
HAL Id: hal-03173312
https://imt-mines-ales.hal.science/hal-03173312

Submitted on 16 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Profiling Runtime Architecture Code
Contributors in Software Projects

Quentin Perez, Alexandre Le Borgne, Christelle Urtado, Sylvain Vauttier

To cite this version:
Quentin Perez, Alexandre Le Borgne, Christelle Urtado, Sylvain Vauttier. Towards Profiling Runtime
Architecture Code Contributors in Software Projects. ENASE 2021 - 16th International conference on
Evaluation of Novel Approaches to Software Engineering, Apr 2021, Online, United States. pp.429–
436, �10.5220/0010495804290436�. �hal-03173312�

https://imt-mines-ales.hal.science/hal-03173312
https://hal.archives-ouvertes.fr

Towards Profiling Runtime Architecture Code Contributors
in Software Projects

Quentin Perez1 a, Alexandre Le Borgne2 b, Christelle Urtado1 c and Sylvain Vauttier1 d

1EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
2Digital Services, Altran Technologies, Blagnac, France

Keywords: Empirical software engineering, Code ownership, Software architecture

Abstract: Empirical software engineering has leveraged open software repositories to profile and categorize project
contributors. The objective of our work is to conduct a similar but original study, focused on architectural
contributions, to evaluate the profiles of contributors playing this specific development role and their evolution
over time. This paper presents an approach to study a first kind of architectural contributions: deployment
descriptors that define runtime architectures of applications. A categorization model is proposed, reflecting
the importance of contributions based on data mined from code repositories (contents, timestamps, authors,
etc.). Then, it groups contributors in several categories (profiles) and studies their evolution in projects over
time. A case study is conducted on a selected long-life, quality project. It shows that the specific architectural
development responsibility we measure is chosen and sustained by experienced and committed contributors.
As a proof of concept, these results are very promising and will lead to broader scale studies in order to classify
projects based on their management policies regarding architectural contributors.

1 Introduction

Architecture is regarded as a major concern for soft-
ware quality (Garlan and Shaw, 1993; Taylor et al.,
2009). Architects define roadmaps, technologies,
components and their connections. They are mak-
ers and keepers of major design decisions. Accord-
ing to Booch (1996), ”every project should have ex-
actly one identifiable architect, although for larger
projects, the principal architect should be backed up
by an architecture team of modest size”. Abrahams-
son et al. (2010) advocate that the architectural ac-
tivity on a project also depends on contextual factors
such as project size, business model, team distribu-
tion, rate of changes, etc.
On the other hand, empirical studies, fueled by open
software repositories such as GitLab or GitHub, have
shown that there are two categories of developers: mi-
nor contributors and major contributors (Bird et al.,
2011; Foucault et al., 2014, 2015b). The evolution
and management of these two categories over time
impact project health and software quality. To our
best knowledge, no comparable empirical study fo-

a https://orcid.org/0000-0002-1534-4821
b https://orcid.org/0000-0002-1823-2091
c https://orcid.org/0000-0002-6711-8455
d https://orcid.org/0000-0002-5812-1230

cuses on contributions to architecture development.
This paper presents a first step towards profiling archi-
tecture code contributors, focused on a specific kind
of contribution: the runtime architecture of applica-
tions. This architectural contribution is explicitly sup-
ported by frameworks such as Spring1 thanks to archi-
tecture deployment descriptors.
The remainder of this paper is organized as follows.
Section 2 details the research questions addressed in
this paper along with our main hypotheses. Section 3
presents the proposed code contributor categorization
model. Section 4 defines a concrete implementation
of this model in our chosen experimental context.
Section 5 analyzes the results obtained empirically on
a case study. Section 6 discusses threats to validity.
Section 7 presents related work while Section 8 con-
cludes with future work.

2 Research Questions

Different kinds of contributions can be mined to cate-
gorize and measure architectural activities in projects.
For instance, contributions to architectural design
decisions may be mined from the semantic content
of issue tickets or messages (Poncin et al., 2011).
Contributions to project architecture (e.g., modules,

1https://docs.spring.io/spring/docs/current/spring-framework-reference/

https://docs.spring.io/spring/docs/current/spring-framework-reference/

dependencies) may be mined from Maven files
(Teyton et al., 2012). In the same way, contributions
to code architecture may be mined from source code
(Teyton et al., 2014; Mockus and Herbsleb, 2002).
In this paper, we focus on yet another kind of archi-
tectural contribution: the definition of the runtime
architecture of applications. Our choice is driven by
the existence of frameworks dedicated to application
architecture definition, as the Spring framework in the
Java ecosystem (Gupta and Govil, 2010; Le Borgne
et al., 2018; Perez et al., 2019), commonly used in
software industry. This framework provides tools
(such as a set of Java annotations) and languages
(such as a deployment descriptor XML dialect) that
support the definition of the architecture instantiated
to execute an application. These runtime architecture
definitions are explicit and contributions to them are
thus easy to measure.

RQ1: Can contributor profiles be mined from
contributions to runtime application architecture
definitions?
So, our first hypothesis is that building metrics from
these specific core architectural contributions may
be significant enough to characterize contributors,
and in turn projects, regarding architecture code
development.

RQ2: Is there a link between runtime architecture
and code contribution importance?
Our second hypothesis is that in quality projects,
architectural contributions should mainly be de-
veloped and maintained by dedicated and skilled
members. RQ2 aims at verifying that this hypothesis
is true for runtime application architecture definitions.

RQ3: What is the turnover within the different con-
tributor categories?
Turnover is a crucial issue for software development
quality. Foucault et al. 2014, 2015b proved that ex-
ternal turnover has a negative impact on open source
software projects whereas internal turnover has a pos-
itive impact on team development and quality. We
study turnover in the different contributor categories
to qualitatively examine their evolution.

3 Contributor Categorization Model

3.1 Software contribution model

Changes between a project version and its predeces-
sors (whether immediate or indirect) can be described
by a set of contributions which link each modified

line of code in each file to its author. Each contri-
bution also identifies the nature, the content, the date
and time of the change. Formally, a contribution c is
defined as sextuplet c(f , l,n,e,a, t) where:
• f is a file,
• l is the modified line of code in f ,
• n is the line number of l in file f ,
• e is the nature of the change on l: addition (ADD),

deletion (DEL) or modification (MOD),
• a is the author of the contribution,
• t is the timestamp of the contribution.

As mentioned in Section 2, we focus on the code that
manages the instantiation of the runtime architecture
of the software. When an architectural framework
is used, explicit architecture descriptions can be
characterized in the code by a set of distinctive
markers (such as XML tags or Java annotations).
Code contributions are thus split in two sets: those
that define the runtime architecture — that will be
called architectural contributions — and others —
non architectural contributions.

3.2 Contributor importance
measurement

In order to measure the importance of the contribution
of a developer, several works have defined ownership
metrics. Bird et al. (2011) consider that a developer
contributes to the authorship of a code library to the
extent of a ratio calculated as the number of his / her
contributions over the total number of contributions
made on this library. Foucault et al. (2014) have gone
a step further by providing a formal model to compute
such an ownership ratio.
In our work, the model proposed by Foucault et al.
2014 is adapted in two ways. Firstly, our proposed
ownership metrics is global to (a version of) a project.
This global scope better assesses contributions to the
runtime architecture, as they are not local but span on
the whole project. Secondly, it proposes an adaptation
of this metrics to architectural contributions.
According to Foucault et al. (2014), the ownership
ratio for a developer d on a software module m is de-
fined as follows. Let:
• M be the set of modules of a given (version of a)

software project,
• D be the set of developers for this (version of a)

project,
We define:
• w(m,d) as the number of contributions made by

developer d ∈ D on module m ∈M

• w(m) as the total number of contributions made
on module m ∈M by all developers of D

The ownership ratio for developer d on module m
computes as:

own(m,d) =
w(m,d)
w(m)

Global contribution ownership. Firstly, to express
a global ownership ratio for a contributor d on the
whole (version of a) project, we define:
• w(d) as the number of all contributions made by

contributor d on the whole project.
• wD as the number of all contributions made by all

contributors in D on the whole project.
The global ownership of contributor d on the whole
project computes as:

own(d) =
w(d)
wD

Minor and major contributors. As presented in
Bird et al. (2011), contributors are then split into two
categories, based on the proposed global ownership
measure and on a 5% threshold. This threshold has
been validated by Bird et al. (2011) with a sensitivity
analysis. We checked that a threshold variation in the
range 2 to 10 gives similar results. Contributors are
considered minor contributors for a project version
when their ownership ratio is lower or equal to 5%.
They are conversely major contributors when their
ownership ratio is strictly greater than 5%. In the
remaining, minor contributors will be abbreviated
mCs and major contributors MCs.

Global runtime architecture code ownership. We
propose an original global runtime architecture code
ownership measure derived from Foucault et al.
(2014). We define:
• wa(d), as the number of runtime architecture code

contributions made by contributor d on the whole
project.

• waD, as the number of all runtime architecture
code contributions made by all contributors D on
the whole project.

The global runtime architecture code ownership
ratio owna for contributor d, computes as:

owna(d) =
wa(d)
waD

Non / minor / major runtime architecture code
contributors. Developers are split into two three
categories regarding the importance of their contri-
bution to the code of the runtime architecture. Non
runtime architecture contributors have authored no
line of code related to the definition of the runtime

architecture up to the current analyzed version in
the history of the project. Runtime architecture
contributors are them split into two categories, major
and minor, based on a 5% threshold. This threshold
is chosen to be coherent with categories already
calculated for code contributors.
In the remaining, non runtime architecture code
contributors will be abbreviated NRACs, minor
runtime architecture code contributors mRACs and
major runtime architecture code contributors MRACs.

4 Proposed Approach

Project files are first extracted from the repository.
The result is a raw set of code and deployment de-
scriptor files for each analyzed version of the project.
Two independent treatments are then executed for
each file. First, a complete history of its modifications
is retrieved, as a list of code line changes along with
their authors and contents. Second, a syntactic anal-
ysis is realized as a transformation of the file content
into an Abstract Syntax Tree (AST). Next step con-
sists in mapping the AST nodes to their corresponding
line changes in order to identify which contributions
relate to the runtime architecture definition (semantic
analysis). Contribution importance is then calculated
for each developer.
This process has been implemented with the follow-
ing technologies: Git as the project repository, Git-
blame to retrieve file change histories, Java Develop-
ment Tool (JDT) to parse code files or deployment de-
scriptors and to handle the resulting ASTs and Python
and R languages to extract contributor roles and run
statistical analyses. None of these implementation
choices is restrictive: these technologies are based on
general principles and could either be used in other
ecosystems (Git and Git-blame) or have some equiv-
alent (Spring framework or JDT).

5 Empirical Case Study

This section presents a case study run on the
BroadleafCommerce open-source project retrieved
from GitHub. This project has been selected for its
use of the Java Spring Framework and its confor-
mance with the criteria proposed in Jarczyk et al.
(2014) to identify significant projects. Indeed, the
BroadleafCommerce project has 1285 stars (greater
than 100) and it has been forked 1036 times (greater
than 10). These criteria characterize a corpus of 524

Figure 1: Percentages of contributions to runtime architecture by versions and by contributors

GitHub projects. BroadleafCommerce also has many
contributors — over 70 in versions 6.X.Y — and a
long history — 184 branches and 323 released ver-
sions. Finally, BroadleafCommerce is an open-source
but industrial project, providing a framework for the
development of professional e-commerce websites.
Using Git we have extracted 13 General Availability
versions of BroadleafCommerce (from 2.0.0-GA to
6.0.0-GA) for analysis. These versions correspond
to stable, production-ready versions developed over
7 years. Data used to perform empirical analysis are
available online2.
Answers to our proposed research questions are
discussed in the following sections.

RQ1: Can contributor profiles be mined from con-
tributions to runtime application architecture defi-
nitions?
Figure 1 gives the percentages of contributions to the
runtime architecture for each contributor and each
version. To better show tendencies, contributors are
sorted by their level of contributions for all ver-
sions. For all versions, the metrics clearly sepa-
rates three sets of contributors: developers that do
not have any contribution to the runtime architecture
(i.e., NRACs which are actually not plotted), develop-
ers with scarce contributions (i.e., mRACs, plotted on
the flat right part of the curves) and developers with
significant contributions (i.e., MRACs, plotted on the
higher left part of the curves). Moreover, Figure 1
graphically confirms that 5% is a relevant threshold

2https://anonymous.4open.science/r/a390e5b2-fb34-4f2f-b8ed-d758c4430b8c/

to separate mRACs from MRACs.
We also measure global ownership ratios to separate
major code contributors from minor code contribu-
tors. Figure 2 presents the evolution of the resulting
contributor categories over the different analyzed ver-
sions. The metrics enable to separate the contributors
in all possible categories combinations, except for the
NRAC-MC category that do not seem to exist in the
project. We observe that the MRAC-MC category is
rather stable over time and that a significant number
of contributors are (and remain) mRACs or NRACs.
These figures show that our proposed metrics, based
on the ownership of the runtime architecture code, is
relevant to profile contributors on this project. Al-
though simple, it appears to be not over sensitive as
it is able to detect mRACs and NRACs in every ver-
sion, spanning over 7 years, and thus different con-
texts (from a small starting project to a large stable
one). Its simplicity is probably balanced by the very
specific nature of the code that is measured (our first
hypothesis). Conversely, our metrics does not seem to
be over specific, as the MRAC category is quite stable
over the time and may correspond to a core team of
developers with a specific level of responsibility re-
garding architecture code development.

This is a promising proof of concept for RQ1. A full
validation on a large set of projects is a near perspec-
tive for this work. This will also be an opportunity to
further study and adapt the threshold values used in
order to fine tune the separation between contributor
categories.

https://anonymous.4open.science/r/a390e5b2-fb34-4f2f-b8ed-d758c4430b8c/

Figure 2: Architectural contributions by categories of developers.

RQ2: Is there a link between runtime architecture
and code contribution importance?
As our runtime architecture contribution metrics is
based on specific contributions to the project code,
it is necessary to study how these two kinds of
contributions may be linked.
Figure 2 shows that NRACs are always mCs. How-
ever, the opposite implication is not true. Indeed,
mCs are rather equally distributed between non con-
tributors and contributors to the runtime architecture.
mCs that are MRACs also exist significantly in early
project versions (prior to version 3.0.0).

In the same way, MCs are mostly MRACs. As stated
above, the opposite implication is not true for early
project versions because of MRACs being mCs.
To analyze the situation objectively, we conduct a sta-
tistical test on the following hypothesis:
• H0: Being a MRAC is independent of being a mC

or MC (null hypothesis)
• H1: Being a MRAC is dependent of being a mC or

MC (alternative hypothesis)
Fisher tests are performed with risk α = 0.05 on
the 13 analyzed versions of the BroadleafCommerce
project. Table 1 presents the results. The test is sig-
nificant when p-value< α (bold figures).
The test confirms a relation between MCs and MRACs
after the project reaches version 3.1.0. For earlier
versions, relation cannot be statistically assessed
because of the significant MRAC-mC category, as
compared to the size of the MRAC-MC category and
of project size.
These results give positive answers to RQ2. As
expected, MCs are generally also MRACs. This
seems natural as the most experienced and committed
developers are expected to be in charge of the most

sensitive concerns (our second hypothesis). But
interestingly, MRACs may also significantly be mCs
in some versions. Being a MRAC is therefore not a
simple consequence of being a MC. On the contrary,
it seems to be an actively chosen role, as shown by
the constant existence of NRACs and the stability
of the MRAC-MC category. This observation is
confirmed by RQ3.

RQ3: What is the turnover within the different con-
tributor categories?
Figure 2 highlights interesting evolution for contribu-
tor categories: the MRAC-MC category is stable over
time; MRAC-mC category disappears and the NRAC
category grows significantly after version 3.1.0. RQ3
investigates the turnover between categories to better
understand the dynamics of these phenomena. To do
so, we observe contributor movements between cat-
egories for each analyzed project version. An extra
category named External is introduced to take into
account contributors who come in or go out of the
project. Figure 3 shows the results as chord diagrams.
A category is represented by an arc on the border cir-
cle. A category change is materialized by an arrow
pointed from the source to the target category. The
amount of changes is represented by the width of the
link between two categories. The unchanged popula-
tion in a category is represented as an inner colored
region. As an example, between version 2-0-0-GA
and 2-1-0-GA, a part of the NRAC-mC category mi-
grates to the mRAC-mC category. The NRAC-MC cat-
egory is not plotted because its population is null in
all releases as seen in Figure 2. Figure 3 shows a
very low turnover on the MRAC-MC category. This
reveals that its stable size comes from the stability of
its group of contributors. Determining whether this

version 2.0.0-GA 2.1.0-GA 2.2.0-GA 2.3.0-GA 2.4.0-GA 3.0.0-GA 3.1.0-GA
p-value 1 0.54545 1 1 1 0.24242 0.01515

version 4.0.0-GA 4.1.0-GA 5.0.0-GA 5.1.0-GA 5.2.0-GA 6.0.0-GA

p-value 4.5566−6 0.00017 9.12131−5 0.00031 0.00017 6.99102−5

Table 1: Results of Fisher test on 13 versions of the BroadleafCommerce project

results from an explicit policy is beyond the scope
of this paper but is a relevant future work. Nonethe-
less, the few new members in this category come from
the MRAC-mC or the mRAC-MC categories (i.e., only
experienced and noticeable contributors). This may
confirm the existence of a policy for the management
of the core team of the project and, as a consequence,
for the contributors to the runtime architecture code
(as an industrial project, BroadleafCommerce is very
likely driven by a small professional team correspond-
ing to the detected MRAC-MC category).
The main part of the MRAC-mC category becomes
mRAC-mCs in version 3.0.0 and the remaining mem-
ber of the category becomes a member of the MRAC-
MC category in version 3.1.0. This may show that re-
maining a MRAC in the long term implies to be or be-
come a MC. However, the stability and low turnover
of the MRAC-mC category in the early versions, as
long as its re-appearance in version 6.0.0, thanks to
a contributor coming from the MRAC-MC category,
may also suggest that very specialized code contribu-
tors, focused on the runtime architecture, are required
in specific phases of a project (one more interesting
question for future work).
Another observation is that all external contributors
join mainly as NRACs and never as MRACs. More-
over, most NRACs never become mRACs. All these
observations confirm the relevance of our metrics. In-
deed, it is able to separate the project members into
three categories with stable cores. Of course, this met-
rics is not intended for measuring all the architectural
contributions. We nonetheless expect as a futurework
that it can be used to estimate the level of architectural
quality management in projects.

6 Threats to Validity

Construct validity. Software architectures are man-
aged at several structural levels (project modules,
source code, runtime deployment / instantiation, etc.)
and depend on technological or conceptual choices.
Architectural contributions are variable and multi-
faceted. Our metrics detects contributors that work
significantly on the runtime architecture definition.

Our metrics can thus at least measure significant con-
tributions to architecture development. As previously
mentioned, this is a starting point for profiling code
contributors, with the perspective of analyzing the
management of architecture development.
Internal validity. As our metrics is based on specific
code ownership, measures could be biased by code
contribution importance. This validity threat is ad-
dressed by RQ2. RQ2 shows that there is no system-
atic relation between the importance of contributions
to code and to runtime architecture definition.
External validity. For now, presented results are
limited to a proof of concept validated on a unique
project. To extract broad empirical knowledge, it is
required to analyze a large number of projects that
use the Spring framework but also others architec-
tural frameworks (e.g., Apache Struts, OSGi or JEE).
A bias may also be induced by the chosen program-
ming language and its ecosystem. To overcome this
issue, projects programmed with languages other than
Java (e.g., Javascript or C++) could be analyzed.
Reliability. The presented results have been cross-
checked, thanks to two separate implementations of
the mining process. Despite the fact that remaining
bugs cannot be be formally excluded, results have
been consistently reproduced.
Statistical Threats. In our hypothesis test using
Fisher’s test, we use a risk α of 5%. Such a risk
leaves 5% of chances to find identical results with
random values. It is a commonly accepted value for
such studies. Another issue concerns the considered
versions of the BroadleafCommerce project. In order
to limit the size and computation time of the experi-
mental case study, we consider only sampled versions
(those tagged as General Availability). This might
constitute a bias but contribution measures are always
calculated on complete histories of changes.

7 Related Work

Expertise browser (Mockus and Herbsleb, 2002)
is one of the earliest system created to find devel-
oper expertise from various data sources such as
organization product list, source code, repository

Figure 3: Chord diagrams illustrating changes in contributor categories between two successive versions

data and documentation. Three other approaches,
(Sindhgatta, 2008; Schuler and Zimmermann, 2008;
Teyton et al., 2014), use source code as their main
data source to profile developers. Teyton et al.
(2014) implements a domain specific language to
model developer expertise. Other approaches do not
use source code but data that indirectly qualify the
code. Di Bella et al. (2013) propose a clustering
approach based on software metrics and repository
data to split developers in four groups according
their contribution levels. Hauff and Gousios (2015)
use GitHub metatada and ReadMe files to match job
advertisements with developer profiles. CVExplorer
(Greene and Fischer, 2016) uses the same inputs
to produce a word list representing the developer’s
domain of expertise. Only XTic (Teyton et al., 2014)
and CVExplorer (Greene and Fischer, 2016) profile
software architects.
Bird et al. (2011) are the first to use a contribution
threshold to classify developers into two categories.
Foucault et al. (2014) have conducted a study that
uses the protocol of Bird et al. (2011) on open-source
projects.

Developer turnover is a long standing problem
that was first tackled in the 90’s with a study on
the impact of staff turnover on software project
performance (Abdel-Hamid, 1992). Robles and
Gonzalez-Barahona (2006) develop a deep study
on turnover in large software projects. The impact
of turnover on knowledge loss is measured by
Izquierdo-Cortazar et al. (2009). Foucault et al.
(2015a) also study the impact of developer turnover
on software quality and mine contribution patterns
that are correlated to turnover.

8 Conclusion and Perspectives

This empirical analysis performed on the Broadleaf-
Commerce project is a proof of concept for our pro-
posed approach. It shows the existence of a core of
major contributors to the runtime architecture defi-
nition that is globally stable over the studied history
of the project and correlated with the existing stable

core of major code contributors. Moreover, our met-
rics is precise enough to detect non and minor con-
tributors to runtime architecture definition, that also
form stable categories. As observed with our ap-
proach, runtime architecture development thus seem
to obey management policies in the BroadleafCom-
merce project. This is very promising and opens many
perspectives.
A first perspective is to conduct an empirical study
on a large panel of projects. This would not only en-
able to fully validate our approach but also to char-
acterize projects according to their architecture de-
velopment management policies, as observed through
our proposed metrics. Another perspective is to mea-
sure contributions to other architectural concerns and
study complementarities and disparities between vari-
ous architecture contributor profiles. In the same way,
mapping contributions with architecture elements and
structures would enable to study the existence of
hotspots (areas that concentrate more contributions
and contributors). The goal would be to advise the
ideal number of contributors according to project size,
chosen technology and contributor profiles.

REFERENCES

Abdel-Hamid, T. K. (1992). Investigating the impacts of
managerial turnover / succession on software project
performance. Journal of Management Information
Systems, 9(2):127–144.

Abrahamsson, P., Babar, M. A., and Kruchten, P. (2010).
Agility and architecture: Can they coexist? IEEE
Software, 27(2):16–22.

Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu,
P. (2011). Don’t touch my code! examining the effects
of ownership on software quality. In 19th ACM SIG-
SOFT FSE, pages 4–14, Szeged, Hungary. ACM.

Booch, G. (1996). Object solutions: managing the object-
oriented project. Addison-Wesley.

Di Bella, E., Sillitti, A., and Succi, G. (2013). A multivari-
ate classification of open source developers. Informa-
tion Sciences, 221:72–83.

Foucault, M., Falleri, J.-R., and Blanc, X. (2014). Code
ownership in open-source software. In 18th EASE,
pages 1–9, London, UK. ACM.

Foucault, M., Palyart, M., Blanc, X., Murphy, G. C., and
Falleri, J.-R. (2015a). Impact of developer turnover on
quality in open-source software. In 10th ESEC / FSE,
pages 829–841, Bergamo, Italy. ACM.

Foucault, M., Teyton, C., Lo, D., Blanc, X., and Falleri, J.-
R. (2015b). On the usefulness of ownership metrics
in open-source software projects. Inf. Softw. Technol.,
64:102–112.

Garlan, D. and Shaw, M. (1993). An Introduction to Soft-
ware Architecture, chapter 1, pages 1–39. on Soft-
ware Engineering and Knowledge Engineering, vol.
2. World scientific.

Greene, G. J. and Fischer, B. (2016). CVExplorer: Iden-
tifying candidate developers by mining and exploring
their open source contributions. In 31st IEEE/ACM
ASE, pages 804–809. ACM.

Gupta, P. and Govil, M. C. (2010). Spring Web MVC frame-
work for rapid open source J2EE application develop-
ment: a case study. IJEST, 2(6):1684–1689.

Hauff, C. and Gousios, G. (2015). Matching GitHub de-
veloper profiles to job advertisements. In 12th MSR,
pages 362–366, Florence, Italy. IEEE.

Izquierdo-Cortazar, D., Robles, G., Ortega, F., and
Gonzalez-Barahona, J. M. (2009). Using software
archaeology to measure knowledge loss in software
projects due to developer turnover. In 42nd HICSS,
page 10, Waikoloa, USA. IEEE.

Jarczyk, O., Gruszka, B., Jaroszewicz, S., Bukowski, L.,
and Wierzbicki, A. (2014). GitHub projects. qual-
ity analysis of open-source software. In 6th SocInfo,
pages 80–94, Barcelona, Spain. Springer.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L.,
Germán, D. M., and Damian, D. E. (2016). An
in-depth study of the promises and perils of mining
GitHub. ESE, 21(5):2035–2071.

Le Borgne, A., Delahaye, D., Huchard, M., Urtado, C.,
and Vauttier, S. (2018). Recovering three-level ar-
chitectures from the code of open-source java Spring
projects. In 30th SEKE, pages 199–202, Redwood
City, USA. KSI Research.

Mockus, A. and Herbsleb, J. D. (2002). Expertise browser:
a quantitative approach to identifying expertise. In
24th ICSE, pages 503–512, Orlando, USA. ACM.

Perez, Q., Le Borgne, A., Urtado, C., and Vauttier, S.
(2019). An empirical study about software archi-
tecture configuration practices with the java spring
framework. In 31st SEKE, pages 465–593, Lisbon,
Portugal. KSI Research.

Poncin, W., Serebrenik, A., and Van Den Brand, M. (2011).
Process mining software repositories. In 15th CSMR,
pages 5–14, Oldenburg, Germany. IEEE.

Robles, G. and Gonzalez-Barahona, J. M. (2006). Contrib-
utor turnover in libre software projects. In 2nd IFIP
OSS, pages 273–286, Como, Italy. Springer.

Runeson, P., Martin, H., Rainer, A., and Björn, R. (2012).
Case study research in software engineering: guide-
lines and examples. Wiley & Sons.

Schuler, D. and Zimmermann, T. (2008). Mining usage ex-
pertise from version archives. In 5th MSR, pages 121–
124, Leipzig, Germany. ACM.

Sindhgatta, R. (2008). Identifying domain expertise of de-
velopers from source code. In 14th ACM SIGKDD
KDD, pages 981–989, Las Vegas, USA. ACM.

Taylor, R. N., Medvidovic, N., and Dashofy, E. (2009).
Software architecture: foundations, theory, and prac-
tice. Wiley & Sons.

Teyton, C., Falleri, J.-R., and Blanc, X. (2012). Mining
library migration graphs. In 19th WCRE, pages 289–
298, Kingston, Canada. IEEE.

Teyton, C., Palyart, M., Falleri, J.-R., Morandat, F., and
Blanc, X. (2014). Automatic extraction of developer
expertise. In 18th EASE, page 8, London, UK. ACM.

