improves its resilience to noise.

Note that, in practice, the operations presented are highly parallelisable and
can therefore be calculated with GPUs.

6 Experiments

6.1 Experimental setup

The experimental setup we considered is the three-layered structure presented
in Section 5! composed of two layers of 2.15 mm PC of complex refractive index
1.625 + 0.00195 and a central layer of silicone with a complex refractive index
of 1.55 + 0.041;. The refractive indices of both PC and silicone were measured
with a TDS system. Our operating frequencies were f; = 279 GHz, f; = 284
GHz and f3 = 289 GHz.

The acquisition system we used consisted of a far-infrared source, based
on broadband Schottky diode multiplier chains emitting continuous waves in

Isee also Fig.1, 2, with only one layer above and below the yellow layer.
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Figure 11: Acquisition system used for the real experiment.

the 220-330 GHz bandwidth guided through lenses, focused on the sample and
reflected toward a Schottky diode sensor via a beam splitter, as presented in
Fig.11. L1 is a collimation lens while L2 and L3 are focusing lenses of 100 mm
focal length. The MLS under inspection is then scanned on the x and y axes
with translation stages.

Three experiments were carried out, two simulation experiments and a real
experiment. In the simulation experiments, as illustrated in Fig. 2, the thickness
of the silicone layer varied linearly from 0 mm to 3 mm. In the real experiment, it
was not possible to monitor the silicone thickness. Thus we could not guarantee,
as in the simulated experiments, the linearity of the thickness increase. We
measured of the silicone layer with a caliper at both ends of the sample in the
z-direction. We found 0.4 mm on the left and 1.5 mm on the right with a
precision of 0.2 mm. We expected that the thickness variation of the silicone
layer would be almost linear between those two values. Since the thicknesses in
all the experiments were never greater than 3 mm, we set ¢ = 0 mm and b = 3
mm as the boundaries for the z; interval, divided in P = 90 samples.

In each experiment, reflection measurements were obtained at our operating
frequencies on a regularly spaced grid of 200 x 80 for the simulated experiments
and 526 x 92 for the real experiment.

Thereafter, we will call 5.2 the method presented in Section 5.2, and 5.3 the
method presented in Section 5.3.

6.2 Experiments on simulated data
6.2.1 Noiseless Data

In this experiment, we simulated a noiseless reflection measurement using the
modelling explained in Section 4. We thus obtained three reflection maps as
shown in Fig.12. To help understanding those maps, we include the central row
of each map on Fig.13.

11
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Figure 12: Noiseless far-infrared reflection images of the modelled sample at 279
GHz (a), 284 GHz (b) and 289 GHz (c). The grey-scale values corresponds to
the measurement profiles in Fig.13.

The experiment consisted of reconstructing a sampled map of the silicone
layer thickness by using method 5.2. The reconstructed map is shown in Fig.14.
In this image, the thickness value is represented by a look-up table ranging from
green (0 mm) to red (3 mm). As mentioned in Section 5.2, there could be some
measurement locations with no thickness estimate. Those locations are shown
in dark blue. As can be seen in Fig.14, the thickness values seem to linearly
ramp from 0 mm to 3 mm in the x-direction.

To quantify the precision of the reconstruction, we have reported, in Table
1, the absolute mean, maximal values as well as the standard deviation of the
reconstruction error. We have also indicated, in the last column, the percentage
of locations where a thickness reconstruction was available. Only those locations
are used to compute the dispersion indicators of Table 1.

We are interested here in the first row of Table 1 (noiseless data - method
5.2). The reconstruction error was very low in this experiment. The residual
error was mostly due to the sampling of the interval [0,3] mm into P = 90
values. Such sampling introduces a theoretical error whose absolute mean is
13

155 ~ 0.008mm. This value is very close to that reported in the second column

of Table 1.

Table 1: Reconstruction error

Experiment Mean Max o % est.
Noiseless data - 5.2 | 8.3 um 16.6 um 9.62 um | 100.0%
Noisy data - 5.2 78.6 um | 1338.0 pm | 164.84 um | 97.2%
Noisy data - 5.3 171 pm | 391.2 um | 52.15 um | 99.8%

12
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Figure 13: Measurement profiles of the modelled sample reflection response at
279 GHz (blue), 284 GHz (red) and 289 GHz (green).
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Figure 14: Reconstruction of the noiseless data thickness using method 5.2.

6.2.2 Noisy Data

As mentioned previously, due to measurement noise, method 5.2 can fail in
reconstructing the thickness of the silicone layer. We simulated a noisy mea-
surement to highlight this fact and the interest of using method 5.3. In previous
experiments, we observed that the spread of the reflection measurement noise
distribution was always lower than 0.05. As this distribution was unknown, we
applied the principle of insufficient reason to simulate this additive measurement
noise by using a centred uniform random variable on [—0.05,0.05]. Naturally,
noisy measures are rounded to comply with the fact that the reflection measures
remains in [0, 1]

As in the previous experiment, we obtained three reflection maps, as shown
in Fig.15.

We reconstructed two maps using the two methods 5.2 and 5.3. The map
obtained by using method 5.2 is shown in Fig.16, while the map obtained by
using method 5.3 is shown in Fig.17,

In Fig.16, the reconstructed map looks like a linear ramp. However, due
to noise, a high number of non-reconstructed values (in dark blue) are spread
throughout the image. The reconstruction error is quantified in the second row
of Table 1. Compared to the previous experiment, the rate of reconstructed
thickness values was lower and the reconstruction was less precise.

The third row of Table 1 shows the reconstruction error when using method
5.3. The number of reconstructed thickness values was much higher than with

13



Figure 15: Far-infrared reflection images of the modelled sample at 279 GHz(a),
284 GHz(b) and 289 GHz(c) with noise.

y

[
0 mm 3 mm
Figure 16: Reconstruction of a noisy data thickness map using method 5.2.

method 5.2 while the reconstruction was more precise. This shows that smooth-
ing the quadratic function leads to a more accurate reconstruction (the mean
error is ~ 4 times lower). Fig.17 shows that mis-reconstructed values are con-
fined to the borders of the map. This may be a border effect of the anisotropic
filter.

6.3 Experiments on real data

To carry out this experiment, we used the reflection system described in Section
3 with an optical resolution of 0.15 mm in both directions. As in the simulated
experiments, we obtained three measurement maps as shown in Fig.18. Due to
the poor control we have on the silicone layer, some unwanted air infiltration
can be noted at the right edge of the far-infrared reflection images (a kind of
L-shaped measurement artefact).

As in the simulated data experiment, we used both methods 5.2 and 5.3 to
reconstruct the thickness map. Since the thickness of the silicone layer could
not be fully inspected, we had no ground truth. In order to overcome this lack
of ground truth, we achieved a TDS measurement of the thickness of the silicone
layer. The analyse of the results we propose was qualitative since we compared

14
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Figure 17: Reconstruction of noisy data’s thickness map using method 5.3.

the coherence between the TDS measurement and the reconstructed map.

Fig.19 shows the map obtained by using method 5.2. Within this reconstruc-
tion, almost 84% of the values were estimated. We found values ranging from
close 0.4 mm on the left to almost 1.5 mm on the right, matching the caliper
measurements precision.

Compared to the simulated experiments where non-reconstructed locations
were spread throughout the sample, the non-reconstructed locations were clus-
tered. One of those clusters corresponded to the L shaped artefact located at
the rightmost part of the images. This was not surprising since the reflection
obtained at these sampled locations was not compatible with the modelling we
used (the refractive index of the air/silicone mix was not the one we hypothe-
sised).

As in any photon-based measurement system, the measurement noise of
the sensor we used is better modelled by a Poisson distribution, i.e. is not
stationary in the wide sense (SWS). Therefore, in dark areas where the signal
to noise ratio was significantly low, the method we uses - that assumed a SWS of
the measurement noise - underperformed the thickness reconstruction at these
locations.

We used method 5.3 and obtained the second thickness measurement shown
in Fig.20. Method 5.3 reduced the uncertainty in the clustered areas, allowing
for reconstruction of more than 99% of the sampled locations. Note that the L-
shaped artefact was smoothed to the point of being invisible by the convolution
kernel.

The thickness reconstruction was still in accordance with the initial measure-
ments and a transverse cut of that reconstruction is plotted in Fig.21, showing
an almost linear progression from approximately 0.4 mm to 1.5 mm. We su-
perimpose on that figure (in blue) a linear ramp from 0.4 mm to 1.5 mm for
reference, representing the values that would have been obtained if the silicone
thickness increase were linear. The profile obtained by TDS measurement is
superimposed in red in Fig.21. This profile confirms the non-linearity of the
increase in silicone thickness. The consistency of the reconstructed profile and
the TDS measured profile is confirmed by their Pearson correlation coefficient
of 0.996.

The thickness variations do not seem to be linear, i.e. note a slight curve
on the left half of the profiles. This variation could be expected. The reflection
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Figure 18: 279 GHz(a), 284 GHz(b) and 289 GHz(c) far-infrared reflection
images of our sample.

0.4 mm 1.5 mm

Figure 19: Reconstruction of the real sample thickness with method 5.2.

images in Fig.18 show that the interference patterns are shorter on the left half
than on the right half. Shorter interference means a faster phase shift, which
in turn means a greater thickness variation. We noted this greater thickness
variation on the left half in the TDS profile and in our reconstruction.

7 Conclusion

In this study, we have proposed a fast and convenient method for reconstructing
thickness variations of one layer of interest inside a multi layered structure.
This method is based on computing the quadratic difference between a limited
number of far-infrared reflective responses with modelling based on the known
CAD model of the multi layered structure for different possible values of the
sought after thickness variation.

The simulation experiments show that the method we propose to invert this
ill-posed problem is in line with our modelling of the problem. The experiment
with real data tends to confirm the robustness of the method w.r.t. the mod-
elling we chose. Moreover, the reconstructed thickness variation is perfectly
consistent with the TDS measurements.

Attentive readers will note that this method strongly relies on the hypothesis
that the sample under observation can be locally abstracted as a stack of semi-
infinite layers. While this puts severe constraints on the candidate structures
for such evaluation, we believe it covers a wide variety of cases. For a more

0.4 mm 1.5 mm

y

X

Figure 20: Reconstruction of the real sample thickness with method 5.3.
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Figure 21: Measurement comparison for the real sample transversal thickness.
Our thickness reconstruction (in green). TDS thickness reconstruction (in red).
Linear ramp between extreme values (in blue).

geometrically robust approach, the one-dimensional modelling function could be
changed to a three-dimensional finite-dimension time-domain simulation, when
enough time is available.

While we used a rather inquisitive decision system, a probability-based
methodology might efficiently complement our work. In particular, the local
minima could be replaced by a non-exclusive analysis, but the computational
cost would slow down the entire process, thereby nullifying the main advantages
of our study.
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Appendices

A Mathematics behind the regularisation by con-
nectivity

The regularisation by connectivity we propose is based on the hypothesis that
the thickness variation of the layer of interest is continuous, i.e. this function
cannot have any sharp changes. This would not be true if this layer were broken,
but an assessment of this would be beyond the scope of this study.

The regularisation by connectivity we propose involves two steps. First con-
nected sets of local minima of the quadratic function are sought. Second, one
optimal set among those sets is selected.

Let Q = [1,N] x [1,M] x [1, P] C N3. Let us consider the discrete function
E : Q — R* defined by E(i,7,k) = Qi j(2k). Let e = 4.);111( (with ng being the
known complex refractive index of the Lol) and Ve (k) ={l{=1...P / |zr—z] <
€}. Ve(k) represents all the e-neighbourhoods of k, with € being the quarter of
the effective wavelength inside the Lol.

The value of £(i,j) for each measured location is found by determining the
local z-minima of E that are x,y connected. We say that the voxel (i, ], k) is
a local z-minimum if Vi € V.(k), E(i,j,k) < E(i,74,1). In Fig.7, the red planes
represents the sought after local z-minima.

Let £ C Q be the set of all local z-minima of €.

The first step of the regularisation procedure consists of finding all subsets
of connected voxels of £. We assume that the voxels (i1, j1, k1) and (ig, jo, ko)
are connected if [iy — i <1, |71 — j2| < 1 and [z, — 2k, < 5.

Let S, € L (r = 1...R) be the R connected subsets of £. Let C(S,) =
ﬁ 2 (ijkes, E(i,j, k) be the mean value of the quadratic error for that con-

nected subset, with | @ | being the number of elements of e.
The second step of this procedure consists of finding the most probable
connected subset, i.e. the set that minimises C: S = argmin{C(S,)}. If the Lol
r=1...R

thickness variation is regular enough, then for any (4, j) couple there is at most
one value k such that (i, j, k) € S.

We thus can assign the thickness reconstruction as follows:
for each (i,7,k) € S, (i, §) = 2.

At this stage, there can be some measurement locations with no thickness
estimate. This occurs when the reflection measurements are affected by noise

that is strong enough to offset the z; array by more than 5. In that case, we

can seek the next minimum of C or interpolate the current solution.
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