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Abstract—Software versioning is intrinsic to software evolution.
It keeps history of previous software states (versions) and
updates the software to the latest stable version. In the last
twenty years, a lot of work was dedicated to software ver-
sioning. Many version control mechanisms were proposed to
store and track software versions for different software forms
(code, objects, models, . . . ). This paper addresses in particular
software architecture versioning considering three abstraction
levels: specification, implementation and deployment. In previous
work, we proposed an approach that generates evolution plans
for three-level component-based software architectures. The gen-
erated plans deal with a change initiated from one of the three
abstraction levels and propagate it to the other levels in order to
keep software descriptions consistent and coherent all along the
software lifecycle. On this basis, we propose a versioning model
that stores information about evolution and also keeps track of the
right version of architecture descriptions at a given abstraction
level.

Keywords–architecture evolution, abstraction levels, versioning,
component reuse.

I. INTRODUCTION

Versioning is central to software evolution management [1].
In order to ensure the continuity of a software product, it is
necessary to keep track of its changes and previous versions
after each evolution. Versioning is both essential for users
and developers. For users, versioning helps to maintain their
installed software up-to-date or at least warn them if their
current software version becomes obsolete. For developers,
versioning helps select / use the adequate versions of reusable
software components, packages or libraries (considering, for
instance, compatibility issues) and contributes to collaborative
work by developing several versions in parallel or merging
them [2].
During the last years, many version control mechanisms were
proposed to store and track software versions for different
software forms (code, models, objects, . . . ) [3].
While software architectures have become central to software
development [4], little work was dedicated to architectural
versioning. Existing work on architectural versioning [5], [6],
[7] proposes basic versioning mechanisms that do not take
into account the whole software lifecycle. Evolving a soft-
ware architecture should not only focus on distinguishing the
different versions of software system as a whole. Instead, it
should state which versions of a description resulting from
the different software development steps (e.g., documentation,
implementation model, deployment models, . . . ) is compatible
to which other versions of other descriptions of the same
system. Indeed, this information is crucial for requirement
traceability. For instance, when evolving a software architec-
ture, the architect needs mechanisms to know the latest version

of its specification and also all the related implementations that
will be affected by this evolution.
In this work, we address such versioning issues by propos-
ing a version model that considers the three main steps
of component-based software lifecycle: specification, imple-
mentation and deployment. The remainder of this paper is
outlined as follows: Section II presents the background of
this work namely the Dedal three-level architectural model [8]
and its evolution management process. Section III presents
the contribution of this paper consisting in the three-level
versioning model of software architectures and the different
versioning strategies. Section IV discusses related work and
finally Section V concludes the paper and presents future work
directions.

II. BACKGROUND AND MOTIVATION

In this work we address the versioning of component-based
software architectures at three abstraction levels. First, we
introduce the three-level architectural model Dedal and then
we briefly explain how architecture evolution is managed in
Dedal.

A. Dedal: the three-level architectural model
Reuse is central to component-based software development

(CBSD) [9]. In CBSD, the software is constructed by as-
sembling pre-existing (developed) entities called components.
Dedal [8] proposes a novel approach to foster the reuse of
software components in CBSD and cover all the three main
steps of software development: specification, implementation
and deployment. The idea is to build a concrete software
architecture (called configuration) from suitable software com-
ponents stored in indexed repositories. Candidate components
are selected according to an intended architecture (called
architecture specification) that represents an abstract and ideal
view of the software. The implemented architecture can then be
instantiated (the instantiation is called architecture assembly)
and deployed in multiple contexts.

Dedal model is then constituted of three descriptions that
correspond to three architecture abstraction levels:

The architecture specification corresponds to the highest
abstraction level. It is composed of component roles and
their connections. Component roles encapsulate the required
functionalities of the future software.

The architecture configuration corresponds to the sec-
ond abstraction level. It is composed of concrete component
classes, selected from repositories, that realize the identified
component roles in the architecture specification.

The architecture assembly corresponds to the third and
lowest abstraction level. It is composed of component instances



that instantiate the component classes of the architecture
configuration. An architecture assembly description represents
a deployment model of the software.

Figure 1 illustrates the three architecture levels of Dedal
and represents the running example of this paper. It consists
of a variant of a Home Automation Software that controls the
building’s light during specific hours through an orchestrator
(HomeOrchestrator component role). The specified function-
alities – turning on / off the light (Light component role),
controlling its intensity (Intensity component role) and getting
information about the time (Time component role) – are
respectively realized through the AdjustableLamp and Clock
component classes. Two instances of AdjustableLamp are
deployed to control the lighting of a Sitting room (SittingLamp)
and a Desk (DeskLamp).

Figure 1. Running example

B. Evolution management in Dedal
Software architectures are subject to change at any ab-

straction level to meet new requirements, improve software
quality, or cope with component failure. In previous work [10],
[11], we proposed an evolution management process that
deals with architectural change based on Dedal and the B
formal language [12]. Using a customized solver, the evolution
manager captures change at any abstraction level, controls
its impact on the affected architecture and propagates it to
the other abstraction levels to keep all the three architecture
descriptions coherent. This results in generating sequences of
change operations that evolve the affected architecture to a
new consistent state. The generated sequences (called evolution
plans) represent the delta between two software architecture
versions in an operation-based manner.

C. Motivation
Versioning component-based software architectures at mul-

tiple abstraction levels is an important issue. Indeed, evolving
an architecture description at one abstraction level may impact
its other descriptions at the other abstraction levels. For in-
stance, evolving a software specification may require evolving
all its implementations and evolving an implementation may

entail evolving all its instantiations. In the remainder, we set up
a version model for three-level software architectures inspired
by Conradi’s taxonomy [3] and propose three strategies to
manage multi-level versioning. The interest of this version
model is twofold: (1) To capture information about evolution
by storing the operations list that transformed the old archi-
tecture into the new architecture version and (2) to ensure that
every architecture description version is related to its ”right”
homologue version at the other abstraction levels.

III. VERSIONING COMPONENT-BASED SOFTWARE
ARCHITECTURES

To set our version model, we take inspiration from Con-
radi’s taxonomy [3] that distinguishes between two graphs
representing two dimensions of software: the product space
where each node is a part of the product and edges represent
composition relationships and, the version space where nodes
represent versions and edges derivations between them. De-
pending on the versioning model, the version space can be a
linear, arborescent or direct acyclic graph. A version is called
a revision when it is intended to replace its predecessors and
is called a variant when it can coexist with other versions.
In our model, we distinguish the architectural space that
represents the architecture descriptions of the software at
three abstraction levels (i.e., specification, configuration and
assembly) from the version space that represents the versions
of an architecture at a given abstraction level. In the remainder,
we give the representation of each space: a three-level graph
for the architectural space and the version graph for the version
space.

A. Three-level graph
The three-level graph (see example on Figure 2) is a

representation of the software architecture without considering
versioning. Nodes represent the architecture descriptions of
the software while edges denote the implementation relations
between nodes at different abstraction levels. The root node
is the abstract architecture specification of the software (e.g.,
Home Automation Software). All nodes at the second level
(configuration level) represent the various implementations of
that specification (e.g., Android OS, Windows system). Finally,
nodes at the third level (assembly level) represent the different
deployment contexts related to a specific implementation (e.g.,
Office, Sitting room, . . . ).

Figure 2. The three-level graph



The three-level graph supports multiple granularity levels.
Indeed, each node points to another graph representing the
architecture structure in terms of components and their con-
nections. Composite components embed an inner architecture
as well.
This paper focuses on architectural versioning and its impact at
the other abstraction levels. Therefore, component versioning
is out of the scope of this paper.
To summarize, the architectural space is a three dimensional
space. It includes the specification dimension with a single
node (that represents the architecture specification), the con-
figuration dimension (that represents the different implemen-
tations of the software) and the assembly dimension (that
represents the different deployments of the software).

B. Architecture version graph
Our version model covers all three architecture levels.

Versioned entities may thus be an architecture specification,
an architecture configuration or an architecture assembly. The
version graph (Figure 3) is a representation of the V version set
related to a given architecture. Each node describes a unique
version of the architecture (identified by a unique version
identifier) while edges represent derivations between versions.

Figure 3. The version graph

The version model is change-based since the delta between
two versions is expressed in term of change operations rather
than states. A derivation is the change sequence enabling to
construct a version v2 from its predecessor v1. Formally, a
derivation is a function of type d : V → V where V is
the version space and d = op1 ◦ op2 ◦ . . . ◦ opn where opi
is an elementary change operation. If v1 is a version of the
software architecture, then successors of v1 are the set of
all the versions resulting from the derivations applied on v1:
succ(v1) = {v|v = d(v1)}.

The architecture version identifier contains information
according to the abstraction level and the operation list that
lead to the current version. At specification level, recorded
information consists of a version ID and the operation list. At
configuration level, these information are a version ID, the ID
of the implemented specification and the operation list. Finally,
at assembly level, the recorded information are the following:
a version identifier, the instantiated configuration identifier and
the operations list. We note that the operation list may be
empty when the architecture description is newly created (for
instance a new implementation variant of the software or a
new deployment context).

C. Interaction between the three-level graph and the version
graph

The version graph is orthogonal to the three-level graph.
Indeed, every node in the three-level graph represents a point

in the version graph and vice versa. Given a three-level graph
G and a new derivation d of an architecture a in G, we aim
to find the resulting three-level graph G′ related to a′ = d(a).
Therefore, we need to evaluate the impact of d on the whole
graph G. Indeed, d may trigger a change propagation to the
other nodes linked to a which in turn may recursively require
to derive other nodes.

In most cases, this task requires human assistance to decide
which derivations are really necessary (e.g., correcting bugs,
security faults, . . . ) and which are optional (e.g., functional
extensions, improvements, . . . ). Since we aim to automate the
versioning process, we need to set some strategies so that the
user can select the one to be used by default.

D. Versioning strategies
We propose three versioning strategies:

a) Minimum derivation strategy.: The minimum deriva-
tion strategy aims to limit change propagation and minimize
the number of derivations to be applied on the three-level
graph. The principle of this strategy is to version only the
active impacted nodes without considering the propagation
to all the other nodes. Active nodes consist in a tuple of
three nodes (s, c, a) where s, c and a respectively denote
an architecture specification, an architecture configuration and
an architecture assembly. For instance, let us consider the
three-level graph shown in Figure 4-a. The active node is
(s.v1, c1.v1, a12.v1).

Figure 4. Example of minimum derivation

d(c1) triggers a change on the specification s1 and a change
on a12. We have then to create a new three-level graph with
the new versions (s.v2, c1.v2, a12.v2) (cf. Figure 4-b).

The minimum derivation strategy is suitable when the
change purpose is not an emergency and when previous
versions can coexist with new ones.

b) Full derivation strategy.: In contrast to the minimum
derivation strategy, the full derivation strategy aims to version
all the (directly and recursively) impacted architecture descrip-
tions. It should be applied when the reason of evolution is
important (for instance a security fault detected in a component
used by all architecture implementations). Firstly, derivation
is applied to the active node and then change is propagated
recursively to the other nodes (cf. Figure 5). For instance, the
revision of node c1.v1 (configuration level) is propagated to
the other nodes as follows:



Figure 5. Example of full derivation

• derivation of a new specification revision s.v2 from
s.v1,

• merging of c2.v1 and c3.v1 nodes into the new c3.v2
node (both evolution of c2.v1 and c3.v1 leads to
c3.v2) and,

• revisions of all nodes at assembly levels, notably
a21.v2 derived from a21.v1 becomes associated to
c3.v2 configuration revision.

c) Custom derivation strategy.: This strategy is guided
by the architect that has to specify which architecture descrip-
tions to keep and which ones to replace by a new versions. The
custom derivation strategy is used after a default application
of the minimum derivation strategy so that necessary versions
are always created.

IV. RELATED WORK

Software versioning has been studied for many years with
the the objective to provide a SCM (Software Configuration
Management) system [3]. Versioned entities has taken several
forms and different granularities (source code lines, objects,
libraries, . . . ). Early work targeted mainly source code ver-
sioning. Several versioning systems were proposed and widely
used such as SVN [13], CVS [14] and Git 1.

With the emergence of component-based software devel-
opment, more recent work addressed component versioning
rather than source code [2]. Examples include JAVA [15], and
COM .Net. More recent approaches treated as well the issue
of component substitutability like the work of Brada et al.
(SOFA) [16] and the issue of compatibility like the work of
Stuckenholz et al. [17].

Regarding architectural versioning, only little work was
dedicated. The SOFA 2.0 ADL [5] enables to version com-
posite components and therefore an entire architecture (which
is considered as a composite component). Other existing ADLs
like MAE [6] and xADL 2.0 [7] also enable architecture
versioning. However, all these architectural versioning models
neitheir store enough information about evolution (operations

1https://git-scm.com/about

list that results in the new architecture version) nor maintain
the trace of the architecture throughout the whole software
lifecycle. Another closely related work addressed architectural
versioning at multiple abstraction levels [18]. The proposed
approach is based on the SAEV model [19] that defines three
abstraction levels of software architectures: the meta level,
the architecture level and the application level. However, this
taxonomy is different from Dedal since the meta level is a kind
of language that encompasses the definition of architectural
concepts to be used at the lower level.

V. CONCLUSION AND FUTURE WORK

This work proposes a version model for software archi-
tectures. Based on Dedal, the model considers versioning
at three architecture abstraction levels that covers the whole
software lifecycle. It captures information about evolution
(operation list) and enables to revise all or a part of the
existing versions of the software architecture descriptions using
three versioning strategies: full, minimal and custom. Future
work consists in studying component versioning and its impact
on architectural versioning considering compatibility issues.
From a practical perspective, ongoing work is to automate this
versioning mechanism and integrate it into DedalStudio, our
eclipse-based tool that automatically manages the architecture
evolution process [11].
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