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the state-of-the-art from a range of fields in this interdisciplinary area across a range of research tasks. We assess varying defini-
tions and propose a conceptual model – Open Claims – for claims and related notions that takes into consideration their inherent
complexity, distinguishing between their meaning, linguistic representation and context. We also introduce an implementation of
this model by using established vocabularies and discuss applications across various tasks related to online discourse analysis.
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1. Introduction

The Web has evolved into an ubiquitous platform where many people have the opportunity to be publishers, to
express opinions and to interact with others. It has been widely explored as a source to mine and understand online
discourse or to extract knowledge.

On the one hand, understanding and analyzing societal discourse on the Web are becoming increasingly important
issues involving computational methods in natural language processing (NLP) or computational linguistics. Related
tasks include fact or claim verification, discourse modeling, stance detection or argumentation mining. In this con-
text, a wide range of interdisciplinary research directions have emerged involving a variety of scientific disciplines
including investigations into the spreading patterns of false claims on Twitter [197], pipelines for discovering and
finding the stance of claim-relevant Web documents [20,70,203], approaches for classifying sources of news, such
as Web pages, pay-level domains, users or posts [143], or research into fake news detection [190] and automatic
fact-checking [75]. In addition, understanding discourse in scholarly and scientific works has been a long-standing
research problem throughout the past years [1,57,58,61,64–66,79,83,87,94,95,120].

On the other hand, knowledge-based approaches, in particular works in knowledge base (KB) construction and
augmentation, often are concerned with mining, verifying and representing factual knowledge from the Web. Re-
search in such areas often deploys methods and conceptualisations strongly related to some of the aforementioned
computational methods related to claims, e.g. when aiming to verify facts from the Web for augmenting KBs
[37,214]. Whereas the focus in knowledge base augmentation is on extracting and formally representing trust-
worthy factual statements as an atomic assertion in the first-order-logic sense, research focused on interpreting
claims expressed in natural language tends to put stronger emphasis on understanding the context of a claim, e.g.
its source, timing, location or its role as an argument as part of (online) discourse. Capturing the meaning of claims
requires both to preserve the actual claim utterances as natural language texts as well as structured knowledge
about the claims. Utterances often carry a range of assertions and sentiments embedded in complex sentence struc-
tures, which are easy to process by humans but are hard to interpret by machines. Preserving structured knowledge
about claims, including their contexts and constituents, enables machine-interpretation, discoverability and reuse of
claims, for instance, to facilitate research in the aforementioned areas.

Despite these differences, methods in various disparate fields, such as claim/fact verification or fact-checking as
well as KB augmentation, tend to be based on similar intuitions and heuristics and are concerned with similar and
related notions from different perspectives. Hence, achieving a shared understanding and terminology has become
a crucial challenge.

However, both the used terminology and the underlying conceptual models are still strongly diverging, within and
across the academic literature and the involved applications [35,186]. For example, “Animals should have lawful
rights” is considered a claim in Chen et al. [29] and according to many definitions from the argumentation mining
community which define claims as the conclusive parts of an argument. It does not constitute a claim according to
the guidelines of the FEVER fact-checking challenge [184] where claims are defined as factoid statements. This
claim would also not be eligible for inclusion in a fact-checking portal as it does not contain factual content that
can be checked and does not seem check-worthy (although this would depend on the context, such as who uttered
the statement and when). The claim might be contained in the ground truth of a topic-independent claim extraction
approach, but might only be used to evaluate a topic-dependent approach when it is connected to a given topic (more
details in Section 3).

This heterogeneity poses challenges for the understanding of related works and data by both humans as well as
machines and hinders the cross-fertilisation of research across various distinct, yet related fields. Thus, our work
aims at facilitating a shared understanding of claims and related terminology across diverse communities as well as
the representation of semi-structured knowledge about claims and their context, which is a crucial requirement for
advancing, replicating, and validating research in the aforementioned fields.

In order to address the aforementioned problems, this paper makes the following main contributions:

– An extensive survey (Section 3) of related works concerned with defining, understanding and representing
online discourse and related notions, most importantly, claims and facts. The survey is the first of its kind,
providing a comprehensive overview of definitions, terminology used across various fields and communities.
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– A conceptual model (Section 4), which we call Open Claims Model, and corresponding terminology of claims
and their constituents and context, that is grounded in both scientific literature in related fields such as argu-
mentation mining or discourse analysis as well as the actual practices of representing and sharing claims on
the Web, for instance, as part of fact-checking sites. To this end, we also provide an OWL (Web Ontology
Language) implementation of the model as well as an RDF/S (Resource Description Framework Schema) im-
plementation that uses state-of-the-art vocabularies, such as schema.org and PROV-O (Provenance Ontology),
in order to facilitate Web-scale sharing, discovery and reuse of claims and their context, for instance through
semi-structured Web page markup or as part of dedicated knowledge graphs (KGs) such as ClaimsKG [176].

– An introductory review of related information extraction and knowledge engineering tasks (Section 5),
involved with the extraction, verification and (inter)linking of claim related data. Our aim is to provide an
overview of related state-of-the-art works that may be used for populating a KB of claims and their context
according to the proposed conceptual model. This also enables us to discover under-researched areas and
challenging directions for future work.

Note that while an earlier version of the conceptual model has been presented in Boland et al. [23], the novel
contributions of this work include the actual survey of related works in the context of online discourse, a critical
review of related tasks, as well as improvements to the model and its implementation facilitated by the substantial
survey provided here.

This work is meant to facilitate a shared representation of claims across various communities, as is required
for inter-disciplinary research. This includes works aimed at detecting and representing the inherent relations of
uttered claims among each other or with represented factual knowledge and other resources, such as web pages
or social media posts, e.g., as part of stance detection tasks. Assessing and modeling the similarity of claims,
for example, is a challenging task. When two claims are similar to each other, what precisely does this mean?
Do they have the same topic but have been uttered to express a different stance? Are they expressing a shared
viewpoint but have been uttered by different agents? Do they talk about similar topics but with diverging specificity,
i.e. the topic of one claim is a single aspect of the more broad topic of the other one? Or is one claim a part of
a more complex claim that includes multiple assertions? Even claims deemed equal with regard to their content
may have to be differentiated: they may, for example, be repeated utterances with the same content by the same
agent (but at different times), paraphrases (same content but different utterances, also at different times, maybe
by different agents) or just duplicates in the respective database. A fine-grained model that allows relating claims
and individual claim components allows specifying different dimensions of relatedness and similarity. This also
enables more formal and clear definitions for tasks related to detection of claim similarity and relatedness. Use cases
involve research into the detection of viewpoints and communities sharing related narratives and viewpoints on the
Web [172], the analysis of quotation patterns involving varied sources and media types or profiling of sources and
references used in news media [126], and fact-checking applications, e.g. linking claims to previously fact-checked
claims [109,162].

2. Methodology of the survey

In this section, we describe the publication selection and review process employed in this survey. An overview of
the workflow is given in Fig. 1.

2.1. Selection of research fields

First, we identified application areas and research fields involved with claims, facts or relevant concepts.
Application domains include, on the one hand, areas related to natural language claims, which are of concern in

fact-checking portals, computational journalism or scientific discourse analysis, for instance, as part of scholarly
publications, all involving claims of varying complexity. On the other hand, structured knowledge bases such as
Wikidata are used in various applications such as Web search and involve factual statements bound to a predefined
grammar relying on triples involving a subject (s), predicate (p) and object (o).

http://schema.org
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Fig. 1. Publication selection and review workflow.

It becomes apparent that a more explicit and clear definition of the concepts of facts vs. claims is needed as both
are relevant to this survey. Works focusing on claims made in the context of discourse can be found in argumentation
mining, argumentation theory, discourse modeling, and pragmatics.

Facts are central for knowledge representation/augmentation works. With claims not only transporting beliefs or
knowledge about factual information, but also conveying subjective information such as opinions, stances or view-
points, relevant definitions and concepts can also be found in works targeting stance detection, viewpoint extraction
and opinion mining/sentiment analysis. Rumours can be considered specific kinds of claims, thus we include def-
initions from the rumour detection field. Finally, retrieval of claims or respectively facts about specific entities is
central to question answering and information retrieval in general, for instance, in the context of fact retrieval, entity
summarisation or entity retrieval. Relevant works from these fields are also taken into account.

2.2. Search and review process

Works addressing the aforementioned fields and tasks can be found in a variety of different scientific communities,
particularly NLP, Web Mining, Information Retrieval (IR), Knowledge-based Systems and Artificial Intelligence
(AI). Based on an initial set of publications from these communities dealing with extraction, verification or linking
of claims and facts, found using a keyword-based search, we selected venues from the most relevant papers for
systematic screening. Table 1 gives an overview of the chosen core journals, conferences, workshops and events. For
each of those, we screened the proceedings of the years 2015–2019 (incl. 2020 and 2021 to the extent possible at the
time of writing and revision preparation) and widened the search beyond these venues using online search engines
and databases, also considering pre-prints. Publications cited by relevant publications were also taken into account
regardless of their venue. For each publication, we extracted formal and informal definitions and descriptions of the
concepts of claims and facts which are the basis for the analysis in Section 3 and the development of the model
introduced in Section 4. As part of the modeling process, we defined possible relations between the different classes
and mapped the generation of information on classes and relations to knowledge engineering tasks (Section 5). We
extended our search in the listed venues and beyond to also cover these tasks. The following set of keywords was
used for both steps: fact-checking, fact checking, fake news, fact verification, argumentation, discourse, pragmatics,
logic, knowledge representation, knowledge base augmentation, knowledge base construction, Knowledge-Base
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Table 1

Core venues analyzed systematically for the survey of fact and claim definitions and related concepts. Related events and workshops that were
also considered: Workshop on Argument Mining (ArgMining), Fake News Challenge (FNC), CLEF Lab: CheckThat!, Fact Extraction and
VERification (FEVER) Shared Task

Community Journals Conferences

NLP Computer Speech and Language ACL, EMNLP, COLING, NAACL-HLT

Web (Mining) ACM TWEB WWW, WSDM

IR Information Retrieval Journal (Springer) SIGIR, ECIR

AI AAAI, IJCAI, ECAI

Knowledge-based Systems & Knowledge Graphs SWJ, TKDE, JWS, Elsevier KBS ISWC, ESWC, CIKM

Fig. 2. Analyzed publications and distribution over venues for all venues with at least 10 publications.

Fig. 3. Analyzed publications and distribution over years for all years with at least 10 publications.

Augmentation, stance, viewpoint, claim, opinion mining, sentiment analysis, rumour detection, rumor detection,
question answering, information extraction, relation extraction, ontology learning. This search procedure resulted
in a set of 598 publications that we deemed potentially relevant for the topics. Distribution across venues and time
periods are displayed in Figs 2 and 3. Note that not all of these publications contain relevant definitions or ended
up being cited in this survey. To maintain readability, both figures only contain venues and years, for which we
collected at least 10 publications.
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2.3. Related surveys and conceptualizations

While this is, to the best of our knowledge, the first extensive survey on the conceptualization of facts and claims,
several works have looked into different aspects of the problem providing overviews of related work in specific
areas related to these aspects.

Konstantinovskiy et al. [88] present a novel annotation schema and a benchmark for check-worthy claim detec-
tion, providing both an overview of claim definitions from other studies and a new definition of a claim that is
constructed as a common denominator of existing ones. The novelty is that the definition is cast in the context of
a claim being worthy of fact-checking – an important property of an utterance in view of verifying its veracity.
The difficulty of identifying and defining fact-check worthiness of a claim is discussed with regard to the different
perspectives that can be given to a single claim according to the human annotator’s background.

Daxenberger et al. [35] also take interest in the task of claim identification, but from an argumentation mining
perspective, where this task is defined as recognizing argument components in argumentative discourse. The au-
thors propose a qualitative analysis of claim conceptualization in argumentation mining data sets from six different
domains (“different domains” here mean different data distributions). They show that the ways in which claims are
conceptualized in each of these data sets are largely diverging and discuss and analyze the presumed harmful impact
of these divergences on the task of cross-domain claim identification.

Thorne et al. [180] take a holistic stance on the problem and task of automated fact-checking. They provide an
overview of approaches, data sets and methods covering the various steps of the process. This is the first paper of
its kind that formulates the ambition to unify the often diverging definitions presented in related works from the
fact-checking field by identifying shared concepts, data sets and models. A particularity of the survey is the fact that
the authors consider both text-like and structured definitions of claims (e.g. in the form of triples), covering works
on knowledge graph building and completion.

Fake news detection is related to fact-checking, but remains a distinct problem. Zhou et al. [222] provide a
definition of fake news and present relevant fundamental theories in various disciplines on human cognition and
behaviour that are assumed useful for understanding fake news propagation and detection. Their survey on fake
news detection methods is built along four categories of methods: (i) Knowledge-based methods, which verify if
the knowledge within the news content matches certified facts; (ii) Style-based methods that look into the form of
fake news (e.g., expressing extreme emotions); (iii) Propagation-based methods that are based on online spreading
patterns; and (iv) Source-based methods investigating the credibility of sources.

Rumours are often seen as a specific kind of fake news. Zubiaga et al. [224] provide a survey on rumour iden-
tification and resolution, where conflicting and diverging definitions of rumours from related works are discussed,
but without making parallels to related notions such as fake news or biased discourse. The main motivations are
the assumed impact of social media on rumour generation and spread. The survey focuses on datasets for rumour
detection, as well as existing tools for accessing, collecting and annotating social media data for the purposes of
automated rumour detection. The authors analyse generic rumour detection systems by breaking them down to their
different components and subsequently discussing the related approaches to address the challenges related to each
of those components. In that, the paper presents rumour tracking systems, rumour stance classification and veracity
classification approaches.

Both the lack of and necessity for shared understanding and conceptualization of claims surfaces from all of the
above studies, which is underlined as their main motivation. However, the fact that some of these surveys discuss
the same notions and refer to the overlapping sets of related work but by using different terminology (like e.g. [224])
comes to show that these works do not fully contribute to closing the terminological and conceptual gap that exists
within and across fields as these studies discuss more narrow concepts of claims/facts used in specific domains
rather than aiming at providing a shared view on the overlap and differences between used terminology.

3. Facts and claims – a multidisciplinary survey of definitions

While the analysis of facts and claims plays a crucial role for a number of fields, the definitions of these concepts
vary and are often left to the intuition of the reader. Existing definitions vary considerably not only across different



CORRECTED  P
ROOF

K. Boland et al. / Beyond facts 7

Fig. 4. An overview of definitions and relations between facts and claims.

fields but also within a single community. At the same time, different communities use the same terminology to refer
to different concepts. In this section, we expatiate on different concepts for facts and claims, explain commonalities
and differences and introduce a selected vocabulary to refer to these and related concepts throughout this paper. An
overview is given in Fig. 4.

3.1. Facts

A fact in the everyday use of the term (depicted on the top of Fig. 4) refers to “A thing that is known or proved to
be true”,1 “something that has actual existence”,2 “something that is known to have happened or to exist, especially
something for which proof exists, or about which there is information”,3 “something that actually exists; reality;
truth”,4 “an event known to have happened or something known to have existed”5 or “a concept whose truth can be
proved”.6 Note that not everything that is a fact according to this definition can be observed directly; instead, beliefs
about them can be formed by observing evidence.

3.1.1. Facts in knowledge bases
In the semantic web community and the fields of knowledge representation and knowledge base construction/aug-

mentation, facts are seen as the knowledge that is represented in KGs or KBs [6,9,12,28,31,46,47,50,110,110,115,
131,153,165,189,193,196,200,216,223]. More precisely, items in KGs or KBs are coined statements of facts or as-
sertions or triples encoding/representing facts [28,31,115,165,193], with the facts being assumed to be true, can be
proven to be true or are likely to hold [31,131,142]. However, the use of terminology is not consistent: fact is often
used as synonym for RDF triple [50,82,131,218,223] or for the representation of a fact, respectively assertion, but
there is often no distinction made between “fact” and “statement of a fact” [46,110,115,153]. The interchangeable

1Oxford Dictionary; https://www.lexico.com/en/definition/fact.
2Merriam-Webster Dictionary; https://www.merriam-webster.com/dictionary/fact.
3Cambridge Dictionary; https://dictionary.cambridge.org/dictionary/english/fact.
4Dictionary.com; https://www.dictionary.com/browse/fact.
5WordNet; http://wordnetweb.princeton.edu/perl/webwn?s=FACT; S3.
6WordNet; http://wordnetweb.princeton.edu/perl/webwn?s=FACT; S4.

https://www.lexico.com/en/definition/fact
https://www.merriam-webster.com/dictionary/fact
https://dictionary.cambridge.org/dictionary/english/fact
https://www.dictionary.com/browse/fact
http://wordnetweb.princeton.edu/perl/webwn?s=FACT
http://wordnetweb.princeton.edu/perl/webwn?s=FACT
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use of “statement of fact” and “fact” leads to a widespread terminology of “checking whether facts are true” [175],
implying that facts may not be true. Depending on the precise definition of fact, this might be an oxymoron, i.e.
when defining a fact as something that is known to be true. Having the task of fact-prediction as background, some
works coin the relations between entities or the paths in a knowledge base as facts [131,196]. As Gerber et al. [50]
note, facts have a scope, e.g. a temporal one, that determines the context that has to be taken into account in order
to judge their validity.

3.1.2. Types of facts
Several more fine-grained distinctions of different types of facts can be found in the literature. Facts can refer to

relations or attributes [218], or can be attributes of other facts [196]. They can pertain to numerical properties, quotes
or other object properties [82]. They can be assessed according to their “check-worthiness” [82] or importance for
the containing KB [196]. Another interesting distinction is made by Tsurel et al. [191] who aim at identifying facts
that are suitable to be used as interesting trivia by developing a measure for trivia-worthiness that relies on surprise
and cohesiveness of the contained information.

Throughout this paper, we will use the term fact referring to knowledge that is generally accepted to be true and
refer to items in knowledge bases as statements of facts.

3.1.3. Facts vs. evidence
Related to the notion of fact is the notion of evidence. Evidence is seen as something to support or contradict a

claim [3,150,171]. Some works give a more narrow definition relating to their specific use cases, e.g. Zhan et al.
[216, p. 1] define evidence as “text, e.g. web-pages and documents, that can be used to prove if news content is or
is not true”. As Stahlhut [171] notes, the task of evidence detection is similar to premise detection in argumentation
mining. A premise in argumentation mining is, as Stab et al. [169, p. 1] put it, “a reason given by an author for
persuading the readers of the claim”. Evidence and premise directly correspond to each other, as both terms are
often used interchangeably [101,166,188].

Evidence can be categorized into many different types, such as expert opinion, anecdote, or study data [171], or,
with slightly different wording, study, expert or anecdotal [3]. Walker et al. [199] distinguish lay testimony, medical
records, performance evaluations, other service records, other expert opinions, other records. Niculae et al. [125]
include references such as URLs or citations as pointers to evidence. Premises can refer to logos, pathos or ethos
[80]. For scientific articles, Mayer et al. [112] distinguish the classes comparative, significance, side-effect, other.

While some works refer to knowledge found in texts or other resources as evidence for a fact [9,46,127,153] and
call it fact only after the truthfulness has been determined and that knowledge is entered into a knowledge base,
other works assume the truthfulness of the mentions and refer to them or the knowledge they represent as facts
directly [32,71]. Very related is the task of Truth Discovery. “Truth Discovery aims at identifying facts (true claims)
when conflicting claims are made by several sources” [18]. In this domain, the terms data items and truths are used
to refer to invalidated mentions of knowledge and the true values respectively [202,209].

3.2. Claims

A claim is commonly seen as “a statement or assertion that something is the case, typically without providing
evidence or proof”.7

3.2.1. Claims in argumentation
In line with this definition, works in argumentation mining and argumentation theory focus on claims as the

key components of arguments [35], as statements that are made to convince others or express someone’s views,
evaluations or interpretations [80,102,107,152].

Claims denominate the conclusion of an argument, the assertion the argument aims to prove or the thesis to
be justified [19,97,100–102,133,169]. Claims correspond to propositions in argumentation models and both terms
are often used interchangeably, “The claim is a proposition, an idea which is either true or false, put forward by
somebody as true” [133]. As Daxenberger et al. [35] point out, the exact definition of a claim, even inside the field

7https://www.lexico.com/en/definition/claim

https://www.lexico.com/en/definition/claim
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of argumentation mining, depends on the domain or task and is somewhat arbitrary. Also, as Torsi et al. [186] show,
related annotation categories are often not well defined.

With the use case of scientific articles in mind, Mayer et al. [111] define a claim as a concluding statement made
by the author about the outcome of the study. Focusing on debates, Aharoni et al. [3, 2], but also Rinott et al. [150,
1], define a claim as a “general, concise statement that directly supports or contests the topic”. A topic here is defined
as “a short, usually controversial statement that defines the subject of interest” or “a short phrase that frames the
discussion” respectively. Examples for such topics are “Use of performance enhancing drugs (PEDs) in professional
sports” with a claim being “PEDs can be harmful to athletes health” [150, p. 2] or “The sale of violent video games
to minors should be banned” with a claim being “Violent video games can increase children’s aggression”[3, p. 3].
Note that these definitions diverge from the common definition of a topic as the underlying semantic theme of a
document with a topic being a probability distribution over terms in a vocabulary [22] as used in topic modelling
and document classification. There, a topic may be represented by terms on a coarse-grained level such as Health or
Computers & Internet [211]. This concept of a topic is also used by Chen et al. [29] in their work about discovering
perspectives about claims. Also, the second example of a topic can be seen as a claim or stance itself. Durmus et
al. [40] represent topics by tags of pre-defined categories similar to the above described semantic themes plus what
they call a thesis, corresponding to Aharoni et al. [3]’s claim-like topics, e.g. “free Press is necessary to democracy.”,
“All drugs should be legalised.”.

In the following, topic will be used to refer to the frame of the discussion, as defined by Rinott et al. [150] while
the underlying semantic theme will be referred to as the subject.

3.2.2. Types of claims
According to Lippi et al. [102], there are three different types of claims: 1) epistemic, i.e., claims about knowledge

or beliefs, 2) practical, i.e., claims about actions, alternatives and consequences, and 3) moral, i.e., claims about
values or preferences. For example, “our survival rate for cancer that used to be some of the worse in Europe now
actually is one of the best in Europe, we are changing the NHS and we are improving it” [sic] is an epistemic, “cuts
will have to come, but we can do it in a balanced way, we can do it in a fair way” a practical and “I don’t want
Rebecca, I don’t want my own kids, I don’t want any of our children to pay the price for this generation’s mistake”
a moral claim [102].

Similarly, Schiappa et al. [45,157] differentiate claims of fact, value and policy. Claims of fact state that something
is true, i.e. they express a belief about a fact. This corresponds to the epistemic claims according to Lippi et al. [102]’s
taxonomy with claims of value and policy corresponding to moral and practical claims, respectively. Epistemic
claims are also referred to as factoid claims [183,184] or, more commonly, factual claims, e.g. [51,52,75,76,88,97,
117,130]. However, assessing the factuality of a claim may refer to assessing a claim’s veracity [74] rather than
assessing whether it is a factual or non-factual claim. Note that all types of claims can be used to express a stance in
discourse but not all of them are verifiable.

Some works propose a more fine-grained differentiation of claims according to their use cases, e.g. Lauscher
et al. [95] distinguish Own Claims vs. Background Claims vs. references to Data for argumentation mining of
scientific texts. Hassan et al. [77] distinguish between the classes Non-statistical (e.g. quotes), Statistical, Media
(e.g., photo or video), and Other, Zhang et al. [217] between categorical vs. numerical claims. Park et al. [136]
categorize claims according to their verifiablity and distinguish between unverifiable, verifiable nonexperiential,
verifiable experiential claims with experiential referring to whether the claim refers to the writer’s personal state
or experience or not. Another notion that can be seen as a specific type of claim is a rumour. In an attempt to
unify various definitions found in works addressing the identification and veracity assessment of rumours, Zubiaga
et al. [224, p. 1] define rumours as “items of information that are unverified at the time of posting”. The authors
further distinguish between different types of rumours, with respect to their currentness (emerging vs. longstanding
rumours).

3.2.3. Claims vs. stances vs. viewpoints
Habernal et al. [68] explain that the term claim in the context of argumentation theory is a synonym for standpoint

or point of view referring to what is being argued about, i.e. the topic. This is in line with Liebeck et al’s [98] and
Aharoni et al’s [3] debate-oriented definition and with Hidey et al’s [80, p. 4] definition of claims as “proposition
that expresses the speaker’s stance on a certain matter”. Standpoint, point of view and stance in these definitions do



CORRECTED  P
ROOF

10 K. Boland et al. / Beyond facts

not mean the content of the claim has to be of an unverifiable or of a purely opinionated nature. Stab et al. [170] see
a stance as an attribute of a claim.

Stances are usually defined as text fragments representing opinions, perspectives, points of views or attitudes
with respect to a target [52,53,70,89,221]. They can be expressed explicitly or implicitly [146]. Fragments can be
messages such as tweets or posts [55,86], paragraphs [144] or complete articles [70]. Joseph et al. [86] see stances
as latent properties of users rather than text fragments. Text fragments can however reveal a user’s stance. As Joseph
et al. [86] point out, stance and sentiment are related, but not the same: a negative sentiment of a text can be paired
with a positive stance towards a particular target and vice versa. Also the tasks of aspect-based sentiment analysis
and stance detection differ, even though both aim at detecting opinions towards a target. For example, a piece of text
may express a positive sentiment towards a specific aspect of a person, e.g. their personality, but still argue against
this person’s claim.

Stance detection has been used to determine opinions on the veracity of claims [43,108]. Stances in these works
are similar to what is coined evidence in fact-checking works, as described above, although they do not necessarily
contain factual information that can be used to verify information. Note that this may be the case for evidence as
well, depending on the precise definition. The fact that a claim is supported by another entity than the source can be
seen as evidence for the claim’s truthfulness in itself (cf. expert-type evidence).

Stances have been classified into different categories such as for, against and observing [43], pro and con [14] and
none [185], agree, disagree, discuss, or unrelated [118]. There is also a hierarchical model that classifies the stance
of web documents in three levels: first as related or unrelated, the related ones as taking a stance or being neutral,
and those taking a stance as agree or disagree [154]. Another fine-grained distinction can be found in Hidey et al.,
[80] who distinguish interpretations, rational evaluations, emotional evaluations, agreement and disagreement. As
Kotonya et al. [89] note, the task of stance classification is closely related to relation-based argumentation mining
that determines attack and support relations between argumentative units.

Another related task is that of viewpoint discovery. Thonet et al. [177] define a viewpoint as “the standpoint of
one or several authors on a set of topics”. A viewpoint goes beyond a person’s stance on a specific subject and
represents their global standpoint or side they are taking. As Thonet et al. [177] explain, a viewpoint in a debate
about the building of Israeli communities on disputed lands can for example be summarized as “pro-Palestine” or
“pro-Israel”. Consequently, Viewpoint Discovery is considered a sub-task of Opinion Mining [145,177].

Another closely related, but different notion is that of a perspective which Chen et al. describe as an argument
that constitutes a particular attitude towards a given claim, an opinion in support of a given claim or against it [29].
For example, for a claim “Animals should have lawful rights” a perspective would be “Animals are equal to human
beings”, which would express support for the claim. A perspective corresponds to an opinion on a specific aspect
in a viewpoint. Perspectives can be supported by evidence, connected to claims by supports or attacks relations and
can be seen as a specific type of claims that are connected to what Chen et al. coin argue-worthy claims.

3.2.4. Claims in journalism and fact-checking
Works outside of the area of argumentation focus less on the role of the claim in the context of the discourse and

more on the content of the claims.
A very general definition is given by Zhang et al. [217, p. 2] for their truth discovery approach: “A claim is defined

as a piece of information provided by a source towards an entity”.
From a journalistic fact-checking perspective, dedicated platforms focus on statements supported by (a group

of) people or organizations that appear news-worthy, check-worthy, significant and verifiable (cf. definitions from,
e.g., politifact.com,8 truthorfiction.com,9 or checkyourfact.com10). Newsworthiness and significance are not only
subjective, both can also vary depending on historical or political context [62].

For other use cases, different definitions or restrictions of what is considered a claim are employed.
Automatic fact-checking often constrains the problem by limiting the kinds of claims being checked to focusing

on simple declarative statements (short factoid sentences [181]) or claims about statistical properties [62,179,195].

8https://www.politifact.com/truth-o-meter/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/
9https://www.truthorfiction.com/about/
10https://checkyourfact.com/about-us

https://www.politifact.com/truth-o-meter/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/
https://www.truthorfiction.com/about/
https://checkyourfact.com/about-us
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For the Fast & Furious Fact-Check Challenge, four primary types of claims were distinguished and further differ-
entiated into more fine-grained sub-categories:11 1) numerical claims (involving numerical properties about entities
and comparisons among them), 2) entity and event properties (such as professional qualifications and event partici-
pants), 3) position statements (such as whether a political entity supported a certain policy) and 4) quote verification
(assessing whether the claim states precisely the author of a quote, its content, and the event at which it supposedly
occurred). Note that fact-checking portals contain many quoted claims but it is not always clearly marked whether
the quote itself is verified (i.e. did the person indeed make the claim?) or the content of the quoted claim (i.e. is the
claim allegedly made by the person correct?).

3.2.5. Claims in information retrieval and question answering
In the area of Information Retrieval and Question Answering, several works focus on retrieving scientific claims

and claims in digital libraries. Here, a claim is defined as a statement formulating a problem together with a concrete
solution [56] or a sentence in a scientific document that relates two entities given in a query [57,58]. More generally,
from a database-centric perspective, Wu et al. [207,208] represent a claim as a “parametrized query over a database”.
This allows to computationally study the impact of modifying a claim (i.e. its parameters) on the result of the query
and to thus identify claim properties, such as claim robustness which may serve as evidence to detect potential
misleadingness i.e. due to cherry-picking. A related perspective has been proposed by Cohen et al. [33] in the field
of Computational Journalism.

3.3. Discussion and concluding remarks

In summary, works focusing on the argumentation domain investigate claims in the context of a discourse, i.e.
taking their pragmatic role into account. Claims are uttered by the author or speaker to achieve an aim through
a speech act [159]. In order to recognize the meaning of an utterance and draw conclusions about the intention
of the author, the pragmatic context has to be taken into account. A claim often carries a variety of intentional or
unintended meanings, where subtle changes in the wording or context can have significant effects on its validity
[62]. Works in other areas, such as Knowledge Bases and Fact-checking, typically focus on the content of epistemic
claims, i.e. rather than trying to analyze intended meanings or messages, they try to find and check evidence for
assertions and find facts vs. false claims of fact. Works in the area of information retrieval focus more on the surface
of claims, trying to retrieve relevant texts without necessarily analyzing their content or contexts. These differences
are reflected in the claim definitions found in the respective works.

Note that due to these different foci, there is a difference in what is referred to as claim in argumentation mining
vs. in the automatic fact-checking community: what is used as premise or evidence in an argument is often selected
as check-worthy claim by fact-checking sites, not the evaluative component of the argument that is coined claim
in argumentation mining. Generally, the distinction of argumentative units such as claims and evidence in argu-
mentation mining is based on the statement’s usage or its relations in an argument, while fact-checking classifies
statements into claims, stances and other categories considering features inherent to the statement itself (such as
their subjectivity), regardless of their connection to the discourse. Thus, what is identified as claim in works of one
research field or labelled claim in a ground truth corpus may or may not be called claim in the other, depending on
the specific use case and context.

Likewise, some works focus on identifying claims (or other argumentative components) that belong to a pre-
defined topic (called corpus wide topic-dependent [166], context-dependent [3], or the information-seeking per-
spective [188]), while others aim at extracting any units that act as claims for any topic (closed-domain discourse-
level [188] or context/topic-independent). Using topic-dependent annotations as ground truth for topic-independent
extraction approaches leads to impaired precision values [103].

Lastly, another difference between statements of fact in knowledge bases and claims is that for the former, a
certain level of consensus at least in the respective community can be assumed, while claims may only represent
the beliefs of one person or be uttered by them to achieve a certain goal such as spreading disinformation. Thus, it

11https://www.herox.com/factcheck/5-practise-claims

https://www.herox.com/factcheck/5-practise-claims
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Table 2

Index of main notions and definitions as discussed in this paper

Term Definition

Claim A statement or assertion that something is the case

Fact A thing that is known or proved to be true

Statement of fact A statement in a knowledge base

Evidence Information that can be used to assess the truthfulness of a claim or claimed value or relation

Topic Phrase describing the frame of the discussion

Subject Keyword describing the semantic theme

Stance Support or opposition expressed by a user or text fragment with respect to a given target

Viewpoint Standpoint of one or several authors on a topic or set of topics

makes sense to model truth values for claims while statements in knowledge bases are assumed to be true. There
may be errors in knowledge bases, however. Thus, modeling uncertainty or confidence values is applicable for them.

The task of assessing the correctness of a statement of fact is called fact validation. The task of assessing the
veracity of a claim is called fact-checking. Fact-checking has also been modeled as a specific stance detection task
where the stance of a source or evidence unit towards an epistemic claim is used to assess the claim’s veracity.
Finding the true values in case of conflicting evidence is the aim of truth discovery.

3.4. Naming conventions

To arrive at a more precise usage of terminology, we will, throughout this paper, refer to items in knowledge
bases as statements of facts, while other mentions or assertions of knowledge, will be referred to as claims about a
fact that can act as evidence about some information being true and its content being a fact. An index of all naming
conventions followed in this work is given in Table 2.

4. Conceptual modeling

In this section, we propose a conceptual model for representing claims and related data as well as an example of
an implementation of this model in RDF using established vocabularies.

The conceptual model was informed through the survey described in the previous section. In order to derive a
conceptual model, we followed the following steps: 1) identification of key concepts to be reflected in the model (e.g.
claim proposition, claim utterance), 2) deriving definitions of these concepts by considering established definitions
from the literature, 3) excluding definitions that are inconsistent with each other or not reflecting the required
granularity (e.g. we argue that a distinction between proposition and utterance is important for many NLP and
knowledge engineering tasks), and 4) identifying relations between all concepts which are consistent with and/or
implied by our definitions. Through this process, we arrive at a conceptual model containing key concepts, relations
and definitions which is then implemented in OWL as well as through a dedicated RDF/S data model. We start by
giving an overview of the key terminology.

4.1. Key terminology – from pragmatics to fact-checking

For our conceptual model, we follow notions from pragmatics to allow modeling not only a claim in isolation,
but also its meaning in a given discourse and its role in communication.

As Green (1996) puts it, “(...) communication is not accomplished by the exchange of symbolic expressions.
Communication is, rather, the successful interpretation by an addressee of a speaker’s intent in performing a lin-
guistic act.”[63, p. 1] “Minimally the context required for the interpretation (...) includes the time, place, speaker,
and topic of the utterance.” [63, p. 2] While this quote refers to the interpretation of indexical expressions (i.e. words
like “here” and “now”), the same holds true for the interpretation of the meaning of an utterance in general.
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A linguistic act, or speech act following Searle [159], includes an utterance, a proposition, an illocution and a
perlocution. An utterance is a grammatically and syntactically meaningful statement. A proposition is the semantic
content, i.e. meaning. An illocution is the intended effect, e.g. persuading the addressee or requesting a service,
while a perlocution is the achieved effect.

For example, referring to the topic “Brexit”, i) British journalist David Dimbleby said during a topical debate in
Dover “We are going to be paying until 2064, apparently”,12 and ii) a news article of The Independent on the same
topic wrote (“UK will be paying Brexit “divorce bill” until 2064”13). While the surface forms of these utterances
differ, they express the same proposition. At the same time, utterances with equivalent surface forms may be used to
express different and even contradicting propositions or viewpoints when embedded in different contexts. Consider
the two claims: (i) “The unemployment rate among Poles in Britain is lower than the unemployment rate among
Brits”, uttered by British public policy analyst and former Labour Party politician David Miliband14 to argue that
immigrants are not a drain on the British welfare system and thus not bad for the British society; (ii) “EU migrants
are MORE likely to have a job in the UK than British citizens”, written by MailOnline journalist Matt Dathan15 to
make a point that immigrants are taking away British citizens’ jobs and thus are bad for society. The propositions
are semantically similar and both utterances aim at persuading the audience (illocutionary act) but the expressed
viewpoints are different.

This can only be recognized when taking the context into account which is why we argue that the context should
be modeled along with the claim utterance. The importance of contextual information has also been recognized for
the task of fact-checking: “Who makes a claim, when they say it, where they say it, and who they say it to, can all
affect the conclusion a fact-checker could reach. Whether it’s true to say unemployment is what country or which
part of a country a speaker is referring to, and when the speaker makes the claim. An open format for recording
public debate should support metadata, including at least the time, the place, the venue or publication, and the
speaker.” [11].

As outlined in the previous section, we see a fact as a conceptual object which represents the current consensual
knowledge in a given community about something or someone. While this knowledge is relatively stable, a change
of its truth value is possible, for example when flaws in scientific studies are discovered and findings have to be
corrected [149].

Any verified information about a claim, like who uttered it, when and where, can be considered a fact. Facts
explicitly uttered by an agent can be modeled as (factual) claims. Facts extracted from a knowledge base can be
represented using the same model: provenance information about the knowledge base can be represented as source,
that is, as part of the utterance. The statement of a fact is typically not embedded in a discourse. Thus, certain
attributes of the context, like the topic of the discourse and the agent, would remain undefined. Likewise, non-
factual claims (e.g. “animals should have lawful rights”) do not have universally accepted truth values, i.e. they are
unverifiable, and hence, verdict would remain undefined for the respective proposition. Therefore, we argue that
facts, factual claims and non-factual claims can be represented using the same model.

4.2. The open claims conceptual model

In line with the rationale outlined above, we introduce the Open Claims conceptual model, which distinguishes
three main components of a claim represented by three central classes: (1) claim proposition, (2) claim utterance,
and (3) claim context (Fig. 5).

A claim proposition is the meaning of a statement or assertion. In the context of fact-checking and argumentation
mining, it is usually related to a controversial topic and is supported by one person or a group of people. A claim
proposition can have been expressed in many different ways and in different contexts, thus it has one or more claim

12https://fullfact.org/europe/brexit-divorce-bill-2064/
13https://www.independent.co.uk/news/uk/politics/uk-brexit-divorce-bill-taxpayers-deadline-treasury-obr-office-budget-responsibility-

a8253751.html.
14https://www.politifact.com/factchecks/2016/jun/26/david-miliband/david-miliband-link-between-jobs-immigration-and-b/
15https://www.dailymail.co.uk/news/article-3628840/The-true-cost-open-borders-revealed-EU-migrants-likely-job-UK-British-citizens.html

https://fullfact.org/europe/brexit-divorce-bill-2064/
https://www.independent.co.uk/news/uk/politics/uk-brexit-divorce-bill-taxpayers-deadline-treasury-obr-office-budget-responsibility-a8253751.html
https://www.independent.co.uk/news/uk/politics/uk-brexit-divorce-bill-taxpayers-deadline-treasury-obr-office-budget-responsibility-a8253751.html
https://www.independent.co.uk/news/uk/politics/uk-brexit-divorce-bill-taxpayers-deadline-treasury-obr-office-budget-responsibility-a8253751.html
https://www.politifact.com/factchecks/2016/jun/26/david-miliband/david-miliband-link-between-jobs-immigration-and-b/
https://www.dailymail.co.uk/news/article-3628840/The-true-cost-open-borders-revealed-EU-migrants-likely-job-UK-British-citizens.html
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Fig. 5. The open claims conceptual model.

utterances. For example, it might have been expressed in different languages, using different words in the same
language, or uttered by different persons and/or in different points in time.

In contrast, a specific claim utterance is typically associated with only one claim proposition, i.e., it has a single
meaning. However, the claim proposition can be represented in different ways, for example, by selecting a represen-
tative utterance with its context, or through a more formal model. Each claim utterance is related to a specific claim
context, which includes the person who uttered the claim, the time point at which the claim was uttered, the location
or the event of the utterance and the topic of the enclosing discourse. The claim context provides information to
interpret the claim utterance and thus understand its proposition.

Since explicit information about the perlocution (achieved effect) and illocution (intended effect) of utterances is
usually unavailable, we do not consider them in this model. They can, however, easily be added to the model as an
extension.

Below, we provide details and the main properties of each of the three main classes (Claim Proposition, Claim
Utterance, Claim Context).

An OWL implementation of the Open Claims model is available online.16 To facilitate data integration with
existing relevant datasets, such as ClaimsKG [176], TweetsKB [42] and TweetsCOV19 [36], we also provide an
RDF/S implementation of the model using existing vocabularies (more below in Section 4.3).

4.2.1. Claim proposition
A claim proposition is the meaning of one or more claim utterances in their respective contexts. A claim propo-

sition is associated with i) zero, one or more representations, ii) zero, one or more reviews, iii) zero, one or more
attitudes, and iv) zero, one or more other claim propositions.

A representation can have the form of free text, e.g. a sentence that describes the proposition as precisely as
possible, or be more formal, e.g. a first-order logic model, or the URI of a named graph pointing to a set of RDF
statements.

A review is a resource (e.g. a document) that analyzes one or more check-worthy claim propositions and provides a
verdict about their veracity or trustworthiness. An example of such a review is an article published by a fact-checking
organization. Note here that not all factual claims have a clear verdict. For instance, the claim “the presence of a
gun makes a conflict more likely to become violent” represents hypothesis which can be linked to both supporting
and contradicting evidence and is thus difficult to be associated with a single overall correctness score. If a claim
is associated to a review which gives a true verdict about its veracity, then the claim can be considered a fact (it
represents the current knowledge about something). Non-factual claims are not linked to any reviews and have no
verdicts.

An attitude is the general opinion (standpoint, support) on a given topic (e.g. a viewpoint), which often underlies
a set of specific values, beliefs or principles. For instance, pro-Brexit and anti-Brexit are two different viewpoints
for the Brexit topic. A claim proposition can be associated with several attitudes for different topics. For example,

16https://data.gesis.org/schema/openclaims

https://data.gesis.org/schema/openclaims
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the proposition linked to the claim “immigrants are taking our jobs” can support both the against immigration (for
the Immigration topic) and the pro-Brexit attitude (for the Brexit topic).

A claim proposition can also be associated with other claim propositions through some type of relation, e.g.
same-as, opposite, part-of, etc.

4.2.2. Claim utterance
A claim utterance is the expression of a claim in a specific natural language and form, like text or speech. Among

other things, it can be something said by a politician during an interview, a text within a news article written
by a journalist, or a tweet posted by a celebrity about a controversial topic. It is associated with i) one or more
linguistic representations (subclass of representation), ii) one or more sources, and iii) zero, one or more other
claim utterances (through relations such as same-as, paraphrase, etc.).

A linguistic representation can be, for example, a text in a specific language that best imprints the claim as it was
said/appeared, or a sound excerpt from someone’s speech.

A source provides evidence of the claim’s existence. For instance, it can be the URL of an interview video, a news
article, or a tweet, i.e. source here means the medium reporting the utterance, not the originating agent (speaker or
author which is part of the context). For this distinction, see also Newel [122]. A linguistic representation can have
one or more linguistic annotations which provide formal linguistic characteristics. For instance, it can be an entity
or date mentioned in the text of the claim utterance, the sentiment of the text (e.g. positive, negative, neutral), or the
linguistic tone of a speech (like irony). These annotations can enable advanced exploration of the claims (e.g. based
on mentioned entities) and can be manually provided by a domain expert or automatically produced using a NLP or
speech processing tool (like an entity linking [164] tool for the case of entity annotations in text).

Links between utterances can be also used to explicate their role in discourse, e.g. by using relations such as
used-as-evidence-for or used-as-evidence-against to model premises, evidence, conclusions and other components
and relations in argumentation. Likewise, supports and attacks relations may hold between utterances to connect
stances and their targets. With this, we follow Carstens and Toni [25] and the discussion in Section 3 with the notion
that whether a statement is of type evidence or another type and whether it was uttered to express a stance depends
on its usage in the context of a discourse, e.g. its relations, rather than being an inherent property of the statement
in isolation.

4.2.3. Claim context
The claim context provides background information about the claim utterance. It is associated with metadata

information about the claim utterance and, together with the linguistic representation of the claim utterance, can
provide an answer to the Five W’s: i) what was said (linguistic representation of claim utterance), ii) who said it
(agent; person, group, organisation, etc., making the claim), iii) when it was said (date/time the claim was uttered),
iv) where it was said (location where claim was uttered), and v) why it was said (event or activity in the context of
which the claim was uttered, and/or the topic of the underlying discourse). The claim context provides the necessary
information for interpreting the claim utterance (and thus understanding its proposition).

4.2.4. Instantiation example
Figure 6 depicts an instantiation example of the proposed conceptual model. The example shows information for

two claim utterances (in pink background, in the centre of Fig. 6): i) the one by David Dimbleby (“We are going
to be paying until 2064, apparently”), and ii) the one by The Independent (“UK will be paying Brexit “divorce
bill” until 2064”). Both utterances correspond to the same claim proposition (in green background, left part of
Fig. 6) and each one has its own context information (in yellow background, right parts of Fig. 6). The linguistic
representation of the first claim utterance has been annotated with one date annotation (2064) and that of the second
claim utterance with one entity annotation (United Kingdom).

The claim proposition has two representations, a textual one (“Britain will be paying its Brexit bill for 45 years
after leaving the EU”) and a formal one (“cost = {of = ‘Brexit’, for = ‘UK’ amount = ?, until = 2064}”), and
supports the against-Brexit viewpoint of the Brexit topic. In addition, there is a review of this claim proposition
with verdict “true”, published by Full Fact (UK’s independent fact-checking organisation). Moreover, we can see
the URL of the review article as well as a reference to a document file which provides evidence for its correctness.
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Fig. 6. Instantiation example of the conceptual model.

The context of each claim utterance provides additional metadata information about the claim. For example, we
see that the first utterance was said by David Dimbleby on 15.03.2018, in the context of a debate about Brexit which
took place in Dover. For the second claim utterance, the example only represents its agent (UK Office of Budget
Responsibility) and date (13.03.2018).

4.3. RDF/S implementation

In order to facilitate the use and operationalisation of our Open Claims Conceptual Model, we provide an RDF/S
implementation using established vocabularies, depicted in Fig. 7. Vocabulary selection followed three directives: i)
relying on stable term identifiers and persistent hosting, ii) being supported by a community, iii) being extensible.

As our base schema, we propose to use schema.org.17 For capturing provenance information of all generated
annotations, we employ PROV.18 This includes information about employed tools and confidence values. Claim
review verdicts are part of the schema.org ClaimReview entity. Viewpoints are represented using Marl Ontology,19

which is designed to annotate and describe subjective opinions. Linguistic annotations are represented in the NLP
Interchange Format (NIF).20 To cover other modalities such as video and images, we include the Web Annotation
Vocabulary (OA).21

17https://schema.org
18https://www.w3.org/TR/prov-overview/
19http://www.gsi.dit.upm.es/ontologies/marl
20https://persistence.uni-leipzig.org/nlp2rdf/index.html
21https://www.w3.org/TR/annotation-vocab/

https://schema.org
https://www.w3.org/TR/prov-overview/
http://www.gsi.dit.upm.es/ontologies/marl
https://persistence.uni-leipzig.org/nlp2rdf/index.html
https://www.w3.org/TR/annotation-vocab/
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Fig. 7. RDF/S implementation of the open claims conceptual model.

Fig. 8. The open claims model annotated with related knowledge engineering tasks.

More details about the RDF/S implementation of the proposed conceptual model can be found in our previous
work [23].

5. Related knowledge engineering tasks

In this section, we review different knowledge engineering and information extraction tasks pertaining to claim
related data, like utterances, claim verification scores, claim context information (e.g. who uttered the claim, when
and where) and other claim metadata that is described in our Open Claims model. Figure 8 depicts how the below
discussed knowledge engineering tasks are mapped to the Open Claims model.

We identify three main (sometimes overlapping) categories of tasks: extraction, verification, interlinking and
position them within the context of our conceptual model. Note that we do not aim to provide an exhaustive overview
of those tasks, but rather introduce examples of works of different relevant areas and show how they are positioned



CORRECTED  P
ROOF

18 K. Boland et al. / Beyond facts

with respect to extracting or generating the information and relations suggested by our model. Extraction pertains
to detecting statements, utterances and other components and attributes in a corpus of (mainly) textual modality.
Verification pertains to the assignment of truth ratings or credibility scores to claims or other related components
such as information sources. Interlinking, finally, includes a range of tasks that aim at detecting various relations
between claims or related components thereof, such as same-as relations, stances or topic-relatedness.

5.1. Extraction

Given the complexity and varying definitions of what is or what constitutes a claim, a number of different knowl-
edge extraction approaches can be associated to the tasks in each of the three groups outlined above. We will follow
the definition of a claim and its components as given by our model (Section 4) in order to review the existing
techniques for knowledge extraction pertaining to each of these components and attributes. In parallel, we identify
challenging problems that are underrepresented in the literature.

5.1.1. Extracting claim propositions
The task of extracting a claim proposition can be reformulated as assigning an identifier to a group of statements

that are assumed to be semantically equivalent. Our model suggests that the meaning of a claim can be captured both
by the means of natural language as well as formal knowledge representation frameworks, e.g. description logics.

Extracting formally represented claim propositions at different levels of formality is of main interest in the field of
knowledge extraction, both from unstructured (web pages, social networks) or semi-structured (Wikipedia) sources.
Populating and building KBs and thus providing structured knowledge on the Web has been of central interest in
the NLP, web, data mining and the semantic web communities over the past decades, focusing on a variety of tasks
such as named entity recognition, entity linking, relation extraction or word sense disambiguation. The extensive
research in this field has led to a very broad range of works. A comparison of generic information extraction tools
and systems is provided by Gangemi et al. [49], while Martinez-Rodriguez et al. [110] and Ristoski and Plaulheim
[151] focus on semantic web approaches (aiming at the provision of structured knowledge for populating ontologies,
linked data and knowledge graphs). The reader may also turn to the book on NLP methods for building the semantic
web [113] as well as a recent survey on fact extraction from the web [204].

Relation extraction and ontology learning from text are overviewed by Kumar [92] and Wong et al. [206], respec-
tively, while Atefeh and Khreich [8] dedicate their survey to the task of extracting event-related knowledge. Uren et
al. [192] consider methods that take the inverse approach of annotating documents with entities or statements of facts
based on existing knowledge bases. Very closely related to this work is a recent work by Al-Khatib et al. [7] who
extract knowledge encapsulated in arguments to inform a knowledge graph encoding positive and negative effects
between concept instances and classifying the consequences as good or bad. For instance, from the claim “Nuclear
energy leads to emission decline”, a positive effect of nuclear energy on emission decline would be extracted and the
consequence, emission decline, rated as good. The proposed extraction framework uses a combination of supervised
learning and pattern-based approaches.

If we look at textual representations of a claim, the task can be approached by first extracting textual utterances
(see below), then grouping them together according to their meaning by the help of textual similarity methods (some
of them described in 5.3.2) and then identifying in a cluster of semantically equivalent utterances one that will serve
as an identifier for the meaning of the claim. A formal approach to the assignment of textual identifiers to a set of
equivalent claims has not been discussed in the literature, to the best of our knowledge, but the task relates closely
to the text summarization task, which is surveyed by Lin and Ng [99].

Extracting viewpoints and stances Existing computational models [137] describe viewpoints via a summarization
framework, able to find phrases that best reflect them. In Thonet et al. [177,178], unsupervised topic models are
proposed to jointly discover viewpoints, aspects and opinions in text and social media. An unsupervised model
for viewpoint detection in online debate forums, proposed in Trabelsi and Zaiane [187], favors “heterophily” over
“homophily” when encoding the nature of the authors’ interactions in online debates. With respect to viewpoint
detection in social media, the model by Barberá [15] groups Twitter users along a common ideological dimension
based on who they follow. A graph partitioning method that exploits social interactions for the discovery of different
user groups (representing distinct viewpoints) discussing about a controversial topic in a social network is proposed
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in Quraishi et al. [145], also providing a method to explain the discovered viewpoints by detecting descriptive terms
that characterize them.

Our model suggests, in line with the current research, that viewpoints with respect to topics take the form of
polarized opinions. Given a controversial topic, for example an issue like climate change, viewpoint discovery
aims at finding the general viewpoint expressed in a piece of text or supported by a user. This task can indeed be
considered a sub-task of opinion mining, which aims to analyze opinionated documents and to infer properties such
as subjectivity or polarity. The survey in Pang and Lee [134] provides a general review of the opinion mining and
sentiment analysis tasks. However, for some topics, there may be more than two viewpoints. As of yet, there is
limited research that studies these cases.

Viewpoint extraction is closely connected to the stance detection problem, a supervised classification problem in
NLP where the stance of a piece of text towards a particular target is explored. Stance detection has been applied in
different contexts, including social media (stance of a tweet towards an entity or topic) [10,38,41,93,116,174,210],
online debates (stance of a user post or argument/claim towards a controversial topic or statement) [13,67,167,198],
and news media (stance of an article towards a claim) [20,70,141,203,216]. A recent work by Schiller et al. [158]
details the different and varying task definitions found in previous works, diverging not only with regard to domains,
but also classes and number and type of inputs, and introduce a benchmark for stance detection that allows the
comparison of models against a variety of heterogeneous datasets. In contrast to the works on viewpoint extraction
described previously, works on stance detection focus more on supervised models and textual features (like the
sentiment expressed in the text, or the use of polarised words), and less on the structure of the underlying network of
users or documents, which can be exploited by unsupervised approaches. For two recent surveys of stance detection
works, we refer to Küçük and Can [91] and Ghosh et al. [54].

In recent work, Sen et al. [160] compare untargeted and targeted opinion mining methods (sentiment analysis,
aspect-based sentiment analysis, stance detection) to infer approval of political actors in tweets. They show that
the compared targeted approaches have low generalizability on unseen and unfamiliar targets and that indirectly
expressed stances are hard to detect, and thus identify the need for further research in this area.

Chen et al. [29] propose the task of substantiated perspective discovery where the goal is to discover a set of
perspectives and supporting evidence paragraphs that take a stance to a given input claim, and release a first dataset
for this task.

5.1.2. Extracting claim utterances
Textual utterance extraction In this survey, we focus on methods for extracting information from language rather
than other modalities such as speech or video. The methods discussed in the literature, with few exceptions, are
tailored towards a particular context, topic or type of targeted utterances, usually referred to as claims in these
works.

Identifying and extracting argumentative components such as claims (also called propositions in these works) or
evidence units (also called premises) is a central task in the argumentation mining field [35,96]. The first survey on
the topic by Peldszus and Stede [139] assumes the availability of an argumentative text and focuses on the problem
of analyzing the underlying structure of the presented argument from two perspectives: (1) argument annotation
schemes drawing from works in the classical AI field of argumentation and (2) automatic argumentation mining,
discussing the first approaches that enhance the historical field with data-centered machine learning approaches. A
more recent survey by Lippi and Torroni [104] provides a structured view on the existing models, methods, and
applications in argumentation mining attempting to draw a single unifying view over a plethora of related sub-tasks
and dispersed efforts. The authors define the argumentation mining problem as a pipeline consisting of the detection
of argument components in raw text and predicting the structure (or relations) between these components, where
the former is of particular interest to the task that we consider in this section. Building on and completing these
surveys, Cabrio and Villata [24] adopt a data-driven perspective of the existing work in argumentation mining with
a focus on applications, algorithms, features, and resources for evaluation of state of the art systems. Taking also a
data-driven perspective, the difficulty of devising cross-domain claim identification approaches has been discussed
and analyzed in Daxenberger et al. [35] by using multiple domain-specific data sets. In that, the authors address
the analysis of the generalization properties of systems and features across heterogeneous domains and study their
robustness across the underlying fields. Shnarch et al. [166] propose a methodology to combine smaller amounts of
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high quality labeled data with noisy weakly labeled data to train neural networks for extracting evidence units for
given topics.

The extraction of a claim is the first step in a computational fact-checking pipeline, where it is common to see
fact verification as a three-step process: (i) detecting/extracting a check-worthy claim, (ii) reviewing the claim with
respect to its veracity and (iii) publishing the reviewed claim [78,180].22 In Hassan et al. [78], the authors propose
a first version of the ClaimBuster tool with a particular focus on the extraction of check-worthy claims. The claim-
spotting problem is defined as a two step task, comprising (1) classification of pieces of text as check-worthy or
not and (2) their ranking with respect to their check-worthiness. An end-to-end fact-checking platform, including
both steps (1) and (2) is presented in a follow up work [76]. To overpass the limitations of using hand-crafted
features for claim detection, Hansen et al. [72] propose a neural check-worthiness ranking model that represents
a claim as a set of features, where each word is accounted for by its embedding (capturing its semantics) and its
syntactic dependencies (capturing its relation to other terms in the sentence). The extraction of simple claims about
statistical properties to be subjected to verification is addressed in Vlachos and Riedel [195]. The authors apply a
distantly supervised claim identification approach that relies on approximate matching between numerical values
in text and a knowledge base (Freebase). A relevant line of work has been followed in the field of subjectivity
analysis of text, proposing approaches which aim at classifying sentences into objective and subjective categories,
e.g., [21,205,213]. It has been shown in Hassan et al. [76] that subjectivity identifiers are limited in discerning
factual claims as compared to the method presented by ClaimsBuster.

Annotating utterances In our model, we discuss an annotation of utterances based on (1) entities (such as names,
dates, locations, etc.) and (2) lower-level linguistic features extracted from the text that can be useful for a number
of tasks, such as bias detection or fake-news analysis, as discussed in Rashkin et al. [147]. For (1), one can turn to
the literature surrounding (end-to-end) Entity Linking,23 particularly the exhaustive survey in Sevgili et al. [161].
The features in (2) include characteristics of the discourse, such as shades of irony or the overall polarity score of
the expression, as well as linguistic or syntactic cues (part-of-speech (POS) tags, syntax, dependencies, semantic
parsing, punctuation or capitalization) that can be indicative of a certain intention. For the identification of such cues,
one could turn to NLP annotation pipelines (with standardized annotation type taxonomies). The industrial standard
is UIMA (Unstructured Information Management Applications) [44], a comprehensive meta-framework for inter-
operable linguistic annotation. Recent developments in deep approaches to NLP have led to the development of
ad-hoc annotation models such as SpaCy.24

Claim utterance source extraction Sources are identified as the media that publishes a claim. Their extraction can
be straightforward in many cases (e.g. when the utterance itself is extracted directly from its source). In certain cases
identifying the original source may be more challenging and would require tracking down the claim to its original
publication by, e.g. following cascades of retweets or identifying and analysing quotations [121,126,173,197].

5.1.3. Extracting claim context
This group of approaches deals with annotating a claim with contextual information that helps reply to the ques-

tions who uttered the claim when and where. In order to extract a date or a location one can rely on Entity Linking
(EL) or Named Entity Recognition (NER) techniques outlined in the previous section. We focus in more detail on
the tasks of event detection, topic detection, and author identification and attribution.

Event detection The event in which a claim was uttered is an important component from the context that defines
a claim. An event can be seen as a complex entity defined by a set of attributes, such as a date, persons involved
and a location. Following this definition, one can apply the methods described in the previous paragraph in order to
extract independently these components to populate an event. However, recent approaches consider an event as an
atomic entity that can be detected from web corpora (often social networks) [30,73].

22https://fullfact.org/media/uploads/full_fact-the_state_of_automated_factchecking_aug_2016.pdf
23http://nlpprogress.com/english/entity_linking.html
24https://spacy.io/

https://fullfact.org/media/uploads/full_fact-the_state_of_automated_factchecking_aug_2016.pdf
http://nlpprogress.com/english/entity_linking.html
https://spacy.io/
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Topic detection Detecting what claims are about is a challenging issue. If available, context such as the source
articles the claim was extracted from, a claim review article, or the discourse the utterance was embedded in, e.g.
the given subject in a debating portal, can be considered for claim topic detection. Here standard NLP methods of
topic extraction, modeling or detection from text can be employed [110]. However, detecting the topic when only
the textual content of a claim utterance can be considered, or when the textual context is sparse, is challenging.

Approaches developed for extracting topics from short text (like tweets and micro-blogs) can be adapted for
claim topic modeling [168]. However, the complex structure and positioning in a context of elements (such as
sources, authors and other entities) has to be taken into consideration when predicting topics of claims. Topics
can be seen as groups of equivalent claims (e.g. all claims pertaining to “US immigration policies”) situated in a
network of contextual entities (e.g. a knowledge graph such as the one given in our model implementation example
in Fig. 7). Therefore, link prediction methods on knowledge graphs may be used, where a recent work by Beretta
et al. [17] studies the effectiveness of neural graph embedding features for claim topic prediction as well as their
complementary with text embeddings. The authors show, however, that state-of-the-art link prediction models fail to
capture equivalence structures and transfer poorly to downstream tasks such as claim topic prediction, which may,
however, also be connected to the lack of sufficiently large and reliable ground truth data (topic-labeled claims)
that would allow to train neural embedding models. This calls for the development of novel methods that surpass
the state-of-the-art graph embedding model’s reliance on a local link prediction objective, which likely limits the
ability of these models to capture more complex relationships (e.g. equivalence cliques between claims, keywords
and topic concepts) and the generation of suitable ground truth data.

Author identification and extraction Identifying the author of an utterance is not trivial [11] yet authorship is
crucial for interpreting its meaning. Moreover, claims are often quoted by distant sources, e.g. in news articles or
other media. The attribution of content to an author25 is consequently gaining increased attention in the context of the
analysis of news articles, e.g. by Newell et al. and Salway et al. [121,155] who build structured databases of claims
with extracted quotes and author information. Approaches for quotation extraction and attribution from newspaper
articles for both direct and indirect speech usually comprise three different component identification steps: (1) cue
phrases signalling the presence of a quotation (e.g. “say” or “criticize”) are identified using manually curated word
lists [90] or classifiers trained on labelled data [121,135,156]. On this basis, (2) quotation content spans are identified
using manually defined syntactic rules [90], conditional random fields (CRFs) [121,135] or semi-markov models
[156]. Finally, (3) author entities are identified, typically using sequence models such as CRFs [121,128,135]. In
that, Newell et al. [121] extend Okeefe et al. [128]’s sequence-based quote attribution to a two-stage approach using
maximum entropy classifiers for connecting cue and content spans and cue and author spans, respectively, allowing
multiple content and cue spans to take part in an attribution relation. A different approach is followed by Pavllo et al.
[138] who employ pattern-based bootstrapping to extract quotation-speaker pairs. A recent paper by Jiang et al. [85]
extracts structured information from fact-checking articles, including the “claimant”. This corresponds to either the
source or the author of the claim, depending on which of those is mentioned in the fact-checks where usually, this
distinction is not made.

5.2. Claim verification

A number of terms, such as fact-checking, truth discovery, claim or fact verification pertain to a large degree to
the process of the automatic assignment of a veracity score to a statement uttered by a particular person or a group
of people [180]. Note that the analysis of false or mis-information spread, or fake-news detection,26 defined and
surveyed in Sharma et al. [163], often deal with entire news articles or outlets and are, therefore, broader problems
where claim verification can be seen as one of their ingredients.

Claim truthfulness verification is reviewed in Cazalens et al. and Thorne et al. [26,180], where [180] in particular
propose to unify diverging definitions of the task and its components from various disciplines, such as NLP, machine

25Coined “source” in the respective works; in order to not confuse different terminologies, we are referring to these entities as “authors” in
the following text although this diverges from the naming used in the literature in this field.

26“False and often sensational information disseminated under the guise of news reporting”, according to Collins English Dictionary.
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learning, knowledge representation, databases, and journalism. Indeed, most of the existing techniques rely on
background knowledge sources (e.g. encyclopedic knowledge graphs, such as DBpedia or Freebase) that provide a
“truthfulness context” [78,179] and a combination of various computational methods in order to infer the veracity
scores of a claim either from those background knowledge sources or, more rarely, in a self-dependent manner. In
addition, versatile features pertaining to all three main components of our model (meaning, utterance and context)
are often considered in a combined manner, making it difficult to break down claim verification approaches along
each of these three axes independently.

In certain cases, claims are given a structured form (e.g. triples or database queries), which allows for the veri-
fication of entity-centric information by calling on machine learning techniques [214]. In that, fact verification can
be seen as a particular kind of a link prediction or knowledge base augmentation task [31,165]. In contrast, certain
methods apply symbolic inference approaches on KGs in order to infer the truth value of a statement [18], or to iden-
tify potential errors [48]. A multitude of features, machine learning models and inference techniques are combined
together in the KB construction approach presented in [37].

In other cases, statements are taken in their textual form [143,201], while again largely machine learning tech-
niques are applied in order to assess their veracity. Training data in the form of examples of true and false claims
come either from archives of fact-checked statements [16,194,201] or from manually labelled (often crowdsourced)
collections of claims [59,114,182]. Statistical (topic) models as well as standard NLP filters are used in order to
construct a feature space. Note that the majority of approaches based on machine learning rely primarily on highly
contextualized features on document/text level, such as words, n-grams, salient entities and topics [75]. Additional
context- and aspect-related features such as provenance, time and sources are considered in Popat et al. and Vlachos
and Riedel [143,194]. An analysis of news corpora is provided by Rashkin et al. [147] in an attempt to identify
linguistic and stylistic cues that help discriminate facts from false information. In addition, certain approaches,
like [212], look at how a claim spreads through a crowd or how sources and claims are connected, exploiting so-
cial/community-related features.

5.3. Interlinking

There exist a variety of types of relations between claims and in particular between their components as introduced
in our conceptual model. We consider that the problem of claim relatedness depends on the particular perspective
and application context – for example, two claims can be considered contextually similar because they have been
uttered at the same event by the same person, but still differ in their meaning and textual expression. Following
the main building components of our model, we identify a number of dimensions on which this problem can be
studied. One could be interested in relating instances of propositions, utterances or contexts within each of these
three groups. These are the kind of relations that will be discussed in this section. Else, one can look into cross-
class relations (e.g. establishing the association between an utterance and its author or viewpoint). Such relations
result from knowledge extraction processes already discussed in Section 5.1. Although most of these problems can
be considered as challenging with little existing work that approach them directly, we will outline below relevant
works.

5.3.1. Relating propositions
According to our model, the proposition, or meaning, of a claim is materialized via a particular representation (e.g.

a natural language or a logical expression) and is further described by its topics to which we associate viewpoints.
As discussed in Section 5.1, different extraction methods can be applied in order to derive those representations. In-
dependently from the particular representation type, we outline three general types of relations that we can establish
between proposition instances: equivalence (same-as), similarity and relatedness.

Same-as. The equivalence or identity relation binds together claims that have the exact same meaning. In the case
of textual expression of the meaning of a claim, when two propositions are expressed differently although they con-
vey the same message (have the same meaning), we talk of a relation of paraphrase. Paraphrasing detection allows
to discover equivalent text fragments that differ (to a given extent), where neural language models are currently
largely applied to the task [106,220]. In the case of a symbolic or formal expression of a claim (or a fact), we outline
works on relation alignment, such as Pereira et al. [140].
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Similar. Two propositions can be similar to a given degree on a scale between “identical” (represented by the
same-as relation) and “dissimilar”. This notion relates to that of semantic similarity discussed, for example, in
Gracia and Mena [60] and tackled in the Semantic Textual Similarity task [2,27]. A first systematic study on finding
similar claims is proposed by Dumani and Schenkel [39].

Related. Relatedness, as opposed to similarity, covers “any kind of lexical or functional association” [60] and
is, hence, a more general concept than semantic similarity. Relatedness encloses various relationships, such as
meronymy (a relation of composition (part-of) that is such that the meaning of a complex expression relates and can
be expressed by the meanings of the parts from which it is constructed), antonymy (opposite meanings, including
conflicting/contradicting claims), logical or textual entailment [34], same topic, or any kind of functional relation-
ships or relationships or frequent association. A survey of semantic relatedness methods, evaluation and datasets
is given by Zhang et al. [219] and Hadj-Taieb et al. [69]. As opposed to logical entailment, textual entailment is
understood as a relationship between pairs of text fragments where one entails the other if a human reading the
former would be able to infer that the latter holds.

5.3.2. Relating utterances
Several works address finding equivalent claims in the context of claim verification [76,78,109], where a claim

matcher (or linker) is a component of a fact-checking system matching new claims to claims that have already been
checked. Shaar et al. [162] recently proposed the task of detecting previously fact-checked claims defined as ranking
a set of verified claims according to their potential to help verify an input claim. They propose a learning-to-rank
approach and release a first dataset for the task. Clustering similar arguments is at the core of the work by Reimers
et al. [148] who use contextualized word embeddings to classify arguments as pro or con and identify arguments
that address the same aspect of a topic.

Concerning the matching of text fragments more generally, recent advances in neural NLP and the advent of deep
contextualized language models for language understanding, have allowed a renewal state-of-the-art techniques for
matching text fragments through the pooling or aggregation of classical [132] and contextualized word-embeddings
[81,105] into phrase, sentence or document embeddings [4,5] and the computation of distance metrics to find the
closest matching utterances.

In the context of the Open Claims model, relations between utterances can further be derived from the relations
between their constituents. For example, an utterance is a repetition of another utterance when all constituents are
equal except for at least one attribute of the context such as the author or the date. An utterance is a paraphrase of
another utterance when the propositions are equal but the (linguistic) representations differ. Deriving relations when
some of the constituents are similar or related, rather than equal, remains a question for further research.

Other types of relations comprise support/attack relations or pro/con stances. Many works treat this as an ex-
traction and classification task, e.g. classifying an argumentative unit as evidence (see Section 5.1), while others
treat this as an argumentative relation extraction task, e.g. relating two units with a supports or attacks relation
[25,124,129].

5.3.3. Relating contexts
A context is broken down to its constituents: events, entities, dates, etc. Establishing links among contexts comes

down to linking their respective components. For that purpose, one may call upon state-of-the-art approaches to data
linking, where, following years of research and practice, a wealth of methodological approaches and tools are cur-
rently out there [119]. Among those, property-centric approaches (e.g. [84,123]) can be of particular interest in order
to establish relations (like identity or overlap) between different contexts, comparing their elements individually by
the help of well-suited similarity measures (e.g. measures of similarity between proper names or dates).

6. Conclusion

This paper bridges the gap between various disciplines involved with online discourse analysis from a range
of perspectives by (a) surveying definitions of claims, facts and related concepts across different research areas
and communities, (b) establishing a shared conceptualisation and vocabulary in this context and (c) discussing a
range of tasks involved with such notions, for instance, for extracting or interlinking related concepts through NLP
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techniques. We contribute to a shared understanding of a wide range of disparate yet strongly related research areas,
facilitating a deeper understanding of shared methods, approaches and concepts and the potential for reuse and
cross-fertilisation across communities. Below, we highlight under-researched areas and potential future directions.

Currently, a framework for claim relatedness and similarity is missing. Several works from different fields appear
to deal with the problem from different perspectives, but an approach that takes into consideration the various aspects
of a claim, as well as its various representations, as defined in our Open Claims model in order to discover claim
relatedness or similarity of different kinds is yet to be proposed. While there are works addressing the extraction of
structured information from claims [85], allowing for example the detection of nested claims, current fact-checking
methods and sites largely ignore such issues. For instance, a complex claim can have different (or no) truth rating
as compared to its constituents. For instance, “Colin Kaepernick says Winston Churchill said, “A lie gets halfway
around the world before the truth has a chance to get its pants on.””27 The claim that Kaepernick uttered this is true,
while the claim within the claim is false since Churchill never said that. Using the proposed model, such cases can
be modeled precisely and unambiguously.

Given the subtle differences between claims, where meaning often derives from subtext and context, disambiguat-
ing claim representations, e.g. when mapping novel claims to knowledge bases of fact-checked claims, appears
challenging. Even for humans, deciding on the type of relationship of two claims is a non-trivial task. For example,
the claim “Interest on the debt will exceed defense spending by 2022” provides an exact date, while “Interest on
debt will exceed security spending” does not provide a date. Can these two claims be considered the same, and,
if not, what is their relation? Using the proposed model, such subtle differences can be made explicit. In addition,
automated fact-checking has the potential to elevate the problem given its lack of maturity at different steps, where
for instance, the classification of half-correct or poorly disambiguated claims as correct may introduce further false
claims into the wild.

Similarly, the process of stance detection is challenging as it has been shown to not work well for the minority
class, i.e. documents disagreeing with the claim [70,154], and for unseen targets [160]. Little research in viewpoint
discovery deals with extracting viewpoints for more than two polarized positions, a topic that could be worthwhile
researching for the analysis of debates.

Detecting claim topics and linking those to a specific commonly shared vocabulary or thesaurus of topics (like,
e.g., the TheSoZ [215] or the Unesco28 thesauri) appears to be a difficult and under-researched topic that promises
to enhance claim retrieval, improve search and interoperability across sources, and facilitate access to currently
existing or yet to be constructed structured resources of claims [176].

Generally speaking, considering the wide variety of methods and datasets involving claims and related notions,
adopting a shared and well-defined vocabulary has the potential to significantly increase impact and reuse of research
methods and data.
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