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Abstract: With the target of recovering rare earth elements (REEs) from acidic leachates, a new
functionalized hydrogel was designed, based on the phosphorylation of algal/polyethyleneimine
beads. The functionalization strongly increased the sorption efficiency of the raw material for Pr(III)
and Tm(III). Diverse techniques were used for characterizing this new material and correlating
the sorption performances and mechanisms to the physicochemical structure of the sorbent. First,
the work characterized the sorption properties from synthetic solutions with the usual procedures
(study of pH effect, uptake kinetics, sorption isotherms, metal desorption and sorbent recycling, and
selectivity from multi-element solutions). Optimum pH was found close to 5; sorption isotherms
were fitted by the Langmuir equation (maximum sorption capacities close to 2.14 mmol Pr g−1 and
1.57 mmol Tm g−1). Fast uptake kinetics were modeled by the pseudo-second order rate equation.
The sorbent was highly selective for REEs against alkali-earth and base metals. The sorbent was
remarkably stable for sorption and desorption operation (using 0.2 M HCl/0.5 M CaCl2 solutions).
The sorbent was successfully applied to the leachates of Egyptian ore (pug leaching) after a series of
pre-treatments (precipitation steps), sorption, and elution. The selective precipitation of REEs using
oxalic acid allows for the recovery of a pure REE precipitate.

Keywords: rare earth elements; sorption isotherms; uptake kinetics; functionalization of bio-based
sorbent; metal desorption; sorbent recycling; treatment of ore leachate

1. Introduction

Rare earth elements (REEs) are widely used in the design of high-tech devices [1].
For example, praseodymium is used for elaborating advanced alloys (aircraft industry),
refractory substances, coloring materials, lighting equipment, and fiber optical cables [2].
Thulium is an expensive REE that is used for designing x-ray emitters, medical and astro-
nautic lasers [3], high-temperature superconductors, ferrite alloys, and ceramic magnetic
materials in microwave equipment. In addition to their relatively expensive costs, the
geopolitical distribution of resources and exploitation facilities of these metals are making
these elements strategic targets, so there is great attention toward developing recovery
processes from low-grade minerals and/or from industrial wastes [4]. Their rarefaction,
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cost, and weak recycling rate (less than 10% for both Tm and Pr, [5]) justify the importance
of designing new processes for their recovery from low-grade resources [6].

Their recovery proceeds as sub-products from the processing of other metals from
diverse resources: red mud valorization, phosphoric acid synthesis from phosphate ores [7],
and ore leachates. The usual hydrometallurgical processes such as solvent extraction [8]
and sorption on resins [9–11] can be applied for the treatment of high or low concentration
effluents, respectively [12]. The complexity of the leachates (due to the presence of many
transition metals) requires developing processes efficient for the separation of REEs from
base metals [13]. Furthermore, the physicochemical properties of the members of the
REE family are so close that their separation is usually very complex, requiring long chro-
matographic columns with many theoretical plateaus. These separation issues represent
important global challenges for designing competitive processes for the selective recovery
of REEs.

There has been an impressive effort, demonstrated by the numerous literature pub-
lished over the last decade, in developing new sorbents bearing the same reactive groups
as those active in the extractants used in solvent extraction [14–18]. Sorbents have been
designed by the functionalization of clays for the recovery of REEs [19] and the preparation
of composites based on silica [20–23] or carbon-based supports [21,24,25]. Synthetic resins
have been functionalized with phosphorus groups [26–31], taking advantage of the affinity
of phosphonic-based reactive groups for REEs.

Biosorption processes have already been reported for the recovery of REEs including
algal biomass [32,33] and alginate (a polysaccharide bearing guluronic and mannuronic
acid groups) [34–39]. Alginate is frequently used for metal sorption making profit of the
reactivity of carboxylate groups [40,41], but also as a constituent of composite sorbents [42].
Recently, the combination of (a) specific interactions of alginate (partially extracted from
algal biomass) with poly(ethyleneimine) (PEI), the ionotropic gelation of alginate with
calcium chloride, and the crosslinking of amine groups (of PEI) with glutaraldehyde (GA)
was used for synthesizing composite hydrogel beads (algal-polyethyleneimine beads,
APEI) [43]. These supports have been functionalized by grafting amidoxime groups for
Sr(II) sorption [44], sulfonic groups for the recovery of REEs [45], and by quaternization
for Sc(III) removal [46]. The current work describes the synthesis of phosphorylated
APEI beads (P2-APEI). The support (i.e., APEI) is activated with epichlorohydrin (APEI-
Cl) (which is subject to a partial polymerization under selected experimental conditions)
before being reacted with triethyl phosphine. After physicochemical characterization
(using various analytical tools), the phosphonated-functionalized sorbent (i.e., P2-APEI) is
extensively investigated for the sorption of Pr(III) (which is part of light REE, LREEs) and
Tm(III) (representing heavy REEs, HREEs). After pH optimization, the uptake kinetics and
sorption isotherms are investigated using conventional models for fitting experimental
profiles. The selectivity properties are investigated against transition metals at different pH
values to evaluate the possibility to separate base metals from REEs, but also to discuss
the possibility of separating the rare earths (LREEs vs. HREEs). The elution of REEs is
investigated and applied for five cycles of sorption and desorption for evaluating the
potential of the sorbent to be re-used. In the last section of this work, the sorbent is tested
for the recovery and separation of REEs from the acidic leachates of waste residue of
Egyptian ore. This section includes the study of the pre-treatment of leachates, the sorption
process, the elution of the loaded sorbent, and the final precipitation of REEs as oxalate salt.

2. Materials and Methods
2.1. Materials

Brown algae (Laminaria digitata) was provided by Setalg (Pleubian, France). After
washing, drying, and grinding, the biomass was sieved to recover the fraction below
250 µm. Alginate (Manugel GMB) was supplied by DuPont (Landerneau, France; now
JRS Rettenmaier). Other reagents such as sodium carbonate Na2CO3 (99.8%) and calcium
chloride (96%) were purchased from Chem-Lab NV (Zedelgem, Belgium). Branched
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polyethyleneimine (bPEI, 50% (w/w) in water) and glutaraldehyde (GA, 50% (w/w) in
water) were purchased from Sigma-Aldrich (Taufkirchen, Germany).

Epichlorohydrin (98%) and triethyl phosphite (98%) were purchased from Shanghai
Makclin Biochemical Co. Ltd. (Shanghai, China). Zinc oxide (98%) (for selectivity exp.)
was supplied by Aladdin Industrial Corporation (Shanghai, China). Aluminum sulfate
octadecahydrate (99%) (used in selectivity experiments), sodium hydroxide (96%), and
absolute ethanol (99.7%) were supplied by Guangdong Guanghua Sci-Tech (Guangzhou,
China). Acetone (95.5%) and sulfuric acid (98%) were purchased from Chron Chemicals
(Sichuan Province, China). Praseodymium sulfate (99.99%) and thulium sulfate (99.99%)
were supplied by National Engineering Research Center of Rare Earth Metallurgy and
Functional Materials Co. Ltd. (Baotou city, Inner Mongolia, China). Silicon with conc.
(1000 ppm) as a source of Si, which was supplied by Guobiao Inspection and Certification
Co. Ltd. (Huairou District, Beijing, China). The other reagents were Prolabo products and
were used as received.

2.2. Synthesis of Sorbents
2.2.1. Synthesis of Algal/Poly(ethyleneimine) (PEI) Beads (APEI)

The algal/PEI beads were prepared according to a method previously described by
Wang et al. [43]. Briefly, 18.75 g of dry algal biomass was dispersed into 750 mL of Na2CO3
solution (1%, w/w) under agitation and heating (50 ◦C) for 24 h. After cooling, a volume
(i.e., 250 mL) of alginate solution (4%, w/w) was added to biomass suspension. A volume of
5 mL of bPEI solution (50%, w/w) was added to 500 mL of the mixture under agitation. The
algal biomass/alginate/ bPEI suspension was distributed into a 1-L volume of a solution
containing both CaCl2 (1%, w/w) and GA (5 mL, 50%, w/w). The beads (APEI) were
maintained under agitation overnight in the crosslinking solution before being filtrated
and freeze-dried. The size of the APEI beads was 2.9 ± 0.2 mm. The successive steps in the
functionalization of APEI beads are reported in Scheme 1.

Scheme 1. Synthesis pathway for the synthesis of P2-APEI sorbent (A: poly(ethyleneimine)
(APEI) synthesis).

2.2.2. Synthesis of Activated APEI Beads (Methylene Chloride Grafted Spacer Arms)

Two grams of raw beads were immersed in 90 mL of ethanol:water (50:50: v/v) before
adding 18 mL of epichlorohydrin drop-wise with gentle stirring, then the mixture was
refluxed at 80 ◦C for 3 h. The reaction mixture was filtered off, stirred with ethanol for
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24 h, then filtered again and dried in vacuum to give beads with active methylene chloride
(spacer arm).

2.2.3. Phosphorylation of APEI Activated Beads (P2-APEI)

The produced active methylene chloride beads from the previous step were heated
at 120–130 ◦C with 40 mL of triethyl phosphite for 24 h to produce phosphoryl group
derivatives. The functionalized beads were filtered off and washed several times with
ethanol and vacuum dried overnight. The size of the APEI beads was 2.8 ± 0.1 mm.
Scheme 2 shows the functional groups present at the surface of the sorbent.

Scheme 2. Schematization of sorbent surface—functional groups.

2.3. Characterization of Materials

The morphology observation and the semi-quantitative surface analyses were obtained
on a Phenom ProX scanning electron microscope (SEM, Thermo Fischer Scientific, Inc.,
Waltham, MA, USA) coupled with, energy dispersive X-ray analysis (EDX) facilities. The
textural properties of the sorbents were qualified using the Barrett, Joyner and Halenda
(BJH) method and a Micromeritics TrisStar II (Norcross, GA, USA). The pre-treatment
of the samples consisted of their degassing at 100 ◦C for 12 h. A Netzsch STA 449 F3
Jupiter thermogravimeter was used for Thermal gravimetric analysis (TGA) analysis, with
a temperature ramp of 10 ◦C/min (under oxygen or air atmosphere) (NETZSCH-Gerätebau
GmbH, Selb, Germany). The elemental composition of the sorbents was obtained on a Vario
EL cube element analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany).
Fourier transform infrared spectra were collected on KBr discs by incorporation of dried
ground samples with an IRTracer-100 (Shimadzu, Tokyo, Japan). X-ray photoelectron
Spectroscopy (PS) spectra were acquired using an ESCALAB 250XI+ instrument (Thermo
Fischer Scientific, Inc., Waltham, MA, USA). The pH-drift method was used to approach
the pHPZC of the materials [47]. A series of flasks containing 100 mg of material and 50 mL
of 0.1 M NaCl solutions with an initial pH (pH0) varying between 1 and 11 were stirred for
48 h. The equilibrium pH (pHeq) was measured using a Mettler Toledo pH-meter (Mettler,
Colombus, OH, USA). The pHPZC was deduced from the titration curve considering pHPZC
as the pH verifying pHeq = pH0.

2.4. Sorption Tests

Sorption tests were performed with the batch method. A fixed amount of sor-
bent (m, g) was mixed with a fixed volume (V, L) of solution at a specific concentration
(C0, mmol L−1) and pH (variable for pH study, or optimized pH value, see below). The ag-
itation was maintained at 170 rpm while the standard room temperature was T: 21 ± 1 ◦C
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(using a reciprocal shaker, Eyela NTS-4000C, Rikakikai Co. Ltd., Bunkyo City, Tokyo,
Japan). After equilibrium (or fixed sampling times), the sample was collected and filtered
through a filter membrane before analyzing metal content (Ceq, mmol L−1) by ICP-AES
(inductively coupled plasma atomic emission spectrometer, ICPS-7510 Shimadzu, Tokyo,
Japan). The sorption capacity (qeq, mmol g−1) was deduced from concentration variation
by the mass balance equation qeq = (C0-Ceq) × V/m. Similar procedures were used for
investigating the sorption of REEs from multi-metal solutions (equimolar concentration:
1 mmol L−1).

The tests for metal desorption were also performed in a batch reactor. The samples
of sorbents loaded with metal ions were collected from uptake kinetic experiments. The
eluent was an acidic calcium chloride solution (i.e., 0.2 M HCl/0.5 M CaCl2). The sorbent
dosage (SD, g L−1) was set at 0.8 g L−1. In the investigation of sorbent recycling, a
rinse was systematically performed between each step. The comparison of the amounts
of metal sorbed and released was used for calculating the sorption capacity and the
desorption efficiency.

The precise experimental conditions are systematically reported in the caption of the
figures (see below).

The uptake kinetics and sorption isotherms were fitted by conventional equations
summarized in Table S1a (pseudo-first order rate equation, PFORE; pseudo-second order
rate equation, PSORE; resistance to intraparticle diffusion, RIDE) and Table S1b (Langmuir,
Freundlich, and Sips equations) (see Supplementary Materials). The quality of curve fitting
was evaluated using the determination coefficient (i.e., R2) and the Akaike information
criterion (AIC) [48].

2.5. Treatment of Ore Residues

The solid waste that was tested for the application of P2-APEI was collected from the
tailing ponds of the Abu Thora mining site (Southwestern Sinai, Egypt). The local ores were
initially subjected to acid leaching; these are mainly constituted of gibbsite-bearing shales.
The residue collected on-site was exploited by pug leaching for extracting supplementary
valuable metals. The curing temperature was set to 120 ◦C.

The ore and waste residue were first digested using different acids (hydrofluoric,
hydrochloric, and nitric acids). The leaching residue was removed by filtration, while the
filtrate was adjusted to a final volume of 100 mL in a volumetric flask. The characterization
of the leachate followed different methods. Aluminum, Ca, Fe, and Mg were analyzed by
atomic absorption spectrometry (Unicam AAS-969 Vitech International BV, Geleen, The
Netherlands); carbonate and phosphate analysis were processed by the Shapiro method [49].
Silica content was obtained by the molybdenum blue method and total REE concentration
was evaluated by the Arsenazo III method (using Shimadzu UV-160 spectrophotometer,
Shimadzu, Kyoto, Japan) [50]. Uranium was quantified by oxidimetric titration against
ammonium metavanadate [51].

The complexity of the leachate and the presence of high concentrations of iron and
aluminum required a pre-treatment of the solutions at pH 4 and 5 successively using 3 M
NaOH solutions.

The sorption test was performed in batch with a sorbent dosage of 1 g L−1 and a contact
time of 2 h. The pre-treated leachates were adjusted at different pH values to evaluate
the optimum pH for the separation of REEs from base metals (i.e., pH: 1.38–3.91). After
sorption, the sorbent was rinsed and dispersed in the eluent (i.e., 0.2 M HCl/0.5 M CaCl2);
the sorbent dosage was set to 5 g L−1.

The eluates were collected and REEs were precipitated at pH 1 using an oxalic acid
solution (15%, w/w). The concentrations of metals in both the oxalate precipitate and the
sorbent (cross-section) at the end of the process were semi-quantitatively determined using
EDX facilities.
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3. Results and Discussion
3.1. Characterization of Materials
3.1.1. Scanning Electron Microscopy (SEM) and SEM-EDX Characterizations

Table S2 shows the SEM pictures of the surface and cross-section for APEI, activated
APEI (with epichlorohydrin, APEI-Cl), and P2-APEI. The surface was very dense for APEI
and tended to be progressively more porous with the successive chemical modifications. On
the other hand, The cross-sections were much more porous than the surfaces (especially for
APEI and APEI-Cl); interconnected scaffolds can anticipate good mass transfer properties
(after passing through the external “skin”). The chemical modifications contributed to
altering the surface of the beads that became more porous at the level of thee external layers.
The heterogeneities between the surface and the internal porous network were confirmed
by the differences in the semi-empirical analyses for the three materials. For APEI, the
nitrogen and chlorine contents were higher in the cross-section than at the surface of the
bead. In the case of APEI-Cl, in contrast, the nitrogen and chloride contents were higher
at the surface of the sorbent, while the Ca content increased in the inner compartment of
the bead. The immobilization of the phosphorous reactive groups was confirmed by the
appearance of the P signal (with an atomic concentration in the range of 5–6% for both
surface and cross-section). The percentages of N and Cl in P2-APEI decreased compared
with the values reached with APEI and APEI-Cl. The concentration of O decreased between
the surface and the inner compartment by around 6% for APEI and P2-APEI; this difference
was less marked for APEI-Cl. These results show that the APEI sorbent is heterogeneous
and that the functionalization of the support does not significantly change this trend.

3.1.2. Textural Properties

Figure S1 (see Supplementary Materials) compares the SBET surfaces of APEI and
P2-APEI: the functionalization of the beads led to a ~10% decrease in the specific surface
area and the reduction in the porous volume (by 10–12%) while the pore size slightly
increased (by 5–12%). This is consistent with the SEM observations: the larger pores of
P2-APEI contribute to explaining the lower specific surface area.

3.1.3. Thermogravimetric Analysis

Figure S2 summarizes the weight losses of the two sorbents submitted to increasing
temperatures (TGA analysis under O2 atmosphere). APEI and P2-APEI showed very
similar TGA profiles. It is noteworthy that the water content was higher in APEI than in
P2-APEI: the weight loss in the first segment (below 173 or 148 ◦C), which represents water
release, was more intense for APEI, about 11% vs. ~4% for P2-APEI. The highest weight
losses were observed at 305 ◦C and 550 ◦C (identified on DrTG curves) for APEI. In the
case of P2-APEI, the weight loss profiles were more smoothed and more steps could be
detected: the DrTG profile identified four successive maxima at 303, 475, 630, and 724 ◦C.
The functionalization of the support increased its stability. For APEI, weight loss above
600 ◦C was negligible, the thermal degradation was only stabilized at 750 ◦C for P2-APEI.
The positive effect of the incorporation of phosphorous compounds in materials on their
thermal stability has frequently been reported [52]. The two new peaks in the DrTG curve
may be assigned to the presence of the spacer-arm and activated agent (the first step in
the functionalization of APEI), and phosphorus-based compounds, respectively. The final
residue (above 800 ◦C) represented about 9.7% for APEI and 11.6% for P2-APEI.

3.1.4. FTIR Analysis

Figure 1 reports the FTIR spectra of raw APEI beads, activated APEI beads, and phos-
phorylated beads. The main typical reactive groups were identified with their respective
fingerprints. Table S3 reports the corresponding wavenumbers and the assignments of their
respective vibrations while Figure S3 shows a focus of these spectra on specific wavenum-
ber ranges. Briefly, the broad and poorly resolved band in the range 3700–3100 cm−1

represents the contributions of stretching vibrations for –OH, –NH, and –NH2 bonds.
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The three spectra were roughly the same: APEI-Cl showed a broader spectrum with an
increased contribution at around 3250 cm−1. The activation of APEI beads with epichloro-
hydrin grafting was confirmed by the strong peak at 788 cm−1 and the shift in the C–C
and C–O–C, or C–O stretching vibrations from 1095 cm−1 to 1089 cm−1. After functional-
ization, this peak disappeared: the phosphorylation was highly efficient and quantitative.
Obviously, the phosphorylation was accompanied by the appearance of a series of peaks
corresponding to P=O (asymmetric stretching at 1251 cm−1), P(O) stretching (phosphate,
at 1033 cm−1), and P–O–C stretching (at 611 cm−1 and 746 cm−1). In addition, a new peak
appeared at 1741 cm−1 (assigned to C(=O)O ester stretching in alginate). In the original
material and activated APEI-Cl, this peak was overlapped with C=N (GA interaction with
amine groups PEI). After deconvolution, apparently, the peak split into two components
corresponding to C=N and C=O from carboxylate because of the reduced contribution of
specific N–H groups (in the overlapping).

Figure 1. Fourier transform infrared (FTIR) spectra of APEI, APEI-Cl, and P2-APEI materials.

After metal sorption, the FTIR spectra were changed (Figure 2, Figure S4, and Table S4).
The relative intensity of the band at 1741 cm−1 was reduced. The peak at 1384 cm−1 was
completed by a shoulder at 1408–1404 cm−1, which can be assigned to carboxylate salt. This
is confirmation that metal ions, at least partially, interact with carboxylate by ion-exchange
with Ca(II). A new band appeared at 617 cm−1, which can be attributed to the sulfate anion.
This means that the sorption of REEs involves the binding of a metal sulfate complex. The
new peak at 1103–1111 cm−1 may be associated with the interaction of metal ions with P(O)
(stretching vibration of phosphate) and/or the stretching of C–N. These results confirm
that phosphate and amine groups contribute to metal binding. The contribution of amine
is also correlated to the widening of the band at 3700–3100 cm−1.

It is noteworthy that the desorption of the metals (considered in relevant figures
after five cycles of re-use) allowed for reversing the appearance of these new peaks. The
desorption roughly restored the FTIR spectra of metal-loaded P2-APEI to the original
spectrum of the sorbent, with the remarkable exception of the peak at 498 cm−1, assigned
to polysulfide (S–S stretching band attributed to fucoidan, overlapped with P–O–C band)
that disappeared after sorption and desorption. The relative intensity of some peaks was
not completely recovered; for example, the peak at 1741 cm−1. The peak at 1103–1011 cm−1

also remained partially after metal desorption. The procedure of sorption/desorption
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appears to be efficient for restoring the material, although some chemical modifications
cannot be neglected based on the changes in the FTIR spectra.

Figure 2. FTIR spectra of P2-APEI, P2-APEI sorbent loaded with Pr(III) and Tm(III), and after metal
desorption.

3.1.5. XPS Analysis

The XPS survey scan (Figure 3) brings new evidence for the successful functional-
ization of APEI. The typical P 2p and P 2s signals appeared at binding energies (BEs)
133 and 190 eV, respectively. The weak signal at 348 eV, which is assigned to Ca 2p,
almost disappeared after phosphorylation as well as S 2p and S 2s signals at 167 and
228 eV, respectively.

The sorption of REEs is identified by the appearance of their typical signals. The
most significant for Pr(III) appeared around 118 eV (Pr 4d), 221, and 234 eV (Pr 4p3/2
and Pr 2p1/2), 308 eV (Pr 4s), 934, and 955 eV (Pr 3d5/2 and Pr 3d3/2), and 1245/1340 eV
(Pr 3p3/2 and Pr 3p1/2). In the case of Tm-loaded sorbent, the typical signals were identified
at 32 eV (Tm 5p1/2), 178 eV (Tm 4d), 335 eV (Tm 4p3/2), and 473 eV (Tm 4s).

High-resolution XPS spectra are summarized in Table S5. Table S5b–d compare the
respective spectra for APEI and P2-APEI as well as the spectra for the functionalized
sorbent after Pr(III) and Tm(III) sorption. Table S5a shows that the profiles of the C 1s
signal was significantly affected by the functionalization of the raw material and even more
by the binding of Pr(III) and Tm(III): more specifically, the contribution of C–C signal is
reinforced. Table S5b shows that the sorption of REEs was followed by the reinforcement
of the contribution of the signal at ~530 eV (assigned to P=O) after metal binding, while the
C=O signal was reduced; the contribution of carboxylate groups to metal uptake cannot be
neglected. In the case of N 1s (Table S5c), the peak at BE ~399.4 eV (associated with N–C=O,
N–H, N–C) apparently disappeared, while the R=N–R band was increased (the intensity
of the other band at ~400.5 eV decreases). The N-based functional groups are involved in
metal binding. Table S5d confirms the changes in the environment of P-bearing groups
after the sorption of REEs. Table S5e summarizes the assignments and BEs of C 1s, O 1s, N
1s, and P 2p signals (representative of the most relevant functional groups identified on
the two sorbents) as well as their atomic fractions. One of the first pieces of information
derived from this table is the relative stability of the BEs: the ∆BEs did not exceed 0.3 eV in
most cases. The most significant differences are reported in terms of atomic fractions and
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the appearance/disappearance of deconvoluted peaks. The atomic fractions confirm the
conclusions raised while observing the changes in HRES XPS spectra.

Figure 3. XPS survey scans of APEI and P2-APEI beads (including after Pr(III) and Tm(III) sorption).

3.1.6. Elemental Analysis and pHPZC

Table S6 shows the elemental analysis of APEI before and after functionalization. The
chemical modification (epichlorohydrin activation and grafting of triethyl phosphite) led
to a decrease in the relative fraction of nitrogen in the sorbent: from 4.18 mmol N g−1 to
2.76 mmol N g−1. The phosphorylation allowed a phosphorus content close to 2.58 mmol g−1

to be reached. This means that about 93.5% of N-based groups were grafted with triethyl
phosphite: the functionalization procedure was highly efficient.

The pHPZC, approached by the pH-drift method, was strongly reduced by the chem-
ical modification from 6.6 for APEI to 2.4 for P2-APEI (Figure S5). These values can be
explained by the reactive groups present at the surface of the sorbent: APEI bears primary,
secondary, and tertiary amine groups from PEI (pKa: 4.5, 6.7, and 11.6, respectively [53])
and carboxylic groups (mannuronic and guluronic groups from alginate with pKa: 3.38
and 3.65, respectively [54]). Additionally, P2-APEI holds phosphonate moieties with pKa
values supposed to be much higher [55], depending on the substituting groups on the phos-
phonate entity. The order of magnitude of the pHPZC is consistent with the value reported
for polyaminophosphonic acid-functionalized poly(glycidyl methacrylate) (i.e., 2.69) [28]
and a composite obtained by high-energy ball milling of magnetite with aminophosphonic
derivative of PGMA (i.e., 2.83) [56]. The functionalized sorbent will be deprotonated on
a wider pH range than the raw material: the repulsion of metal cations is expected to be
decreased for P2-APEI in weakly acidic solutions.

3.2. Sorption Studies on Synthetic Solutions
3.2.1. pH Effect

Figure 4 compares the effect of equilibrium pH on the sorption properties of APEI and
P2-APEI (initial pH varies between 1 and 5) for both Pr(III) and Tm(III). The duplication of
experiments shows the good reproducibility of sorption performance. In the case of APEI,
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the sorption capacity linearly increased with the pH; however, under selected experimental
conditions, the improvement in sorption performance remained limited: from 0.025 to
0.082 mmol Pr g−1 and from 0.013 to 0.051 mmol Tm g−1. The effect of pH on the sorption
of REEs was more marked in the case of P2-APEI. While the sorption capacities were
of the same order of magnitude as APEI at pH close to 1 (i.e., 0.053 mmol Pr g−1 and
0.03 mmol Tm g−1), the binding strongly increased with the pH: up to 0.36 mmol Pr g−1

and 0.27 mmol Tm g−1 (i.e., seven and nine times the reference values for APEI).

Figure 4. Effect of equilibrium pH on the sorption of Pr(III) (a) and Tm(III) (b) using APEI and P2-APEI sorbents
(C0: 50 mg L−1; Sorbent dosage, SD: 1 g L−1; Contact time: 48 h; T: 22 ± 1 ◦C; duplicate experiments).

The progressive deprotonation of the sorbents increases their sorption efficiency; this is
especially significant in the case of P2-APEI because of the differences in pHPZC values and
the presence of phosphonate groups. In acidic pH solutions, alginate carboxyl groups are
under their acidic form, while all amine groups are also protonated: cations are repulsed.
On the other hand, for P2-APEI, the positive charge at the surface of the sorbent tends
to decrease, favoring metal binding; above pH 2.4, the surface of the sorbent becomes
progressively negative. Precisely, the sorption of Tm(III) drastically increases above pH 2.5.

The speciation diagrams for Pr(III) and Tm(III) are reported in Figure S6. At pH below
3, the predominant species were the sulfate complexes (REE(SO4)+ and REE(SO4)2

−): the
contribution of the anionic species decreased with increasing the pH. The protonated
species (free REE3+ and REE(SO4)+) also predominated over the whole pH range. Anionic
species at pH 1 can be bound onto protonated amine groups by electrostatic attraction.
The increase in S content on the sorbent after pH sorption means that REE sulfate species
are involved in metal binding. Between pH 2 and pH 4, the fraction of free REE(III)
progressively increased and predominated over pH 3.8. This may be correlated to the
strong enhancement in sorption property at pH above 2, especially for P2-APEI.

Figure S6 follows the pH variation during metal sorption for APEI and P2-APEI
sorbents. The differences in acid–base properties of the sorbents were consistent with those
variations: APEI tended to slightly increase the pH of the solution in the range pH0 2–4
(maximum variation: +0.7 pH unit) while P2-APEI progressively decreased the pH of the
solution (by up to −1.6/−1.85). This is another illustration of the difference in the sorption
mechanisms for the two sorbents.

3.2.2. Uptake Kinetics

The uptake kinetics are represented in Figures 5 and 6. Under selected experimental
conditions (C0: 50 mg L−1 and SD: 0.25 g L−1), the sorption process was fast enough to
reach equilibrium within 30 min of contact (Figure 5) in mono-component solutions for
both APEI and P2-APEI sorbents. Similar trends were observed for Pr(III) and Tm(III)
uptake from binary solutions. As expected, the enhanced affinity of P2-APEI for REEs
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allowed for a substantial increase in the sorption capacity and efficiency (illustrated by
lower residual concentrations).

Figure 5. Pr(III) and Tm(III) uptake kinetics using APEI and P2-APEI sorbents (duplicate experiments)
(C0: 50 mg L−1; Sorbent dosage, SD: 0.25 g L−1; pH0: 5; pHeq: 4.87 and 4.62 for APEI for Pr(III) and
Tm(III), respectively; 3.24–3.12 for Pr(III) and 3.44–3.47 for Tm(III) with P2-APEI; T: 22 ± 1 ◦C; solid
lines: modeling with PFORE).

Figure 6. Pr(III) and Tm(III) uptake kinetics using APEI and P2-APEI sorbents from binary solutions
(C0: 50 mg L−1; Sorbent dosage, SD: 0.25 g L−1; pH0: 5; pHeq: 4.87 and 4.62 for APEI for Pr(III) and
Tm(III), respectively; 3.24–3.12 for Pr(III) and 3.44–3.47 for Tm(III) with P2-APEI; T: 22 ± 1 ◦C; solid
lines: modeling with PFORE).

Sorption capacity for P2-APEI was over four times the value reached for APEI. The
kinetic profiles were fitted with selected models (reported in Table S1) [57,58]. The compar-
ison of determination coefficients and Akaike information criterion (AIC, Table S1b) for the
different equations showed that the best fits were obtained with the pseudo-first order rate
equation (Tables 1 and 2).
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Table 1. Pr(III) uptake kinetics using APEI and P2-APEI sorbents—fitting parameters for the PFORE, PSORE, and RIDE models.

Model Parameter

Sorbent

APEI
P2-APEI

1st Run 2nd Run

Exp. qeq,exp (mmol g−1) 0.0795 0.357 0.348
PFORE q1,calc (mmol g−1) 0.0828 0.365 0.356

k1 × 102 (min−1) 7.45 12.8 14.0
R2 0.980 0.985 0.973

AIC −133 −102 −94
PSORE q2,calc (mmol g−1) 0.101 0.418 0.405

k2 × 10 (L mmol−1 min−1) 7.95 3.81 4.35
R2 0.965 0.956 0.938

AIC −126 −90 −85
RIDE De × 108 (m2 min−1) 3.66 4.91 5.30

R2 0.960 0.960 0.945
AIC −124 −92 −87

Table 2. Tm(III) uptake kinetics using APEI and P2-APEI sorbents—fitting parameters for the PFORE, PSORE, and RIDE
models.

Model Parameter

Sorbent

APEI
P2-APEI

1st Run 2nd Run

Exp. qeq,exp (mmol g−1) 0.0608 0.271 0.269
PFORE q1,calc (mmol g−1) 0.0666 0.276 0.275

k1 × 102 (min−1) 5.09 13.5 12.7
R2 0.964 0.992 0.985

AIC −130 −113 −104
PSORE q2,calc (mmol g−1) 0.085 0.313 0.315

k2 × 10 (L mmol−1 min−1) 5.67 5.64 5.06
R2 0.953 0.969 0.960

AIC −125 −98 −93
RIDE De × 108 (m2 min−1) 2.74 5.16 4.92

R2 0.933 0.975 0.964
AIC −122 −101 −95

Figure S8 shows the modeling of kinetic profiles with alternative models (PSORE and
RIDE). This was also confirmed by the close values for calculated equilibrium sorption
capacities and experimental values: overestimation reached 2% for P2-APEI and 4% for
APEI. The solid lines in Figure 5 represent the PFORE fitting applied to the experimental
profiles as confirmation of the appropriateness of the model to describe the transfer of
the REEs onto the sorbents. The PFORE is generally associated with a physical sorption
mechanism. However, Hubbe et al. [59] pointed out the importance of selecting appropriate
experimental conditions for justifying the relevant interpretations of mathematical fits.
They also demonstrated that the fitting of kinetic profiles was frequently correlated to
sorption processes controlled by resistance to intraparticle diffusion. The apparent rate
coefficient (i.e., k1) was more than doubled for P2-APEI compared with the reference value
(i.e., APEI) for both Pr(III) and Tm(III). The faster kinetics of P2-APEI can be correlated to
the more open surface structure observed in the SEM pictures (Table S2). Table S7 shows
the surface and crosscut section SEM pictures (with their relevant semi-quantitative EDX
analyses). Metal sorption slightly changes the surface of APEI beads with the formation
of additional porosity; internal porosity was not affected. In the case of P2-APEI and
the surface morphology was not significantly changed. The semi-quantitative analyses
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confirmed the higher sorption of REEs in P2-APEI. It is noteworthy that the distribution of
elements (REE, N) was more homogeneous between the surface and crosscut section for
P2-APEI for Tm(III) than for Pr(III). It is noteworthy that in this case, the Pr(III) content
was remarkably lower in the crosscut section for P2-APEI.

Although the RIDE (resistance to intraparticle diffusion, the so-called Crank
equation [57]) model, does not fit experimental profiles as well as the PFORE model, the
equation allows an approximate value of the effective diffusivity (i.e., De) to be calculated.
As expected, the diffusivity slightly increased with the functionalization of the sorbent
from 3.7 × 10−8 to 5.1 × 10−8 m2 min−1 for Pr(III), and from 2.7 × 10−8 to 5.0 × 10−8 m2

min−1 for Tm(III). Praseodymium was characterized by a larger size of hydrated ion (i.e.,
rh = 1.179 Å) compared with Tm(III) (i.e., rh = 0.994 Å) [60]. This is not enough to affect
the mass transfer properties in the sorbents. These values of De were of the same order
of magnitude as the self-diffusion of Pr(III) and Tm(III) in water (i.e., 3.7 × 10−8 and
3.5 × 10−8 m2 min−1, respectively [61]). This means that the resistance to intraparticle
diffusion does not play a critical role in the control of uptake kinetics. This is consistent
with the fast sorption (equilibrium reached within 30 min), despite the relatively large size
of the beads (i.e., 2.8–2.9 mm).

Similar trends were observed for uptake kinetics in binary solutions
(Figure 6 and Table 3). The effective diffusivities were of the same order of magnitude than
for mono-component solutions (ranging between 4.4 × 10−8 and 6.7 × 10−8 m2 min−1). It
is noteworthy that the sorption capacities at equilibrium in binary solutions were lower
than the values reported (for the same initial metal concentration) in the case of mono-
component solutions. The cumulative sorption capacity was close to 0.38 mmol REE g−1

(0.196 mmol Pr g−1 + 0.186 mmol Tm g−1) while for individual metal solutions, the sorption
capacities were 0.36 mmol Pr g−1 and 0.275 mmol Tm g−1 for PFORE modeling of REE
sorption using P2-APEI. The competition effect decreased the global sorption performance.
This was also shown by the decrease in the apparent rate coefficient by one order of mag-
nitude. The two metals were supposed to be bound on the same reactive groups. The
cumulative sorption capacity was far below the maximum sorption capacities (see below);
this means that the sorbent was not saturated. Both the global sorption capacity and the
kinetic rates were depreciated by the competitor effect.

Table 3. Pr(III) and Tm(III) uptake kinetics using APEI and P2-APEI sorbents from binary solutions—fitting parameters for
the PFORE, PSORE, and RIDE models.

Model Parameter

Sorbent

APEI P2-APEI

Pr(III) Tm(III) Pr(III) Tm(III)

Exp. qeq,exp (mmol g−1) 0.047 0.046 0.190 0.184
PFORE q1,calc (mmol g−1) 0.047 0.047 0.196 0.186

k1 × 102 (min−1) 1.59 1.02 1.05 1.10
R2 0.987 0.988 0.988 0.988

AIC −154 −154 −119 −123
PSORE q2,calc (mmol g−1) 0.053 0.055 0.228 0.212

k2 × 10 (L mmol−1

min−1)
39.7 22.5 5.62 6.91

R2 0.974 0.978 0.968 0.982
AIC −145 −145 −107 −118

RIDE De × 108 (m2 min−1) 6.72 4.55 4.43 4.54
R2 0.976 0.978 0.970 0.985

AIC −149 −147 −108 −122

The sorption of Pr(III) and Tm(III) controlled for both APEI and P2-APEI is not con-
trolled by the resistance to intraparticle diffusion. The kinetic profiles can be described
by the PFORE. This result was consistent with the conclusions raised for other deriva-
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tives of APEI (quaternized, sulfonated, amidoximated) in the sorption of different metal
ions [44–46,62,63].

3.2.3. Sorption Isotherms

Figure 7 shows the sorption isotherms for Pr(III) and Tm(III) using APEI and P2-APEI
sorbents at pH0 5. The duplication of the sorption isotherm for P2-APEI confirmed the
good reproducibility of sorption performance. Equilibrium pH value varied between 4.7
and 4.8 for APEI but decreased to 3.1–3.5 for P2-APEI, consistently with the results reported
for the study of the pH effect.

Figure 7. Pr(III) and Tm(III) sorption isotherms using APEI and P2-APEI (duplicate experiments)
(C0: 10–500 mg L−1; Sorbent dosage, SD: 0.5 g L−1; pH0: 5; pHeq: 4.81–4.7 and 4.79–4.72 for APEI for
Pr(III) and Tm(III), respectively; 3.27–3.08 for Pr(III) and 3.54–3.39 for Tm(III) with P2-APEI; time:
48 h; T: 22 ± 1 ◦C; solid lines: modeling with the Langmuir equation).

The maximum sorption capacities reached 0.45 mmol Pr g−1 and 0.33 mmol Tm g−1

for APEI. The functionalization strongly increased the sorption capacities up to 1.54 mmol
Pr g−1 and 1.19 mmol Tm g−1 (i.e., about three times). The highest sorption capacities for
Pr(III) compared with Tm(III) showed the preference of the sorbent for light vs. heavy REE.
The solution electronegativity of REEs can be ranked according to Pr(III) (3.037) < Tm(III)
(3.503). Marcus [61] summarized the polarizability of elements using different sources
that systematically report higher polarizability for Pr(III) than for Tm(III), combined with
the lowest hydrated radius of Tm(III) (0.994 Å) than that of Pr(III) (1.179 Å), thulium may
be considered a stronger acid than praseodymium, according to Pearson’s rules (hard
and soft acid-base theory,(HSAB) [64]). Iftekhar et al. [65] compared the sorption of a
series of REEs on biopolymer-layered double hydroxides LDH hybrid nanocomposites
and they concluded that small ionic radii enhanced the sorption; this is contradictory
to the trend found with P2-APEI (ionic radii: 1.179 Å for Pr(III) and 1.052 Å for Tm(III)).
Phosphonate and amine groups are both considered hard bases [66,67], which are supposed
to be more reactive with hard acids. In the case of strong cation exchange resin Dowex 50,
Surls and Choppin [68] obtained a linear correlation between the ion-exchange sorbability
(the energy of formation of the complex) and the ionic conductance of the REEs (and
Am + Cu). Marcus [61] reported the conductivity of Pr(III) and Tm(III) to be 208.8 and
196.2 cm2 Ω−1 mol−1, respectively (reciprocal trend than the hydrated radius).

The shape of the curves was characterized by a steep initial increase in the sorption ca-
pacities followed by a saturation plateau. This shape is consistent with the asymptotic trend
of the Langmuir equation compared with the Freundlich equation, which is assimilated to
a power-type function. These conventional models (described in Table S1b) are commonly
used for describing sorption isotherm profiles. The Langmuir equation supposes that the
sorption occurs as a monolayer at the surface of the sorbent with no interactions between
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the sorbed molecules. Furthermore, the energies involved in the sorption are considered
homogeneous. The co-existence of different reactive groups (i.e., amine, carboxylate, and
phosphonate) does not appear to create heterogeneities in terms of interaction with REEs.
The Sips equation is a combination of the Langmuir and the Freundlich equation, which
includes a third-adjustable parameter that is supposed to improve mathematical fitting
(Figure S9).

Actually, Table 4 shows that there is no clear evidence for better fitting experimental
profiles with the Sips equation (this depends on the couple metal/sorbent). The Langmuir
equation, which is more mechanistic than the mathematical Sips function, was preferred
for simulating isotherms in Figure 7. It is noteworthy that the models well fit the isotherm
profile for residual concentrations higher than 0.2 mmol L−1, but tended to underestimate
the sorption capacities for the concentrations below 0.0 mmol L−1. The comparison of qm,L
and qm,exp showed that the model overestimated the experimental value of the sorption ca-
pacity at saturation by 68–76% for APEI, ~40%, and ~33% for P2-APEI and Pr(III)/Tm(IIII),
respectively. The affinity coefficient (i.e., bL) was slightly higher for P2-APEI (i.e., 0.98 to
1.33 L mmol−1) than for APEI (i.e., 0.50-0.54 L mmol−1). The affinity coefficients of the
sorbents for Tm(III) were systematically a little better for Tm(III) than for Pr(III). The initial
slope of the curve is described by the term qm,L × bL (L g−1): 0.38 and 0.26 L g−1 for Pr(III)
and Tm(III) in the case of APEI, and 2.18 and 1.95 L g−1 for P2-APEI.

Table 4. Pr(III) and Tm(III) sorption isotherms using APEI and P2-APEI sorbents—fitting parameters for the Langmuir,
Freundlich, and Sips equations.

Model Parameter

Sorbent

APEI P2-APEI

Pr(III) Tm(III) Pr(III)
#1

Pr(III)
#2

Tm(III)
#1

Tm(III)
#2

Exp. qm,exp 0.448 0.331 1.554 1.525 1.135 1.230
Langmuir qm,L 0.752 0.584 2.14 2.151 1.494 1.645

bL 0.502 0.539 1.05 0.980 1.334 1.153
R2 0.988 0.983 0.990 0.989 0.996 0.994

AIC −81 −84 −55 −54 −70 −67
Freundlich kF 0.235 0.191 1.02 0.998 0.794 0.820

nF 1.635 1.580 2.105 2.060 2.104 1.992
R2 0.968 0.966 0.984 0.985 0.994 0.995

AIC −71 −76 −52 −53 −70 −71
Sips qm,S 0.540 0.392 2.867 3.161 2.269 2.749

bS 0.922 1.21 0.597 0.488 0.572 0.447
nS 0.666 0.621 1.319 1.380 1.422 1.441
R2 0.994 0.991 0.990 0.989 0.998 0.998

AIC −84 −83 −53 −53 −80 −80

Table 5 reports the Pr(III) and Tm(III) sorption characteristics for a series of alternative
sorbents. Most of the studies investigated the sorption of REEs in the pH range of 3–5.
Taking into account both the kinetic criterion (i.e., equilibrium time) and the maximum
sorption capacity (i.e., qm,L), P2-APEI appeared to be one of the most efficient sorbent. The
functionalized sorbent showed remarkably fast kinetics (20–30 min for reaching equilib-
rium) and outstanding sorption capacities (1.57 mmol Tm g−1 and 2.14 Pr g−1). The most
efficient sorbents showed comparable sorption capacity; for example, 2.08 mmol Pr g−1

in the case of sulfonic resin D72, but at the expense of much slower kinetics (equilibrium
24 h) [10]. In the case of Tm(III), the most competitive sorbent was Turbinaria conoides, with
a sorption capacity that did not exceed 1.19 mmol Tm g−1 and a longer required contact
time (more than 3 h for reaching equilibrium). Therefore, P2-APEI appears to be a good
compromise between sorption capacity and kinetic criteria and a promising sorbent for
LREEs and HREEs. The main weakness of this sorbent consists of the relatively weak
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affinity coefficient (i.e., bL ~ 1−1.3 L mmol−1), while the best other sorbents showed values
close to 8.6 or 17.1 L mmol−1.

Table 5. Comparison of the Pr(III) and Tm(III) sorption properties for alternative sorbents.

Metal Sorbent pH teq
(min)

qm,L
(mmol g−1)

bL
(L mmol−1) Ref.

Pr(III) Pseudomonas aeruginosa 5 240 0.94 n.r. [69]
D72 resin (–SO3H) 3 1440 2.08 8.60 [10]
Turbinaria conoides 5 90 1.04 7.33 [70]

T. conoides/polysulfone beads 5 240 0.85 2.40 [70]
Crab shell 5 35 0.47 3.66 [71]

Orange peel 5 50 0.42 2.25 [71]

Laminaria digitata beads 4 180 (FD)
1440 (AD) 0.89 125.4 [72]

Laminaria digitata foams 4 1440 0.79 111.3 [72]
APEI 5 30 0.75 0.50 This work

P2-APEI 5 20 2.14 1.02 This work

Tm(III) PAN-polyurethane foam 7.5 40 0.0083 51.1 [73]
Turbinaria conoides 5 200 1.19 17.1 [74]

T. conoides/polysulfone beads 5 200 0.93 5.91 [74]
Zr-ion imprinted xanthan

gum-layered double hydroxide 4 80 0.19 255.1 [75]

APEI 5 30 0.58 0.54 This work
P2-APEI 5 20 1.57 1.24 This work

3.2.4. Sorption Mechanism

According to the data collected from pHpzc (deprotonation of the sorbent), EDX
analysis (the presence of metal and S elements), FTIR analysis (presence of sulfate group,
shifts of specific groups after sorption), and speciation diagrams (free metal and metal
complex species), it is probable that metal binding occurs directly on free species and
also through the binding of sulfate complexes. Various functional groups such as amines
(primary, secondary, and tertiary), hydroxyls, carboxyl groups, and phosphates may be
active binding sites. The binding mechanism involves the ion exchange of metal cation with
Ca2+ or H+ on carboxylic groups from alginate. On the other hand, chelation mechanisms
contribute through the electron pairs on the O, N, and P functional groups. Scheme 2 shows
the suggested structure reporting active functional groups. These groups can interact with
positively charged metal ions (free REE3+) or complexes (i.e., sulfate complex: REE(SO4)+).
Scheme 3 summarizes the tentative mechanisms involved in metal uptake.

Scheme 3. Tentative mechanisms for metal sorption.
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3.2.5. Sorption Selectivity

The complexity of industrial effluents, which are characterized by the presence of
numerous metal ions, makes it necessary to evaluate the impact of the presence of other
base metals on the recovery of REEs. In order to evaluate the selectivity of the sorbent
for REEs, the sorption of target metals from multi-component solutions was investigated
at different pH values (Figure 8). The selectivity coefficient is defined as the ratio of
distribution coefficients, DREE/Dmetal:

SCPr/metal =
DPr

Dmetal
=

qPr
eq/CPr

eq

qmetal
eq /Cmetal

eq

, (1)

Figure 8. Effect of pHeq on the selectivity coefficients of P2-APEI for Pr(III) (a) and Tm(III) (b) against other base metals and
alkali-earth metals (equimolar 1 mM solutions; SD: 0.5 g L−1; contact time: 48 h; T: 22 ± 1 ◦C).

Figure 8 shows that P2-APEI has a strong selectivity for REEs against base metals (iron,
aluminum, zinc), alkali-earth metals (calcium and magnesium), and metalloids (silicon).
Consistent with previous studies in mono-component solutions, the sorption properties
of Pr(III) and Tm(III) were so close that their separation with the sorbent was revealed to
be difficult. The sorbent had little preference for Pr(III) vs. Tm(III): the SCPr/Tm varied
between 1.37 and 1.73 (depending on the pH); however, this preference is not sufficient for
effectively achieving the separation of LREEs from HREEs.

Except for iron, the lowest selectivity coefficients of P2-APEI for REEs against com-
petitor elements were observed at pH 1.28: SCPr/Fe and SCTm/Fe were close to 50 and 36,
respectively. At the other pH values, the SC values generally increased with the pH. The
sorbent also showed a higher selectivity against other metals for Pr(III) than for Tm(III).
The best separation of REEs from other elements was reached for pH superior to 3.2
(except iron).

For Pr(III), the SC followed the series (SC, pH): Tm << Al[2 2.5, pH 3.86] < Zn[29.7,
pH 3.21] < Ca[31.7, pH 3.86] < Si[38.0, pH 3.42] << Fe[49.9, pH 1.28] << Mg[59.8, pH 3.86].

For Tm(III), the ranking followed: Pr << Al[15.2, pH 3.86] < Zn[20.5, pH 3.21] <
Ca[21.4, pH 3.86] < Si[24.9, pH 3.42] << Fe[36.5, pH 1.28] << Mg[40.3, pH 3.86].

The competition effect may be controlled by several parameters such as the ionic
charge of the competitor metal, the ionic radius, and the hard/soft behavior. For trivalent
cations, the sorbents had a lower selectivity against Al(III) than Fe(III), which are both
considered hard acids. However, Al(III) had a smaller hydrated radius (i.e., 0.535 Å) than
Fe(III) (i.e., 0.645 Å). In addition, the Fe(III) solution electronegativity was higher than that
of Al(III) (χ = 3.835 vs. 3.435); the softness parameter, σ, was +0.33 for Fe(III) vs. −0.31 for
Al(III). In the case of divalent cations, Zn(II) ranked in the borderline class according to
the HSAB theory, contrary to Mg(II) and Ca(II), which are hard acids. This ranking is not
sufficient for explaining the specific behavior of Zn(II), for which the selectivity coefficient
was comparable to Ca(II), but was much lower than Mg(II). Zn(II) had a hydrated radius
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comparable to Mg(II) (0.72 Å vs. 0.74 Å) and was much lower than Ca(II) (i.e., 1.12 Å).
Zn(II) had a positive softness σ (i.e., +0.35) contrary to Ca(II) and Mg(II) (i.e., −0.66
and −0.41, respectively). The solution electronegativity χ cannot be correlated to the
selectivity order: 2.796 for Zn(II), 2.158 for Mg(II), and 1.862 for Ca(II). The different criteria
showed contradictory trends regarding the evolution of the SC coefficient of REEs vs. these
competitor cations. Therefore, it appears difficult to correlate the binding of the competitor
ions with these physicochemical characteristics.

Figure S10 shows the log10 plot of the distribution ratio of selected metals vs. the
equilibrium pH. The quasi-linear curves shifted by one to two orders of magnitude for
REEs compared with other competitor elements. In conclusion, despite the difficulty in
interpreting the relative effects, at pH 3.2–3.9, P2-APEI showed a clear preference for REEs
against other divalent or trivalent cations that are frequently present in the ore leachates.

Table S8 summarizes the semi-quantitative EDX analysis of the surface and cross-
cut section for the P2-APEI sorbent after contact with multi-metal solutions at different
pH values. The morphology of the material was not changed by the pH at both the surface
and in the crosscut section. The semi-quantitative analysis confirmed the trends observed
in the mass balance of individual metals during the sorption step (and the effect of pH in
metal recovery). The concentrations of the REEs were of the same order of magnitude at
the surface and in the inner part of the sorbent. This result confirms the readily accessibility
of internal reactive groups for target metals.

3.2.6. Metal Desorption and Sorbent Recycling

Previous studies have shown the efficiency of acid solutions for the desorption of
metal ions from functionalized APEI beads. The stability of the material can be improved
by introducing calcium chloride (for the stabilization of alginate matric). The metal-loaded
sorbents collected at the end of the sorption process were tested for metal desorption using
0.2 M HCl/0.5 M CaCl2 solutions for the study of the desorption kinetics (Figure 9 for
mono-metal samples, Figure S11 for bi-metal samples). These curves clearly show that
the desorption of both Pr(III) and Tm(III) was highly efficient for both APEI and P2-APEI:
metal desorption systematically exceeded 99% and the time required for achieving these
elution rates did not exceed 25–30 min. For mono-metal loaded resins, the desorption
profiles were overlapped for the APEI sorbent, while for P2-APEI Pr(III), desorption was
apparently faster than for Tm(III). In the case of sorbents loaded with binary solutions, the
desorption profiles were also a little faster for Pr(III) compared with Tm(III). The PFORE
and the PSORE equations were applied to fit the kinetic profiles [76].

Figure 9. Pr(III) and Tm(III) desorption kinetics for APEI and P2-APEI—modeling with the PFORE (loaded sorbents
collected from uptake kinetics; desorption using 0.2 M HCl/0.5 M CaCl2; SD: 1 g L−1, T: 22 ± 1 ◦C; A(t)/A0: metal amount
desorbed referred to initial sorbed amount).
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Tables 6 and 7 report the parameters of these models for Pr(III) and Tm(III) desorption
from APEI and P2-APEI loaded with mono-metal solutions; the data for bi-metal loaded
sorbents are reported in Table S9. In most cases, the PSORE better fit the experimental
profiles (especially for Pr(III) sorption), contrary to the sorption step that was preferentially
described by the PFORE, probably due to the contribution of a ligand exchange mechanism.
However, it is noteworthy that the PFORE allows for better approaching the effective
sorption capacity, which is significantly overestimated by the PSORE, especially for Tm(III)
recovery. The comparison of the orders of magnitude of the rate coefficients for desorption,
both kd1 and kd2, with the relevant values for the sorption step showed relatively faster
desorption. On the other hand, the comparison of rate coefficients for binary solutions with
mono-component solutions showed that desorption was faster for binary systems in the
case of APEI sorbent, in contrast to P2-APEI (where the rate coefficients were higher for
mono-component solutions).

Table 6. Pr(III) desorption kinetics using APEI and P2-APEI sorbents—fitting parameters for the PFORE and PSORE models.

Model Parameter

Sorbent

APEI
P2-APEI

1st Run 2nd Run

Exp. qeq,exp (mmol g−1) 0.0788 0.356 0.347
PFORE q1,calc (mmol g−1) 0.0813 0.365 0.343

k1 × 10 (min−1) 1.02 1.10 1.32
R2 0.980 0.983 0.962

AIC −82 −59 −53
PSORE q2,calc (mmol g−1) 0.105 0.466 0.419

k2 × 10 (L mmol−1 min−1) 9.45 2.34 3.51
R2 0.987 0.990 0.976

AIC −86 −64 −58

Table 7. Tm(III) desorption kinetics using the APEI and P2-APEI sorbents—fitting parameters for the PFORE and PSORE
models.

Model Parameter

Sorbent

APEI
P2-APEI

1st Run 2nd Run

Exp. qeq,exp (mmol g−1) 0.0609 0.271 0.270
PFORE q1,calc (mmol g−1) 0.0693 0.343 0.336

k1 × 10 (min−1) 0.756 0.531 0.553
R2 0.983 0.987 0.985

AIC −87 −65 −64
PSORE q2,calc (mmol g−1) 0.0964 0.506 0.489

k2 × 101 (L mmol−1

min−1)
6.45 0.777 0.855

R2 0.984 0.987 0.986
AIC −88 −66 −65

The PFORE and PSORE models were applied for desorption (according to Daneshvar
et al., [76])

PFORE − Desorption : qd = qd,1

(
1 − e−kd,1 × t

)
PSORE − Desorption : qd =

q2
d,2 × kd,2 × t

1 + (kd,2 × qd,2 × t)
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In a second step, the recycling of the functionalized sorbent was investigated using
a 0.2 M HCl/0.5 M CaCl2 solution (operating a washing step between each sorption and
desorption steps). The comparison of sorption and desorption efficiencies is summarized
in Table 8. Sorption efficiency progressively decreased with recycling. However, at the fifth
cycle, the loss was close to 10% for both Pr(III) and Tm(III). On the other hand, the elution
of target metals was complete and remarkably stable for the five cycles. Figure 2 shows that
the FTIR spectrum of P2-APEI submitted to fives cycles of sorption and desorption hardly
changed. This may explain the relative stability in the sorption performances. On the other
hand, the comparison of Tables S2c and S7c showed that the concentrations of Ca and Cl at
the surface and in the crosscut section of the functionalized sorbent increased after elution
due to ion-exchange mechanisms associated with the composition of the eluent (i.e., HCl
and CaCl2 solutions).

Table 8. Sorption and desorption performances (efficiencies, %) for five successive cycles for Pr(III)
and Tm(III) recovery using the P2-APEI sorbent.

Sorption Desorption

Metal Ion Cycle SE
(%)

St. Dev.
(%)

DE
(%)

St. Dev.
(%)

Pr(III)

#1 99.1 0.3 100.0 0.3
#2 97.7 0.6 100.5 0.5
#3 96.5 0.6 100.1 0.1
#4 94.2 0.1 100.1 0.0
#5 91.0 1.5 100.0 0.2

Tm(III)

#1 91.9 0.6 99.9 0.1
#2 89.6 0.6 100.5 0.5
#3 87.2 0.5 100.2 0.6
#4 84.5 0.9 100.4 0.1
#5 82.7 0.6 99.7 0.2

3.3. Application to Metal Recovery from Acid Leaching of Tailing Material
3.3.1. Pre-Treatment of Leachates

The compositions of the ore and tailing are compared in Table S10. Although the
conventional acid leaching recovered ~50% to 90% of valuable metals, the characterization
of tailings clearly demonstrates that some strategic metals (such as U, Cu, and REEs) are
still present in the mining residues at relatively high concentrations. Table S11 reports the
composition of the leachates produced after pug leaching of ore tailings. Based on the huge
concentrations of iron and aluminum, pre-treatments steps were operated to first remove
iron with a precipitation step of the leachate at pH 4, followed by the precipitation of
aluminum at pH 5. The results summarized in Table S11 confirm the progressive reduction
of iron and aluminum (abatement reached while the concentrations of the other elements
were marginally affected by the pre-treatments (the loss was less than 8% for Si, 4% for Ca,
8% for Mn, 10% for Ni, 4% for Cu, and 16% for Zn). In the case of REEs, the losses were
close to 3.6% for Pr, 6.1% for Nd, and 7.4% for Tm; this was confirmed by the 2.7% total loss
of REEs while using the global REE index. The precipitation steps were relatively selective
and did not induce substantial loss of strategic elements. The major elements present in the
pre-treated solutions were Ca(II) (i.e., 1833 mg Ca L−1) and Cu(II) (i.e., ~183 mg Cu L−1);
other elements were systematically lower than 100 mg L−1. The global REE index was close
to 94.9 mg L−1. This level of concentration is consistent with the range of concentrations
where sorption processes may be used.

3.3.2. Metal Recovery from Pre-Treated Solutions

The sorption process was applied to pre-treated leachates at different pHeq values
(ranging between 1.38 and 3.91). The residual concentrations are also summarized in
Table S11. It appears that the sorption process poorly affects the residual concentrations of
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the base metals (and metalloid): the concentrations decreased by less than 13% even in the
most favorable pH conditions, with the remarkable exception of the Zn(II) concentration,
which decreased by 25.3% at pHeq 3.91. On the other hand, the pre-treated leachate was
almost exhausted in terms of REEs: the recoveries reached 94% for Nd(III), 93.5% for Pr(III),
and almost 93.1% for Tm(III) (84.3% in terms of global REE index) at the highest pH (pH0: 5,
pHeq: 3.91). The distribution ratios (D) increased with the pH for the different metals (Table
S12); however, this enhancement was especially important for REEs and the D values were
remarkably higher at pHeq 3.91 (values in the range 1.36−1.56 × 104 L g−1). These results
clearly demonstrate that, despite the complexity of the solutions, the sorbent had a high
affinity for REEs, with a high effect of concentration and limited impact of competitor metal
ions. Table S13 shows the micrographs of surface and crosscut sections of P2-APEI after
being in contact with the pre-treated leachates at different pH values. The sorption process
and the pH did not significantly affect the morphology of the material. Table S14 reports
the semi-quantitative analysis of the sorbent exposed to the pre-treated leachate at pH0 5.
The complete family of REEs (with the remarkable exception of Sc) was detected both at
the surface and in the internal compartment of the sorbent. It is noteworthy that Sc was
not identified in the series of REEs and associated elements (such as Y).

3.3.3. Rare Earth Elements (REEs) Separation and Precipitation as Oxalate Salts

After the sorption step, metal-loaded P2-APEI was eluted with 0.2 M HCl/0.5 M
CaCl2. Table S15 reports the concentration of metal ions in the eluate from the sorbents
loaded at different pH values. For base metals (and metalloid, Si(IV)), the concentrations
on the sorbent were very low, but the desorption was very efficient: desorption efficiencies
were systematically higher than 94% (not shown) for optimized sorption pH (i.e., pH0 5
and pHeq 3.91). In the case of REEs, despite higher amounts of sorbed metals, the elution
yields were maintained higher than 96% (for Tm) and up to 99% (for Nd). Oxalic acid (at
controlled pH) is a very efficient and selective precipitating agent for the recovery of rare
earth elements [11,77–79]. The treatment of eluates with oxalic acid solution (15%, w/w)
at pH 1 allows for quantitatively recovering REEs: the precipitation efficiency ranged
between 98% and 98.5% (not shown). Table S16 summarizes the concentrations of selected
metals in the residue (filtrate) of the oxalic acid precipitation step. It is noteworthy that
the oxalic acid precipitation method requires a sufficient amount of REEs to be present for
efficient precipitation; this is not the case with the sorbents loaded at low pH and this can
explain the relative high residual REE concentration when the sorbent was loaded at pHeq
equal or lower than 3.91. The weak residual concentrations of the REEs after oxalic acid
precipitation for the eluates produced in the desorption of the sorbent loaded at the highest
pH values, confirmed the strong efficiency of this treatment for the selective recovery of
REEs from eluates. The combination of this treatment with the appropriate selection of
the pH of sorption (at pH0 4–5), and the desorption using the CaCl2/HCl eluate allows
for highly efficient recovery and separation of REEs from complex solutions. On the other
hand, the base metals (and Si) eluted from the sorbent were poorly precipitated (in the
range 3–20%). Therefore, the precipitate of REEs oxalate was supposed to be relatively pure.
Table S17 shows the semi-quantitative EDX analysis of the oxalate precipitate collected from
the eluate of the sorbent loaded at pH0 5 (pHeq 3.91). Carbon and oxygen are associated
with the oxalate ligand, and the presence of nitrogen and calcium mark the only significant
impurities present in the precipitate. The use of the concentrated acidic solution of calcium
chloride for the elution of the sorbent may explain the presence of Ca (at weight/atomic
concentrations close to 1%). Usually, the REE oxalate precipitates are finally submitted
to a calcination process for producing pure REE oxides [79]. Figure S12 compares the
distribution of REEs in the sorbent and the oxalate precipitate (based on semi-empirical
EDX analyses) to verify that the elution/precipitation process can contribute to enrich and
separate the REEs. The enrichment factor (EF), defined here as the ratio of the percentage
of the REE in the oxalate precipitate to its fraction onto the sorbent, did not follow any
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clear trend (atomic number, ionic radius, etc.). There was no correlation between their
enrichment factor and belonging to LREEs or HREEs.

EF ranking: La(EF:0.14) < Lu < Er < Ho < Ce < Pm < Yb < Tb < Tm < Tm < Dy(EF:0.93)
< Pr(EF: 1.24) < Gd < Y < Sm < Nd < Eu(EF:7.8).

The mass balance on the distribution of selected elements in the different compart-
ments of the sequential treatments is presented for the different pHs in Figure 10 (pH0 5
and pHeq 3.91, the optimum condition for REE separation from other base metals and
metalloid) and Figure S13 (for other pH values). Consistently with their specific treatments,
Fe and Al were recovered (>90%) in the precipitates collected at pH 4 and pH 5, respectively.
For Si, Ca, Mn, Ni, Cu, and Zn, most of the metal ions were recovered in the solutions
issued from the sorption step (poorly sorbed): around 80–90% (only 63.4% in the case
of Zn).

Figure 10. Distribution of the selected metals in the different compartments of the global treatment
process (pH 4 precipitate (Fe); pH 5 precipitate (Al); residual solution after sorption at pH0 5 (Res.
Sorption); metal residue on the sorbent after elution (Res. Sorbent), residue in the eluate and oxalic
acid precipitate).

Low amounts of these elements were found in the residue of eluate precipitation
(0–6.7%, 16.2% in the specific case of Zn). The rare earth elements were essentially collected
in the oxalate precipitate: 86.9% for Pr, 86.6% for Nd, and 81.3% for Tm. The precipitation
pre-treatments lost 3.5% (for Pr) to 7.6% (for Tm), the amounts of REEs not bound (re-
leased in the residue of sorption step) represented 5.7% to 6.3%, while the amounts tightly
bound to the sorbent (not eluted) did not exceed 0.33%. The strong efficiency of oxalic
precipitation for REE precipitation allows limiting their loss below 1.8%. For comparison,
this distribution of metals in the different compartments for the other pH values (used for
sorption step) is also reported in Figure S13: the other pH values induced less selective
separation of the different metals.

4. Conclusions

A new member in the family of derivatives of alginate/algal biomass/PEI composites
(APEI beads) was successfully synthesized by phosphorylation of the raw material. This
functionalization was performed in two steps including the activation of the material
with epichlorohydrin, followed by a reaction with triethyl phosphite. The combination
of different analytical tools allowed for characterizing the physical (BET, TGA, SEM) and
chemical (EDX, FTIR, XPS, titration) properties of the different materials. Successful
functionalization was demonstrated, but these techniques also confirmed the contribution
of different reactive groups (carboxylic, hydroxyl, amine, P-based groups) on the binding
of a light REE (i.e., Pr(III)) and a heavy REE (i.e., Tm(III)) as free REE3+ or as a sulfate
complex. The functionalization of APEI beads increased sorption performance by a factor
close to 3. The sorption efficiency increased with the pH: optimum initial pH was found
to be close to 5 (while the equilibrium pH tends to pH 4.3). The structure of the beads
(macroporous scaffold) with a specific surface area close to 40 m2 g−1 may explain that the
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resistance to intraparticle diffusion is negligible in the control of uptake kinetics, which
are efficiently fitted by the pseudo-first order rate equation. Forty to 60 min was sufficient
to reach equilibrium. The desorption of the REEs was also very efficient (higher than
98%) and fast (30–40 min) using 0.2 M HCl/0.5 M CaCl2 solutions. The sorption and
desorption performances were remarkably stable over five cycles: the loss in sorption
efficiency was less than 10% at the fifth cycle, while the metal remained completely eluted
even at the last cycle. Sorption isotherms were successfully modeled using the Langmuir
equation and the maximum sorption capacities at the saturation of the monolayer were
close to 2.14 mmol Pr g−1 and 1.57 mmol Tm g−1. These values were globally higher than
those reported in the literature. Sorption tests performed in multi-metal solutions clearly
demonstrate that the new sorbent had a marked preference for REEs against base metals
or alkali-earth metals, especially at pHeq 3.42–3.86. Although the selectivity was not high
enough for separating Tm(III) from Pr(III), the sorbent had a preference for the lighter of
the two REEs.

A process was designed for the valorization of tailing residues. The mining waste was
the first pug leached to recover multi-metal solutions containing high concentrations of
aluminum and iron, which are successively precipitated at pH 4 and pH 5 (with limited
loss of other metal ions). In a second part of the process, the leachates were successfully
treated by sorption for the recovery of REEs with relatively good separation from base
metals, alkali earth elements, and Si(IV) by sorption on the phosphorylated sorbent. The
desorption of the sorbent produced an eluate that contained most REEs and traces of zinc.
The precipitation of the eluate with oxalic acid at pH 1 allows for selectively recovering
REE-oxalate with good purity.
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Abbreviations

PEI Polyethyleneimine
APEI Algal-polyethyleneimine
APEI-Cl Methylene chloride grafted spacer arms (APEI-with epichlorohydrin)
P2-APEI Phosphorylation of algal-polyethyleneimine
ICP-AES Inductively coupled plasma atomic emission spectroscopy
FTIR Fourier transform infrared spectroscopy
XPS X-ray photoelectron spectroscopy
TGA Thermal gravimetric analysis or thermogravimetric analysis
SEM Scanning electron microscope
SEM-EDX Scanning electron microscopy-energy dispersive x-ray analysis
BET Brunauer-Emmett-Teller
DrDTG Derivative-differential thermogravimetric analysis
SD Sorbent dosage
PFORE Pseudo-first order rate equation
PSORE Pseudo-second order rate equation
RIDE Resistance to intraparticle diffusion equation—Crank equation
AIC Akaike information criterion
SC selectivity coefficient
pHPZC Point of zero charge
pH0 Initial pH of the solution
pHeq Equilibrium pH after sorption
Kd Distribution ratio
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C0 Initial concentration
Ceq Equilibrium concentration after metal sorption
BEs Binding energies
AF Atomic fractions
REEs Rare earth elements
HSAB Hard and Soft Acid-Base theory
Biopolymer-LDH Biopolymer-layered double hydroxides composite
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