
HAL Id: hal-03164184
https://imt-mines-ales.hal.science/hal-03164184v1

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Objective Comparison of Ridge/Valley Detectors by
Image Filtering

Ghulam-Sakhi Shokouh, Baptiste Magnier, Binbin Xu, Philippe Montesinos

To cite this version:
Ghulam-Sakhi Shokouh, Baptiste Magnier, Binbin Xu, Philippe Montesinos. An Objective Compari-
son of Ridge/Valley Detectors by Image Filtering. ICPR 2021 - International Conference on Pattern
Recognition Workshops and Challenges, Jan 2021, Virtual Event, France. pp.182-197, �10.1007/978-
3-030-68821-9_18�. �hal-03164184�

https://imt-mines-ales.hal.science/hal-03164184v1
https://hal.archives-ouvertes.fr


An Objective Comparison of Ridge/Valley
Detectors by Image Filtering

Ghulam-Sakhi Shokouh, Baptiste Magnier, Binbin Xu and Philippe Montesinos

EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Alès, France
{ghulam-sakhi.shokouh,baptiste.magnier,binbin.xu,montesin}@mines-ales.fr

Abstract. Ridges and valleys are the principle geometric features for
their diverse applications, especially in image analysis problems such
as segmentation, object detection, etc. Numerous characterizations have
contributed to formalize the ridge and valley theory. The significance
of each characterization rely however on its practical usefulness in a
particular application. The objective comparison and evaluation of rid-
geness/valleyness characterized as thin and complex image structure is
thus crucially important, for choosing, which parameter’s values corre-
spond to the optimal configuration to obtain accurate results and best
performance. This paper presents a supervised and objective compari-
son of different filtering-based ridge detectors. Moreover, the optimal pa-
rameter configuration of each filtering techniques have been objectively
investigated.

Keywords: ridge detection · valley detection · image filtering

1 Introduction

The correct detection, localization, and extraction of the salient features in an
image, as well as the accurate characterization of its geometric structure are
important image processing tasks, related to its wide range of applications. Ex-
haustive researches have been carried out on the significant image features such
as edges, lines, crest lines, blobs, ridges and valley. Ridges and valleys (also called
crest lines or roof edges) have stood out to be the most eminent and useful struc-
ture for image analysis. Ridges and valleys represent a special type of contours,
as shown in Fig. 1. Classical edge detectors are optimized to extract step or
ramp edges [1]; however, they fail to detect crest lines. Indeed, a step/ramp edge
extractor will return two edges at both sides of the crest line because narrow
ridges or valleys on the image surface are composed of two locally parallel step
or ramp edges. Roof edges are defined as thin nets in the image, describing for
example roads or rivers in satellite images, blood vessels in medical images or
plant roots. Hence, finding these dense and thin structures is a significant task
in image processing. Meanwhile, there are many inevitable challenges in image
processing tasks, such as noise, artifacts, etc. depending on specific applications.
So, the acceptable ridge/valley detection requires cumbersome and manual tun-
ing. Therefore, an extensive evaluation of the different state of the art filtering
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Fig. 1. Illustration of features in images by elevation of the image intensity (left) and
ridge detection using LoG filter with σ = 5, images of size 256×256 (right).

techniques and approaches in the scope of its most useful application, is indis-
pensable. This paper is dedicated to this objective evaluation and comparison.

2 Ridge Extraction in Images

Originally, a discrete definition for ridges appears in [2], where the underlying
function is the image convolved with a Difference Of Low-Pass (DOLP) trans-
form. Indeed, considering two different low-pass filters L1 and L2 (i.e., two sup-
ports of different widths) both positioned over the center coefficient at the point
(0, 0), ridges, valleys and blobs may be extracted efficiently with the DOLP trans-
form: these features are highlighted by applying two different low-pass filters to
the same image and then subsequently subtracting these two filtered images.
Note that the difference of the filters may be applied before convolving the im-
age with the obtained DOLP filter. Thereafter, crest lines are extracted when
the support of the low-pass filter L1 is smaller than the support of the low-pass
filter L2 and inversely regarding valleys. For the final step of the ridge extrac-
tion, the selected pixels correspond to points being local maxima in one of the
4 orientations (modulo 180◦ in degrees) associated with the 8-neighborhood of
the pixels. Even though the results obtained with square shapes are acceptable,
the DOLP filter formed by subtracting circularly low-pass filters is preferable.
Nevertheless, for their isotropy and circular symmetry properties, the sampled
Gaussian filter represents a good achievement. In fact, the Difference of Gaus-
sians (DoG) remains effective in ridge detection and is an approximation of the
Laplacian of Gaussian (LoG) when the ratio of the size filters is roughly equal
to 1.6 [3]. Usually called Mexican hat or Sombrero filter, the 2D equation of the

LoG is given by: LoG(x, y) = 1
πσ4 ·

(
1− x2+y2

2σ2

)
· e−(x2+y2)/2σ2

, where (x, y) rep-

resents the pixel coordinates and σ is the standard deviation of the Gaussian.
A ridge extraction example in Fig. 1 after a non-maxima suppression in the 4
orientations associated with the 8-neighborhood of the pixels. Also, in Haralick’s
approach [4], the image function is approximated by a cubic polynomial which,
sometimes, may distort the detection.

DOLP transform and LoG allow extracting roughly ridges and valleys, but
suffer when the desired objects are too thin, thus the detection is disturbed by
noise or undesirable artifacts. Additionally, the angle selectivity may be improved
by applying other operators, as presented in the following.



2.1 Hessian Matrix

In image filtering, the second order derivative may be used to determine the
location of the ridges. Indeed, bright or dark ridges correspond to, respectively, a
maximum or minimum of the image intensity in the direction orthogonal to them
and a constant image intensity in the direction parallel to them. Considering a
grey level image I and its partial derivatives:
• Ixx = ∂2I/∂x2, the 2nd image derivative along the x axis,
• Iyy = ∂2I/∂y2, the 2nd image derivative along the y axis,
• Ixy = ∂2I/∂x∂y, the crossing derivative of I,
the Hessian matrix H is often computed in image analysis:

H(x, y) =

(
Ixx(x, y) Ixy(x, y)
Ixy(x, y) Iyy(x, y)

)
=

(
H11 H12

H21 H22

)
. (1)

Image derivatives can be calculated by convolving the image with the ±[-1 0 2
0 -1] or the ±[-1 0 1] masks in the x and/or y directions.

The matrix H is symmetric, diagonalizing H provides the local normal to
the ridge or the valley (that is given by the eigenvector related with the highest
eigenvalue) and its sharpness (that is related to the values of these eigenvalues)
[5,6]. Theoretically, eigenvalues (k1, k2) are computed by:{

k1(x, y) = 1
2
· (H11 +H22)− 1

4

√
(H11 +H22)2 + 4 · H2

12

k2(x, y) = 1
2
· (H11 +H22) + 1

4

√
(H11 +H22)2 + 4 · H2

12 ,
(2)

they are visible in Fig. 2(b)-(c). Then, eigenvectors, tied to the direction perpen-

dicular to the ridge/valley, are given by: ~θ =

(
H12

k1 −H11

)
. The two eigenvalues k1

and k2 correspond to the two main curvatures of the local surface. Besides, there
exists several functions Di,i∈{1,2,3,4} indicating the local image contrast [7]:

(a) Image 256×256 (b) |k1| image of H (c) |k2| image of H (d) |k1| image of W (e) Segmentation in (b)

(f) Image 256×256 (g) Eq. 1, discrete (h) Eq. 1, Z, sz=0.63 (i) Eq. 1, Gσ , σ=1.81 (j) SF4, σ = 1.81

Fig. 2. Comparison of valley detection on real images. The image in (f) is obtained
using scanning electron microscopy of melt ceramic, where the valleys are detected
with 3 different techniques: Hessian matrix H without and with low pass filter (Z and
Gσ) in (g)-(i) and steerable filter of order 4 (SF4) in (j).
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Fig. 3. Example of extracted ridges with their tied perpendicular directions.

• D1 = k1, corresponding to the main eigenvalue [6],
• D2 =

√
k21 + k22, see [8],

• D3 = (k21 + k22)2, see [8],
• D4 = |k1 − k2| · |k1 + k2|, see [7].

Finally, a pixel is labeled as a ridge/valley pixel if Di,i∈{1,2,3,4} is maximum in

the ~θ direction, it is selected after non-maximum suppression [1], as illustrated
in Fig. 3. In practice, regarding real images, due to the luminance variation,
acquisition and/or compression noise, the detection of pure ridges/valleys is
almost impossible. So, in order to more reliably extract the ridges and illustrated
in Fig. 2(f)-(j), the convolution of the image with a low-pass filter is considered,
as detailed in Sec. 2.3.

2.2 Weingarten

Weingarten map represents the differential of the Gauss map [9]. This expression
can be computed directly from the first (i.e., Ix = ∂I

∂x and Iy = ∂I
∂y ) and second

derivatives of the images. The linear invariants of the Weingarten map are the
intrinsic curvatures of the surface: the eigenvalues are the principal curvatures,
the trace is the mean curvature, and the determinant is the Gaussian curvature:

W (x, y) =
1

(1 + I2x + I2y)
3
2

·
(

1 + I2y −IxIy
−IxIy 1 + I2x

)
·
(
Ixx Ixy
Ixy Iyy

)
. (3)

The eigenvalues and eigenvectors of W are extracted with the same procedure
as in Eq. 2 and for θ computation, regarding coefficients of the matrix W . In
[10], ridges or valleys are extracted by smoothing the image with a Gaussian
and considering D1. Note that if Ix= 0 and Iy= 0, then the ridge extraction
technique is equivalent to the hessian matrix diagonalization.

2.3 Low pass filters for ridge detection

The optimization criteria, based on the Canny theory, are: (i) detection efficiency,
(ii) location accuracy of the detected contour and (iii) uniqueness condition of
filter response to its output for an input signal [1]. Based on this theory, several
low pass filters have been proposed in the literature. In the following, three low-
pass filters and their second derivatives are discussed for ridge/valley detection.



Ziou Filter Z In [11], the author described an optimal line detector allowing
an economic temporal complexity. It represents a second order recursive filter.
Considering t ∈ R, the equation of the 1D low pass filter Z is given by:

Z(t) =
1

s2z
· (1 + sz ·|t|) · e−sz ·|t|, (4)

where sz represents a positive constant. The second derivative of Z is obtained
by derivation as a function of t, two times: z(t) = (sz ·|t| − 1) · e−sz ·|t|. Note that
the same procedure is available to obtain the 1st derivative of the filter Z, as for
the following presented filters.

Gouton Filter R Gouton et al. [12] described a third order recursive filter:

R(t) = (K · sin(sr · |t|) +D · cos(sr · |t|) + E) · e−sr·|t|, (5)

where: K = 1
4·s4r

, D =
2s2r·A
4·s4r

, E = A·sr+sr
s3r

and A =
−sr·(2s2r−t

2)
sr·(2s2r+t2)

. Thus, the

second derivative of R is: r(t) = (cos(sr · |t|)− sr · sin(sr · |t|)− (sr + 1)) · e−sr·|t|.
The more the sr decreases, the more r enhances fine ridges/valleys. Furthermore,
when sr decreases, the shape of R is nearly a Gaussian, as shown in Fig. 4.

Gaussian Filter Gaussian kernels are regularly used for their effectiveness in
edge detection [1], the 1D and 2D Gaussian are:

Gσ(t) =
1√
2πσ

· e− t2

2σ2 ,Gσ(x, y) = Gσ ∗G>σ (x, y) =
1

2πσ2
· e−

x2+y2

2σ2 (6)

with σ the standard deviation, “∗” product of convolution and > transpose.
Using Gσ, the strategy is the same as to compute the second derivative on
an image, with Gσ and g>σ , as an example for an image derivative in y, see
Fig. 5(d). The section 2.4 is dedicated to the strategies of the two dimensional
filters implementation. Furthermore, these filters in Eq. 4, 5 and 6 are useful
for image smoothing extracting edges by computing H matrix presented in Eq.
1. Additionally, it is also possible to use the Weingarten (cf. Eq. 3) with the
Gaussian, as in [10].

Parameters The three above-mentioned filters are suitable for ridge and valley
detection. One can adjust one filter by tuning only one parameter which is the
same for the low pass and the derivative filter. Accordingly, sz, sr and σ are
chosen as a function of the ridge/valley’s width. These parameters are thus
selected by increasing the filter width as robust as possible in order to extract
suitably the feature. Here, the main idea is to compare equivalently the 3 filters
z, r and gσ as a function of the filter width – tuning each filter for a specific
width with appropriate sz, sr or σ. Thus, in the discrete domain, sz and sr are
decreasing, and σ is increasing until the filter coefficients cross 0 and the shape
filter contains the width of the feature at the same time. Fig. 4 illustrates the
selected filers computed with different parameters as a function of the width of
the feature. In addition, Table in Fig. 4 references the optimum parameters for
each filter as a function of the features size from 1 to 15 pixels. Finally, σ of the
Gaussian has the same properties regarding oriented filters widths.



2.4 Oriented filters

One common practice in image processing and computer vision is applying the
same filter on different angles in order to detect directional responses as Steerable
Filter [13][14], Anisotropic Gaussian Kernel [15] and Logical Linear Filter [16].

Steerable Filter Gaussian kernels Gσ are very useful for their properties like
isotropy, steerability or separability (see Sec. 2.4). Freeman and Adelson pro-
posed an efficient architecture to design oriented filters of arbitrary orientations
from linear combinations of basis filters [13]. By applying filter steered in dif-
ferent directions, the filter responses can thus help to detect the orientation for
the considered pixel. In ridge / valley detection, the first step is to estimate
the orientations with even steered filters. Consequently, the 2nd steerable filter
considering the two-dimensional Gaussian Gσ at angle θ is:

SF θ2 = cos2(θ) · ∂
2Gσ

∂x2
+ cos(θ) sin(θ) · ∂

2Gσ

∂x∂y
+ sin2(θ) · ∂

2Gσ

∂y2
. (7)

This allows computing an even filter on any specific orientation, as illustrated in
Fig. 5(e). So the ridges or the valleys detection corresponds to a task of finding
filter energy in the direction of the maximum response of the template.

Jacob and Unser [14] extend the idea of the steerable filter of order 2 (SF2)
with operators having a better orientation selectivity. Indeed, they proposed
higher order functions, from higher order Gaussian Gσ derivatives (2nd and 4th:
Gyy, Gxx, Gyyyy, Gxxyy, Gxxxx), resulting in more elongated templates, as
shown in Fig. 5(f). Regarding ridge detection, this filter needs to be specified
so as to provide the better compromise in terms of signal-to-noise ratio, false
detection, and localization (as illustrated in Fig. 2). Thus, the even steerable
filter of 4th order (SF4) is formulated as:

SF4(x, y) = α1 ·Gyy + α2 ·Gxx + α3 ·Gyyyy + α4 ·Gxxyy + α5 ·Gxxxx, (8)

with α1=−0.392 · σ, α2=0.113 · σ, α3=0.034 · σ3, α4=−0.184 · σ3, α5=0.025 · σ3 such
that the template SF4 does not produce undesirable oscillations and side-lobes

(a) Ridge/Valley of width 1 (b) Ridge/Valley of width 3 (c) Ridge/Valley of width 7

width sz sr σ

1 1.696 2.05 0.58
3 0.63 0.69 1.81
5 0.37 0.42 2.88
7 0.27 0.31 3.91
9 0.21 0.24 4.93
11 0.17 0.20 5.94
13 0.15 0.17 6.95
15 0.13 0.15 7.95
17 0.12 0.13 8.96

Fig. 4. Visual comparison of tested normalized 1D low-pass filters and 2nd order filters
with the ideal parameters tied to the width of the ridge/valley.



(a) [1 0 -2 0 1]     (b) 𝑍 ∗ 𝑧𝑇 (c) 𝑅 ∗ 𝑟𝑇

(d) 𝐺𝜎 ∗ 𝑔𝜎 (e) 𝑆𝐹2
𝜃= 30° (f) 𝑆𝐹4

𝜃= 0
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(g) SOAGK (h) Image 512×512 (i) SOAGK, 𝜃 = 0° (j) SOAGK, 𝜃 = 30°

Fig. 5. Representation and visualization of the second derivative an image computed
by convolution with the SOAGK with σu = 2.88 and σv = 5σu.

along y (see [14]). This 2D template, presented in Fig. 5(f), can be steered in
different orientations θ, as detailed in [14] to extract ridges and valleys.

Anisotropic Gaussian Filter Though isotropic Gaussian kernels can be suc-
cessfully applied in some ridge / valley detections, they failed quite often. The
main drawback of isotropic Gaussian kernels is the isotropic smoothing property.
This makes it difficult to detect crossing lines. And parallel lines could be blurred
into one line, especially if the smoothing parameter is too large (i.e., σ parameter
in Eq. 6). Kernels based on the derivative of anisotropic Gaussian functions can
overcome this problem and have been successfully applied in edge detection. The
orientation selectivity is more reliable with the anisotropic Gaussian derivatives.
And the anisotropic property is more efficient at level of straight lines. This cor-
responds to a narrow filter which is applied in different directions to extract the
edges when it is steered in the edge direction. Thereafter, it is necessary to filter
the image with a set of 360/∆θ kernels, as such, leading to the characterization
of the partial derivatives in 360/∆θ different orientations. The straightforward
option to produce single output is thus to retain the result produced by the
oriented kernel with the maximum absolute value. An anisotropic 2D Gaussian
filter [17] can be defined as:

Gσu,σv,θ (x, y) =
1

2πσuσv
· e−

1
2

(
(x cos θ+y sin θ)2

σ2u
+

(−x sin θ+y cos θ)2

σ2v

)
. (9)

Here, (σv, σu) represents the standard deviations of the anisotropic Gaussian.
When σv = σu, the kernel G turned into an isotropic Gaussian kernel. To extract
ridges, the Second-Order Anisotropic Gaussian Kernel (SOAGK) can be applied
[15]. Considering the vertical anisotropic Gaussian directed at θ = 0, the second
derivative of Gσu,σv,θ=0 in the x direction is:

G′′σu,σv,θ=0 (x, y)=
∂2Gσu,σv,θ=0

∂x2
(x, y)=

x2 − σ3
u

2πσ5
uσv
· e−

1
2

(
x2

σ2u
+ y2

σ2v

)
. (10)

The choice of σv > σu enables to build a narrow filter smoothing mostly in the
y direction while enhancing valleys in the x direction. Now, this 2D kernel can
be oriented in different directions to capture valleys (or ridges with the opposite
filter) in the image, as illustrated in Fig.5. To this end, this anisotropic choice
produces a smoothing alongside the ridge/valley, which helps to extract easily
elongated features, even disturbed by noise. On the contrary, kernels having
σv/σu ≈ 1 highlight undesirable features as noise which are interpreted as small,
non-elongated ridges [15].



Fig. 6. Convolution of a 1D signal with the n′l , n′r , n(3)
l and n(3)

r with ε=2 to compute
Positive and Negative contrast lines with SP and SN respectively.

Logical Linear Filter Similar to the SOAGK, Iverson and Zucker proposed
a hybrid filter by combining directional linear filters and a Linear-Logical (L/L)
operator which helps to reduce the false positive pixels of ridges/valleys [16].
This technique allows selecting any inflection points within the 1D signal region
[t−ε, t+ε], ε > 0, see Fig. 6. It depends on the Gσ (see Eq. 6) and its derivatives

of the first and third order Gσ
′ and G

(3)
σ by computing the four parameters:{

n′l = G′σ(t+ ε)/2ε, n′r = G′σ(t− ε)/2ε,
n(3)
l = G

(3)
σ (t+ ε)/2ε, n(3)

r = G
(3)
σ (t− ε)/2ε, (11)

thereby, they can be applied to a signal, as shown in Fig.6.
Concretely, the L/L operator can be utilized on different edge types as ridge

P (Positive contrast lines), valleys N (Negative) and Edges E (ramp or step).
In this study, only P and N are focused and evaluated. These denoted functions
SP and SN respectively combine linear operators in Eq. 11 by using the logical
operator ∧+ such that: SP = n′l ∧+ n′r ∧+ n(3)

l ∧+ n(3)
r and SN = −n′l ∧+ −n′r ∧+ −n(3)

l ∧+
−n(3)

r , where the logical operator ∧+ is represented by, for two hypotheses (a, b):

a ∧+ b ,

{
a+ b, if a > 0 ∧ b > 0; b, if a > 0 ∧ b ≤ 0;
a+ b, if a ≤ 0 ∧ b ≤ 0; a, if a ≤ 0 ∧ b > 0,

In this way, SP and SN contribute to extract convex and concave points, as
shown in Fig. 6.

Next, to extract ridges or valleys and their tied directions, the 2D operator is
expressed as the Cartesian product of orthogonal, 1D L/L operators SP or SN
operators and a tangential operator T (t). Moreover, this 2D operator is oriented
and uses strategies of the logical operator ∧+ with the tangential operator T (t) to

(a) Image 512×512 (b) Positive contrast lines (c) Negative contrast lines

Fig. 7. Directions of contrast lines obtained by SP and SN (vectorial images).



(a) discriminate between locally continuous and discontinuous curves along their
tangent direction in the image; and, (b) align the line termination with the line
ending (illustrated in Fig. 7, for more details refer to [16]). To sum up, the L/L
operator is similar to the SOAGK, with the parameter σu tied to the normal
operator (SP and SN ) and σv for the tangential operator T (see Fig. 5(a)).

Implementation and Complexity Presented filters may be implemented
with different strategies. First, separable filters Z, R or Gσ can be written as
product of two 1D filters which are equivalent to a typical 2D convolution pro-
viding reduction of the computational cost. Secondly, to reduce even more the
number of operations per pixel, each 1D Z, R or Gσ filter may be also im-
plemented recursively (also known as Infinite Impulse Response (IIR) filters),
representing filters where the output sample is a linear combination of some
number of previous inputs and outputs. The recursive implementation strategy
is then compared here. Table in Fig. 8 reports the order of these 3 detailed filters.

To reduce the number of operations per pixel, a M -order recursive filter
is obtained by calculating its Z transform. Thus, the two-sided sequence of
a filter F is the superposition of a causal filter F− and anti-causal filter F+:
F (n) = F−(n)+F+(n), for n = {1, ...,M}. To minimize the computational com-
plexity, the authors of [19] proposed to decompose series interconnection into
a product of the causal and anti-causal parts, leading to a 3rd-order Gaussian
filter, a 4th-order first derivative filter and a 5th-order second derivative filter
(many fast approximations have been proposed, some of them are detailed in
[20]). Thereafter, table in Fig. 8 specifies the required number of image com-
putations as a function of the segmentation technique (LoG, H, W , SF2, SF4,
or L/L) and Fig. 8 roughly schematize the complexity. The Hessian Matrix H
needs the second derivatives of the image Ixx, Iyy and Ixy, using Z, R or G
filters. Obviously, W is more computationally complex because it needs more
image derivatives. Regarding the steerable filters, an operation of filter rotation
with an angle θ is necessary (with 360◦/∆θ total rotations, where ∆θ is the
angular step); and 5 derivative images are calculated for the steerable filter of
order 4 (see Eq. 8). On the other hand, the number of basis filters is large to
extract features with the SOAGK, and the basis filters are non-separable, requir-

Ridge/valley detection technique
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o
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p
le

x
it

y

H with Z

H with R

H with 𝐺𝜎
W with 𝐺𝜎

𝑆𝐹2

𝑆𝐹4

SOAGK

L/L
Filter Z and z R and r Gσ and gσ

Recursive order 2, see [11] 3, see [12] 4, see [18] or 5, see [19]

Computed basis images Rotation Other

LoG Ixx and Iyy - -

H Ixx , Iyy and Ixy - D1, D2, D3 or D4

W Ix, Iy, Ixx , Iyy and Ixy - Usually D1

SF2 Ixx or Iyy yes max and argmax

SF4 Ixx, Iyy, Ixxxx, Iyyyy, Ixxyy yes max and argmax

SOAGK Ixx or Iyy yes max and argmax

L/L Ix, Ixxx yes ∧+ , endline, stabilizer

Fig. 8. Left : Complexity schema, depending on the recursive filters order, the number
of calculated images and the filter rotation. Right : Recursive orders of the filters and
image computations as a function of the chosen technique.



(a) Image 800×1200 (b) H with discrete filters (c) H with filter Z, sz = 1.696

(d) H with filter G and D1, σ=0.58 (e) W with filter G and D1, σ = 0.58 (f) SF4, σ = 0.58

Fig. 9. Valley detection in green on real image of a dragonfly, with thin, blurred and
very close junctions. The original image is inverted for a better visualization.

ing high computational loads. In [17], the anisotropic Gaussian is decomposed
into two Gaussian 1D filters by considering 360◦/∆θ steps of rotation, allowing
reducing the operation number per pixel (to approximate the SOAGK, the dif-
ference of anisotropic Gaussian with two different standard deviations σu in Eq.
9 is calculated [17]). Also, the L/L filter contains several steps of interpolation
for the normal operator (SP and SN ) and for the tangential operator T which
are directed in different directions in the image. Moreover, the L/L uses other
strategies such as the endline or the stabilizer to qualify the segmentation; these
steps add more filter complexity.

3 Experimental Results and Evaluation

Experiments are carried out on synthetic and real images, showing qualitative
and quantitative results. A first result in Fig. 9 illustrates the advantage to use
sharp and narrow filters to extract thin and close objects, as filters z and r. The
aim here is to extract branches inside the dragonfly wings. As this image does not
contain any noticeable noise, the Hessian matrix H with finite filters like [1 0 -2
0 1] gave interesting results for these thin objects, but created many undesirable
edge points around certain valleys (similar segmentation also by SF4). H with
the Gaussian gσ and D1 brings similar but less complete result. Segmentation
obtained with H and D2, D3 and D4 are worse with a lot of missing edge points,
as with SF2. However, the valley extraction using W is perfectible. On the other
hand, the result using H with z filter is good enough (Fig. 9(c)), this justified
the need to use low pass filter. Among all the ridge/valley detectors, exponential
(z or r) filters do not delocalize contour points [21], whereas they are sensitive to
noise. Techniques using Gaussian filters are less sensitive to noise, but suffer from
rounding bends and junctions like the oriented filters SF2, SF4 and the SOAGK.
The more the 2D filter is elongated, the more the segmentation remains robust
against noise. In the following sections, quantitative results are reported.



3.1 Error quantification and Evaluation procedure

Evaluations are reported using synthetic images where the true positions of the
edges are known. Let Gt be the reference contour map corresponding to the
ground truth and Dc the detected contour map of an image I. Comparing pixel
by pixel Gt and Dc, a basic evaluation is composed of statistics:
– True Positive (TP ), common points of both Gt and Dc;
– False Positive (FP ), spurious detected edges of Dc;
– False Negative (FN), missing boundary points of Dc;
– True Negative (TN), common non-edge points.
Thus, as described in [22], the normalized N edge detection evaluation measure
is, for FN > 0 or FP > 0:

N (Gt,Dc)=
1

FP+FN
·
[
FP

|Dc|
·
∑
p∈Dc

1

1+κFP ·d2Gt(p)
+
FN

|Gt|
·
∑
p∈Gt

1

1 + κFN ·d2Dc(p)

]
, (12)

where (κFP , κFN )∈]0, 1]2 represent two scale parameters [22], | · | denotes the car-
dinality of a set, and dA(p) is the minimal Euclidian distance between a pixel
p and a set A [23]. Therefore, the measure N calculates a standardized dissimi-
larity score; the closer the evaluation score is to 1, the more the segmentation is
qualified as suitable. On the contrary, a score close to 0 corresponds to a poor
detection of contours.

The objective here is to get the best contour map in a supervised way. For
that, the contours are extracted after a suppression of the local non-maxima,
then a threshold by hysteresis is applied to obtain a binary segmentation [1].
Theoretically, to be objectively compared, the ideal contour map of a measure
must be a Dc at which the supervised evaluation gets the highest score [22,23].
For each better segmentation tied to N , another evaluation measure concerns
the angle tied to the ridge/valley, θ. Considering CDc , the set of contour chains in
Dc (i.e., at least 2 pixels per chain), the angle evaluation is computed as follows:

E(CDc , θ) =
1

|CDc |
·
∑
p∈CDc

∑
dk∈ω

1−

∣∣∣90◦ −
∣∣∣−→θp − −→θdk ∣∣∣ ∣∣∣
90◦

 /ck,
where dk represents a contour pixel belonging to ω, a 3×3 window centered on

p,
−→
θdk the direction tied to dk and ck the number of contour pixels in ω, minus

the central pixel. This evaluation linearly ranges from 0 for identical angles of
−→
θp

and
−→
θdk to 1 for angles that differ. Note that when one direction approximates

0 and the other direction 180◦, the evaluation remains close to 0.
Also, from proper binary confusion matrix, the precision (Prec) and recall

(Rec) evaluations are computed, given the overall quality expressed in terms of:

Fα =
Prec · Rec

α · Prec + (1− α) · Rec
with Prec =

TP

TP+FP
and Rec =

TP

TP+FN
, (13)

note that a values of α = 0.5 allows a equal penalization between FN and FP.
These scores are presented in the next section, according to different images

and noise types.
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(a) Evaluation as a function of the noise level. Here the image containing ridges of width 1 (on the left) is corrupted by a Poisson noise.

(b) Evaluation as a function of the noise level. Here the image containing ridges of width 3 (on the left) is corrupted by a Speckle noise.

(c) Evaluation as a function of the noise level. The image containing ridges of width 3 is corrupted by a Gaussian noise and a Gaussian blur.

(d) Evaluation on the Ghent University Fungal Images 1 dataset (real images 300×300), with their tied hand-labelled ground truth.

SNR (dB) SNR (dB) SNR (dB)
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Fig. 10. Evaluation of the different ridge/valley extraction techniques on (a)-(c) syn-
thetic and (d) real images. Legends are in (c)

3.2 Synthetic images corrupted by Poisson noise

The first image in Fig. 10(a) contains ridges of width 1 pixel and is corrupted by
Poisson noise. This noise distribution typically models shot noise in a sensor in
which the time between photon arrivals is governed by Poisson statistics. Given
λ an integer, the maximum probability is obtained for t=λ and the variance of

the distribution is also λ ; at a pixel x, the equation is given by: Pλx(t) = λte−λ

t! .

As shown in Fig. 10(a), except SOAGK and L/L, all the other filters are
robust to Poisson noise at this scale. SF2 performed exceptionally well, with Fα
almost close to 1. It only started to drop from SNR 5dB. Filters with Z, R, Gσ
& SF4 ranked in the second place, their performances are still sufficiently well
(Fα over 0.9). But SF4 seemed to be less robust to Poisson noise, whose Fα
dropped sharply from SNR 6dB. In comparison, SOAGK showed its relatively
poor performance to resist the noise – starting with Fα at 0.85, ending with 0.3 at
SNR 3dB. L/L failed completely in this task. It detected barely any true positive
ridges. This poor performance of oriented filters is caused by the small size of
these filters where small-scale orientation deforms the kernels. The angular score



E is the best for Z and R filters (using H) because they correspond to sharp
filters, especially suitable for thin ridges.

3.3 Synthetic images corrupted by Speckle noise

The second image in Fig. 10(b) contains ridges of width 3 pixels and is disturbed
by a Speckle noise. This multiplicative noise appears with the image acquisition
due to the level of noise in the sensor of a CCD or CMOS camera, increasing in
proportion to luminosity [24]. This noise model can be formulated as: J = I+σ·η·I,
where J represents the observed image, I the noise-free image, η is a normalized
Gaussian noise distribution centered at 0 of standard deviation σ.

Compared to Poisson noise which is correlated to the original image, Speckle
noise adds some independent noise to the images that could corrupt more the
image’s geometric structure. For filters providing quite good results in previous
situation (Fig. 10(a)), they are less efficient in case of Speckle noise. Instead of
starting with Fα in the range of [0.83, 0.87], they are now under the threshold of
0.85 corresponding a performance drop of 0.8 at SNR 8dB. And the robustness
to noise level decreased much more. This decreasing behavior in the interval
[0.85, 0.55] is similar to Speckle noise’s granular effect property. Unlike the total
failure with Poisson noise, L/L filter worked correctly. However its performance
is still the worst compared to other filters. The main reason could be due to
the fact that L/L is by definition a 1D filter with additional processing as the
endline detection or the stabilizer which are noise sensitive. This makes it be
much less robust to structure-correlated noise. As the structure-correlated noise
could destroy the 2D visual structures transformed in 1D filter space and cause
thus the failure of detection. On the other hand, among the techniques using
non-oriented filters, it is noticeable that H with D1 and W with D1 obtain best
scores. Additionally, the extracted ridges are more continuous and less disturbed
by undesirable FP pixels. W with D1 allows a better quality of detected ridges
than with other non-oriented filters (see additional results). Finally, the angular
score E obtained by the SOAGK is less penalized because it corresponds to
an elongated kernel applied on close-right structures, so the oriented filter is
generally the same along these structures (same remark for the Gaussian noise).

3.4 Synthetic images corrupted by Gaussian noise

The last experiment with synthetic images in Fig. 10(c) concerns valleys cor-
rupted by Gaussian blur and Gaussian noise. This type of noise represents ad-
ditive noise disturbing gray values in images. Gaussian noise blurred more the
geometrical structure in images. So, as shown in Fig. 10(c), the general Fα for
all filters are decreased compared to those with Poisson and Speckle noises.
SOAGK, SF2, SF4 filters gave better results (Fα ∼ 0.8). L/L filter showed al-
ways the worst result, even at SNR 9dB, the Fα is only 0.63. when noise becomes
stronger performances decreases. In comparison, W with D1 still detects a better
quality of ridges than with other non-oriented filters, statistically and visually.



3.5 Evaluation with real images

After evaluating the filters on synthetic images with different types of noise,
the ridge detection on real-world images is presented. These images are from
the Ghent University Fungal Images together with their manually annotated
ground-truth ridges [15]. This database is extremely challenging. Here, 13 im-
ages with their tied ground truth images are selected randomly for this exper-
iment. The images have very poor contrast and strong noises. Regarding the
evaluation of pixel per pixel, due to the hand-labeled ridge points which create
inaccurate ground truth (Gt), the overall ridge detection with these filters is
around Fα = 0.2, and they are image-dependent. In the best situation, Fα can
reach 0.3; otherwise, in worst cases, the Fα will drop below 0.5 and are close
to 0.06. Oriented filter SF2, SF4 and SOAGK performs well, regarding Fα and
N , contrary to the L/L and H with D4. Regarding W with D1, its evaluation
is better than other non-oriented filters, even though the angle evaluation E
penalizes the directions perpendicular to the detected ridges (however the score
remains under 0.1 where it was under 0.2 for Speckle noise).

4 Conclusion

In this paper, the state of art of ridge/valley detection with image-based filter-
ing techniques is explored and compared, involving their mathematical proper-
ties, driving parameters and characterizations. The evaluation and comparison
of filtering methods have been theoretically and experimentally carried out on
both synthetic and real images. Each filtering techniques have been examined on
complex images, where different types fo noises have been applied. The obtained
comparison and evaluation graphs demonstrated which approach is reliable as
a function of the width feature. Eventually, this comparative evaluation would
serve as ridges/valleys optimal parameter adjustment guide for researchers of
this domain. Regarding non-oriented filters, the Z filter performs well when the
ridge or the valley are very thin (width of one pixel) and requires the less com-
putational complexity computed the Hessian matrix H. On the other hand, H
associated with the Gaussian Gσ and the highest eigenvalue (D1) is a good com-
promise when the feature widths are growing. Yet, the Weingarten W and its
eigenvalue gives suitable and better continuous detected ridges. Steerable filters
of order 2 (SF2) and of order 4 (SF4) obtain similar results, especially for bended
features, contrary to the SOAGK which is well adapted for straight features.

Though computer vision related research is one of the most advanced fields in
deep learning, deeper understanding of image structure holds always its role. It
could provide finer neural network building and thus improve the performance.
This study can further give rise to a tool for the automatic selection of algorithms
(and parameters) for the ridge/valley detection and extraction with additional
voting steps etc.. Future work will consist to investigate multiscale ridge and
valley detectors [7,8,10,15] with different scenarios of features even though there
exists a difficulty to create real images containing suitable hand-labeled ground
truth, as discussed in [23].
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