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Abstract. Numerous image processing methods have been proposed to help low 
vision people, often relied on contrast enhancement algorithms. Their assessment 
is usually performed by tests on low vision subjects, which are expensive and 
time consuming. This paper presents a low vision observer model, fully custom-
izable to fit various impaired visual performances, which may be used for early 
algorithm assessment, and avoiding unnecessary human tests. This model is fitted 
to visual performances of a subject with degenerative retinal disease, and applied 
to images processed by two edge enhancement algorithms, allowing to explain 
their performances in terms of blur reduction and color saturation improvement 

Keywords: computational model; low vision; contrast sensitivity func-
tion; contrast enhancement. 

1 Introduction 

Over the past decade, numerous studies have been devoted to the development of as-
sistive products for visually impaired people. Common principles of these aids are the 
use of one or more cameras to capture the real world environment, image processing 
aiming to enhance visibility, and display on virtual reality or augmented reality devices. 
Numerous image processing methods have been proposed, often aiming to contrast en-
hancement and some of them significantly improve performances for tasks as reading, 
facial expressions recognition or visual search [1]. These methods are often evaluated 
through tests on low vision subjects, with as far as possible standardized viewing con-
ditions, assessment procedures and data analysis methods. When experimental condi-
tions are correctly designed, and subject cohort well chosen, all these tests may give 
access to the “truth” about utility and efficiency of these enhancement methods. But 
tests on human subjects are expensive and time consuming. Moreover, due to the lim-
ited size of the test cohorts and to restrictive experimental protocols, their results may 
not be easily extrapolated to various degrees of visual deficiencies or different viewing 
conditions. Looking for faster alternatives, image researchers may turn to resort to so 
called “objective methods”, with metrics based on mathematical parameters.  This pa-
per presents a low vision observer computational model, fully customizable to fit vari-
ous impaired visual performances and different technical characteristics of displays and 
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lighting conditions. It is intended to be used in objective comparison of image enhance-
ment algorithms or in assessment of any new digital interface for visually impaired 
people. This paper is structured as follows: brief presentation of recent works on Human 
Visual System (HVS) simulation and modeling is found in Section 2.  The proposed 
model is described in Section 3.  Application of this model to comparison to two con-
trast enhancement algorithms is discussed in Section 4. Criteria for this comparison are 
based on blur measurement and on color saturation assessment.  

2 Related Work  

Taking into account the performances and limitations of the HVS is known to improve 
processing in various image and video domains such as acquisition, compression, wa-
termarking, communication, enhancement, classification, reproduction, etc. Vision is 
known to involve both bottom-up cues, such as luminance patterns, and top-down fac-
tors such as scene understanding. In the following, we only consider the bottom up 
aspect, and computational models dealing with some of the mechanisms that have sig-
nificant influence on visual perception, such as light absorption, diffusion and diffrac-
tion due to the eye’s optics, luminance adaptation, color representation, contrast sensi-
tivity, frequency and orientation selective perceptual channels or visual masking. Vis-
ual saliency modeling is out of the scope of this paper. Simulation of impaired vision 
is achieved by modifications of appropriate parameters at these different visual infor-
mation processing stages in the standard vision model. As it is known that the HVS 
response depends much less on the absolute luminance  than on its relative local varia-
tions to the surrounding background, the Contrast Sensitivity Function (CSF) that rep-
resents the relationship between perceptible contrasts and spatial frequencies of visual 
stimuli is central to these models. Cottaris et al [2] proposed to convert RGB images to 
cone excitation images, taking into account the wavelength-dependent point spread 
functions due to the eye optics, absorption in lens and macular pigment, and cone mo-
saic, with all the parameters extracted from physiological measurements.  The CS de-
rived from this method are in close agreement with the one measured in the standard 
experiment. Pattern sensitivity is simulated by a Support Vector Machine (SVM) clas-
sifier. Although the introduction of low vision parameters is straightforward in this 
model, it cannot be directly used for our purpose, as it is restricted to simple pattern 
stimuli, and hardly adapted to more complex stimuli. Peli [3] set out to define contrast 
in natural images by taking into account the existence of frequency selective perceptual 
channels in SVH, and developed a method for simulating perception by a visually im-
paired subject, based on SVH nonlinearities and experimental CSF measurements. 
Thomson et al [4] contributed to extend this work, first by establishing a method for 
parametrization of standard analytical CSF model with classical clinical acuity and con-
trast sensitivity measurements. They have also proposed to handle color images, by 
translating them from RGB to CIE xyY color spaces, and then, by using CSF as a linear 
band pass filter for the two chromatic x and y channels. Al Atabany et al [5] imple-
mented a degenerative retina model with central scotoma, based on mathematical ex-
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pressions of connectivity between the different neural layers within the retina. This ap-
proach allowed them to simulate foveal center-surround processing and color oppo-
nency mechanisms.   Consequences of ageing on visual performances are another area 
where simulation approach is developed [6, 7]. Age dependent parameters such as re-
duced pupil size, increased scattering in ocular media and diminution of retinal cell 
density are introduced in standard CSF expressions.  

3 The computational low vision model 

Our model is intended to simulate foveal vision in photopic conditions, for viewing 
natural scene images on electronic displays, and therefore is concerned by color per-
ception, light adaptation and masking effects. It must be applicable whatever the display 
technical characteristics, lighting conditions and distance to the screen.  

3.1 Standard vision modeling 

Among the numerous models of CSF that have been employed for instance in image 
quality assessment, we have chosen to build our work on Barten’s model [8], as it ex-
plicitly decomposes the CSF into successive components corresponding to optical, ret-
inal and neural processing. As it was based on luminance sine wave gratings with lim-
ited spatial frequency contents, it has to be completed to take in account wide band 
color stimuli.  

Our model consists in four steps. The first step corresponds to pre retinal processing. 
RGB image is converted in device-independent and position-independent image in the 
CIE xyY color space. This image is then filtered by a lowpass Gaussian function mod-
eling the Optical Transfer Function (OTF). 

 𝑂𝑇𝐹(𝑢) = 𝑒
. . ( . ). .

(1) 

where u is the spatial frequency (expressed in cpd) and d the pupil size, depending on 
luminance adaptation level. This level is calculated by averaging Y values on the whole 
image, if the assumption is made that image is seen in a dark room. Otherwise, it can 
be set to the ambient luminance level.  The  value depends on diffusion in lens and 
ocular media and on photoreceptor density.   

The second step corresponds to retinal processing. Assuming separability between 
color and pattern sensitivity, separate CSF may be implemented for luminance and 
chromatic channels. Cone excitation image is obtained by a conversion in LMS color 
space, based on Smith and Pokorny approximation, and then recoded as a contrast im-
age: for each L, M ou S component, each pixel value is divided by the mean value of 
its neighborhood, whose size is similar to the one used in lateral inhibition process. 
Neural processing that occurs in the following layers in the retina is simulated by con-
version into the Krauskopf color opponent space [9]. For the achromatic components, 
we use the highpass function developed by Barten. He considers that lateral inhibition 
(modeling center surround effect because of connectivity between cones, horizontal 
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cells and bipolar cells) is applied to visual stimuli summed with photon noise (fluctua-
tion in the number of photons actually initiating cone excitation)  and neural noise (in-
trinsic fluctuations in neural signals):  

 𝑀(𝑢) =
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where k is the Signal to Noise Ratio (SNR) allowing detection, T is the integration time 
of the eye, X0 is the integration area angular size, Nmax is the number of cycles over 
which the eye can integrate,  is the quantum efficiency, p is the photon conversion 
factor, E is the retinal illuminance, is the spectral density of neural noise, u0 is the 
spatial frequency above which lateral inhibition disappears. For the chromatic red-
green and blue –yellow components, we use the lowpass sensitivity functions described 
in [9].  

The third step is a rough representation of the first V1 area in the visual cortex, where 
visual information is known to be processed by separate frequency and orientation se-
lective cells. It is based on the Cortex transform [10]. Contrast image is decomposed 
into a set of subband images. In each of these image, masking effect is implemented 
according to [11]: contrast perception is a nonlinear process, with threshold dependent 
both on the contrast value and on the entropy of its neighborhood.  

The last step is the reconstruction of perceived image: in each frequency subband 
achromatic image, each pixel value is compared to the corresponding threshold, given 
by CSF. Values below threshold are replaced by the local mean luminance, while values 
above are not modified. Thresholded achromatic and chromatic subband images are 
then summed, and the resulting image translated back to RGB space. The sum is re-
stricted to the subbands that can actually be displayed by the screen, depending on its 
resolution.  

3.2 Low vision modeling 

As a first example, we choose to simulate low vision observer suffering from Retinitis 
pigmentosa (RP), an inherited retinal degenerative disease leading to the loss of pho-
toreceptors. The first symptoms of RP are night blindness and light sensitivity, before 
progressive constriction of peripheral field of view [12]. Patients also report that colors 
appear to them as dull and washed out. Some of the model parameters have to be mod-
ified to match the pathological retina characteristics. The loss of photoreceptors is sim-
ulated by applying a factor Closs lower than unity to the LMS cone response values. 
According to [13], foveal acuity may remained unchanged with as much as a cone loss 
of about 40%, and 20/50 vision is expected with only 10% of foveal cones. It is likely 
to assume that, among all the parameters included in the CSF model, the quantum 
efficiency (), the standard deviation () which relies on cone density and the SNR 
(k) have to be modified to correspond to a RP observer. Their values were varied to fit 
CSF from RP patients. Figure 1 shows simulation of perceived images by normal and 
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low vision observers. The standard observer model is based on parameter values de-
fined in [8], and the impaired ones on values chosen to fit real individual CSF, found 
in [14].    

 

Fig. 1. Simulation of images perceived by normal and visually impaired individuals. (a): standard 
observer (k = 3,  0  =0.5 arcmin) ; (b) visual acuity 0.4 (k = 45,  0  =4arcmin, 
Closs = 0.75);  (c): visual acuity 0.2 (k = 75,  0  =6 arcmin, Closs = 0.5) 

4 Contrast enhancement algorithm comparison 

The model relevance is demonstrated by its application on images processed by three 
contrast enhancement algorithms. The simulated perceived images appear to be differ-
ent, and suggest modifications to improve their efficiency. An attempt to quantify these 
differences is made, relying on blur measurement and color saturation. 

4.1 Contrast enhancement  algorithm 

The first algorithm is the classical unsharp masking, with a 5x5 pixels Laplacian 
filtered image added to the initial image [15]. This algorithm is applied in RGB space.  
The second one is a cartoonization algorithm, as described in [5], with original RGB 
image Gaussian blurring, conversion to YCbCr color space, anisotropic difference fil-
tering applied on the luminance channel, and color quantization in sixteen levels. The 
third algorithm is a customization of the second one, with addition of supplementary 
steps of luminance channel unsharpening and increase of color saturation: chrominance 
values are multiplied by a constant (equal to 4 in the following examples). 

4.2 Blur improvement index 

 The measurement of image blurriness appears to be relevant as these algorithms are 
intended to improve the perception of images blurred by low acuity. The edge sharpness 
is strongly correlated with the amount of the existing blur in any image.  A blur im-
provement index is computed according to the method described in [16]: for every pixel 
in both the reference image and the blurred image, the difference is computed between 
the center pixel and its height neighbor pixels, and the maximum value is calculated. 
Then, the average Z1 and Z2 of this maximum is calculated on the two whole images. 
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The blur improvement index BI is calculated by the difference between Z1 and Z2. The 
most blurred is the processed image relative to the original, the most BI tends to 0. 

4.3 Color saturation assessment 

The cone losses in degenerative retina involve modifications in color vision. At the 
middle stage of the disease, environment is perceived as fade and dull. So the color 
saturation in processed images is a good indicator of visual perceptibility improvement. 
Saturation amplitude is calculated as the square rooted sum of the two squared chromi-
nance components. Saturation index is calculated as the ratio between the saturation 
maximum of processed image to the maximum saturation of original image.  

5 Results 

The previously described algorithms were applied to 16 images extracted from the Ko-
dak database (www.cs.albany.edu/~xypan/research/snr/Kodak.html), which are then 
processed by the low vision observer with visual acuity: 0.4. (figure 2).    

Blur improvement index and color saturation index calculated for each image com-
pared to the initial image are resumed in table 1.   

Table 1. Comparison 

Blur improvement index Saturation index 

Perceived original image 0.23 0.20 

Perceived processed image 
(unsharp masking) 

0.37 0.22 

Perceived processed image 
(cartoon) 

0.21 0.3 

Perceived processed image 
(customized cartoon) 

0.25 0.40 

The perceived original image is significantly degraded, in terms of blur and color at-
tenuation. Unsharp masking appears as the most efficient in blur reduction, but has 
minor effect on color saturation. This may explain why it was rejected by subjects in 
[15]. Cartoonization algorithm does not significantly improve both criteria. Increase of 
color saturation is only performed by the supplementary step added to the customized 
cartoon algorithm. It appears that using the low vision observer model might be helpful 
when investigating for enhancement algorithms with better efficiency for the visually 
impaired.   
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Fig. 2. Simulation of perceived images by a standard observer and a low vision observer 
(visual acuity: 0.4). (a): original image, (b): original image for standard observer, (c) 
original image for low vision observer, (d) processed image for low vision observer 
(unsharp filter), (e) processed image for low vision observer (cartoon filter),(f): pro-
cessed image for low vision observer (customized cartoon filter) 

6 Conclusion 

This paper presents the first results related to a computational model of low vision ob-
server. Its application gives cues for implementation of more efficient enhancement 
algorithms.  Future works include further investigations on objective criteria for the 
measure of perceptibility increase, and experimental validation by comparison with hu-
man ranking on processed images.  
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