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A B S T R A C T

With the increase in waste streams, industrial sorting has become a major issue. The main challenge is to minimise sorting errors to avoid serious 
recycling problems and significant quality degradation of the final recycled product. Making use of near infrared (NIR) technology, some industrialists 
have already designed sorting machines able to discriminate between several types of plastics with good reliability. However, these devices are not suited to 
dark plastics, which are very common in WEEE (Waste Electronic and Electrical Equipment). In order to overcome this obstacle, mid-wavelength infrared 
(MIR) technology can be used instead of NIR. Nevertheless, the new spectral range is poorer in terms of wavelength for some plastics of interest (2712 −
5274nm), which makes the sorting task harder in an industrial context where spectrum identification is subject to imprecision and uncertainty. This article shows 
the benefit of combining this promising optical technology with a cautious machine learning procedure to optimise recycling. When the information provided by 
the device regarding a plastic fragment to be sorted is insufficient to discriminate between candidate materials, the pro-posed procedure, taking advantage of the 
belief functions theory, blows the fragment into a container dedicated to more than one specific material. This cautious sorting enables the containers dedicated 
to the specific ma-terials to contain less impurities, which leads to higher-quality secondary raw materials. The proposed sorting procedure is illustrated and 
compared with a more conventional approach using real industrial data.   

1. Introduction: context and challenges

The mass production of technologies with planned obsolescence and
little concern for ecodesign has caused the emergence of one of the 
fastest growing waste streams worldwide (Cucchiella et al., 2015), 
Waste Electrical and Electronic Equipment (WEEE). Indeed, estimations 
of the growth rate of WEEE range from 3% to 5% per year (Cucchiella 
et al., 2015). Moreover, the disposal of WEEE is complex as it contains 
numerous hazardous materials that involve health risks (Matarazzo 
et al., 2019). Because of these growing environmental and sanitary is
sues, WEEE is receiving special attention from the authorities. The Eu
ropean Commission strengthened the minimum recovery targets of 
WEEE in Directive 2012/19/EU (eu1, 2012), according to which, for 10 
categories of WEEE, at least 80% should be prepared for re-use and 
recycling. In order to comply with this regulation, technological ad
vances in the recycling process are required. In this process, a major 
phase is the separation of materials,which directly impacts all further 

processing and consequently the final quality of recycled products. 
Separation needs to be performed with high reliability and massive ca
pacity to cope with the huge amount of WEEE. This article focuses on the 
stream of plastics, which represent ∼ 21% by weight of the materials 
found in WEEE (Ongondo et al., 2011). The sorting of these plastics is 
becoming increasingly complex because of the wide variety of existing 
types of plastics that share similar visual characteristics but are usually 
incompatible. The separation of these plastics is consequently carried 
out a posteriori, i.e. all plastics are collected together, before being 
shredded and sorted. To ensure the high reliability and massive capacity 
of the sorting process in such a configuration, i.e. considerable quanti
ties of plastics of very different kinds to be sorted in a very short time, 
many industrialists are considering on-line optical sorting devices. 

The optical sorting technologies that are already widespread in the 
food industry are proving to be highly appropriate for sorting plastic 
waste. Compared to manual sorting, they offer significant advantages 
such as better throughput and more competitive labour costs. For sorting 
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on the pixel types enables a type to be assigned to the fragment. Finally 
the fragment is blown into the container corresponding to its type 
(sorting phase). Dealing with imperfect data, these conventional ap
proaches face two different problems that could affect sorting 
performances. 

The first problem (1) concerns the absence of any adequate repre
sentation of data imperfection. Consequently imperfect data could be 
mishandled and cause sorting errors. The second problem (2) concerns 
the output. The fragments are systemically assigned a single type even 
when the information is insufficient to make a decision. Hence, all 
imperfectly measured fragments will still be blown into containers 
dedicated to single plastic types, inevitably leading to sorting errors. 
This second problem is highly related to the first because the represen
tation of the information impacts the output: if imprecision and uncer
tainty are not represented, they cannot be taken into account to achieve 
a more cautious output. 

Problem (1) causes us to consider alternative representations of the 
information that take into account imprecision and uncertainty. For this 
purpose, information could be retained about posterior probabilities of 
each type being the true type of a given fragment. However, posterior 
probabilities are unable to represent imprecision because of the inherent 
additivity constraint of probabilities. For example, consider a fragment 
for which the device provides information such that none of the plastic 
types could correspond to the spectral information. In such a case, the 
probabilities that the candidate plastic types could be the real type of the 
fragment are wrongly inflated to sum to 1. Any insignificant resem
blance to one of the types would then determine the fragment sorting. In 
order better to represent the imperfection of the information, modern 
theories of uncertainty such as fuzzy subsets (Zadeh, 1978), possibility 
theory (Dubois and Prade, 2012), imprecise probabilities (Walley, 2000) 
or belief functions (Shafer, 1976; Smets and Kennes, 1994) are used 
instead of probability theory. Several classification algorithms have 
been proposed in these frameworks. Most of them are extensions of 
standard algorithms. One can cite the fuzzy version of the well known 
k-means algorithm (Dunn, 1973), fuzzy and belief functions based ver
sions of k-Nearest Neighbour (k-NN) (Denoeux, 1995; Keller et al., 1985)
or even some fuzzy and belief function based revisions of neural net
works algorithms (Denoeux, 2000; Kruse, 2008). Such theories of un
certainty have already been used in the context of plastic sorting. For
example, Lachaize et al. (2018) used belief function theory to perform
segmentation and material class estimation based on RGB images, laser
profilometer and NIR imaging. Alternatively, S.-B. Roh et al. (2017)
applied a fuzzy radial basis function neural network classifier to identify
black plastics based on Raman spectra. The present article focuses on the
belief function theory framework because it is designed to express
imprecision and uncertainty and offers a wide range of options for
combining information. The latter point is a necessary step for merging
the information coming from all the pixels of a fragment.

Regarding problem (2), the proposition of this paper is to consider 
more cautious sorting options when the information concerning some 
fragments is insufficient to assign a single material-type to them. The 
cautious option would be to blow such fragments into new containers 
dedicated to more than one single material. In order to operate this 
cautious sorting, the proposed approach performs cautious classification 
by allowing partial abstention for difficult fragments, i.e. associating a 
set of candidate types to a fragment instead of a single type. As explained 
in Nguyen et al. (2018), cautious classification was introduced by the 
idea of abstention, which was proposed by Chow (1970) in the 1970s 
with the notion of the rejection option. However, partial abstention in 
the form of a subset of classes is more recent (Ha, 1997). Although 
cautious classification can increase the reliability of the algorithm 
output, it also needs to be relevant enough, i.e. the set of candidate types 
must be as small as possible. The aim of this paper is to show that 
appropriate management of uncertainty combined with a cautious 
sorting option can be advantageous for on-line sorting, here applied to 
dark and black plastics. For this purpose the presented approach 

Fig. 1. Example of a sorting device (Beigbeder et al., 2013).  

plastics, infrared processes are the appropriate optical technology since 
they can quickly collect information about groups of atoms on the sur-
face. The spectral information (coming from absorption or transmittance 
measurements) used by industrialists to discriminate between plastics is 
mostly derived from the NIR and MIR spectrum ranges. 

Making use of NIR technology (wavelengths: 700 −  1400nm), some 
industrialists have designed sorting machines able to discriminate be-
tween several types of plastics. However, the use of these machines is not 
suited to dark plastics, which are very common in WEEE. The reason for 
this limitation is that dark and black plastics contain carbon black, 
which absorbs such a high proportion of NIR that it makes the plastic 
signature unrecognisable. In order to overcome this obstacle, MIR 
technology (wavelengths: 3000 −  8000nm) is a promising alternative to 
NIR. The impact of carbon black on the spectral signature is far less 
problematic at higher wavelengths. MIR technology has already been 
the subject of investigation. For example, Rozenstein et al. (2017) 
identified MIR absorption features for several black plastics. In addition, 
Kassouf et al. (2014) presented a feasibility study for discriminating 
between virgin PE, PET, PP, PS and PLA, including some black samples, 
using Attenuated Total Reflectance (ATR) to characterize them. Other 
technologies such as THz, LIBS and Raman are alternative potential 
solutions for the treatment of black plastics. However, THz does not 
seem mature enough to be incorporated in an industrial device and LIBS 
is limited by the restricted number of chemical elements that it can 
measure. Concerning Raman, a comparative study of ATR FT-IR and 
Raman spectroscopy suggested that Raman technology can also produce 
highly competitive results for discriminating black plastic waste (Bae 
et al., 2019). However, due to the low intensity of its rays which is much 
lower than Rayleigh rays, it is difficult to provide competitive online 
acquisition using Raman technology. 

MIR is therefore the technique most seriously envisaged by in-
dustrialists for sorting plastics coming from WEEE. When using a plastic 
identification technology in an industrial context, the quality of ac-
quired data may be significantly affected in several ways, which will be 
explained below. The challenge addressed in this article is thus how to 
process these imperfect data to ensure the most reliable possible sorting 
results. In practice, the principle of on-line plastic sorting is as follows. 
Fragments of plastics or objects are delivered continuously on a 
conveyor belt before being filmed by a MIR camera. For each fragment 
to be sorted, the camera provides a set of spectra where each spectrum 
corresponds to a pixel in the hyperspectral image of the fragment. These 
spectra are then processed by an integrated algorithm in order to 
determine the most appropriate container in which to blow the frag-
ment. Fig. 1, taken from Beigbeder et al. (2013) illustrates such a device. 
To the best of our knowledge, the existing integrated algorithms often 
used in industry perform voting to merge information about each frag-
ment pixel when sorting fragments based on hyperspectral imaging 
(Lorente et al., 2012; Blanch-Perez-del Notario et al., 2019; Paclık and 
Duin, 2005; Paclik et al., 2006). In this case each pixel is assigned a 
plastic type (classification phase). Afterwards, a majority vote procedure 



performs cautious sorting of fragments based on belief functions and 
MIR imaging. Our study focuses more particularly on the sorting of 
specific styrenic and polyolefin polymers that are valuable for industrial 
purposes and found as majority-materials in several studies concerning 
WEEE (Signoret et al., 2019b). 

2. Materials and methods

2.1. Types of materials and plastics supplied

The types of materials and plastics considered in this article are the 
four types of petro-based polymer waste: acrylonitrile-butadiene-styrene 
(ABS), high impact polystyrene (HIPS), polyethylene (PE) and poly
propylene (PP). The data considered in this study concerned 280 plastic 
fragments originating from the Suez firm and comprising dark, black 
and coloured plastics. To ensure sufficient storage density, the size of the 
fragments was rather small, approximately 2× 2cm2. Moreover, each 
plastic fragment was labelled based on trustworthy expert identifica
tions from ATR spectra obtained from a common FT-IR apparatus. 

2.2. MIR spectral acquisition 

This section presents the industrially acquired information con
cerning the plastic fragments considered in this study. A Specim MIR 
camera was used to record the information concerning the plastic 
fragments conveyed at speed 2m.s− 1 (accumulation time equal to 1.3ms 
and single cycle of detection). The source used to illuminated the frag
ments is a focused Pellenc1 source, emitting according to a thermal 
spectrum (blackbody law), with a temperature optimised to maximise 
the signal in the 3000–5000 nm range. The speed 2m.s− 1 permits to 
preserve sufficient quality of the acquired information while remaining 
competitive. Fig. 2 represents the 3D reflection image acquired by the 
camera for a given fragment. The two first dimensions indicate the 
pixel’s location on the width and length of the conveyor. The third 
dimension of the image corresponds to the wavelength/wavenumber 
value, i.e. one of the 154 values distributed equidistantly on 2712 −
5274 nm (corresponding to not equidistant points on 3687 −

1896 cm− 1). Some pre-processing was applied to these data, for 
example in order to reduce light scattering and spectral noise effects, all 
the pixels’ spectra were corrected by the Standard Normal Variate (SNV) 
technique. 

Fig. 3 illustrates some spectra (corresponding to pixels of several 
fragments) recorded by the camera for the four types of plastics (col
oured curves) compared with the corresponding ATR reference spectra 
(black curve) on an arbitrary y-axis scale. Note that the peaks of 

reflectance spectra are downward while the ATR spectra peaks are up
ward. On the same figure, the vertical dashed lines show the special 
blends that are the most intense in ATR (see Signoret et al., 2019a; 
Signoret et al., 2019c for more details). The ATR curve was obtained 
under ideal conditions (static and in contact with the sample) so the 
peaks are very clear and it contains perfect information for plastic 
identification. On the other hand, the reflectance spectra recorded in 
dynamic mode by the MIR camera contain poorer information. In 
particular, the acquired information is subject to several issues inducing 
the presence of imprecision, i.e. some information features are not 
precise enough to draw clear distinctions between the material-types, 
and uncertainty, i.e. some obtained features are not completely consis
tent with the reality. The sources of imprecision or uncertainty are as 
follows i) the available spectral range might be insufficient, it is only 
1896 − 3687cm− 1 for the industrial spectra while the range 400 −

4000cm− 1 is available for the ATR spectra; ii) the plastic types to be 
recycled are chemically close, and therefore spectrally close, for 
example ABS and HIPS can theoretically only be distinguished by the 
acrylonitrile peak at 2236 cm− 1; iii) atmospheric disturbance may cause 
noise, which explains some of the wide variance in spectra for the same 
materials in Fig. 3; iv) plastic ageing and plastic additives are known to 
change spectral information; v) impurities like dust deposits or the re
mains of tags will also produce spectral noise, etc. 

For simplification purposes, in the rest of this paper a spectrum 
vector comprised of its 154 reflectance values is referred to as a pixel. 

2.3. Proposed approach 

In this section, the proposed cautious sorting approach is presented. 
The objective of this approach is to optimise recycling by minimising the 
impurities in the resulting containers when the available information is 
imperfect. The proposed approach consists in training a cautious clas
sifier for the task of recognising fragments of material-types ABS, HIPS,
PE or PP and then applying it to the sorting procedure. In the rest of this 
paper, Ω refers to the whole set of material-types {ABS,HIPS,PE,PP}. For 
a new fragment fr the classifier is able to provide cautious information 
concerning the true material-type ω ∈ Ω of fr. The simplified form of the 
cautious information is ”ω ∈ A” where A is a subset of Ω, meaning that 
each single material-type in A is a candidate for the true material-type ω 
and the missing information prevents a more precise output. The set A 
provided by the cautious classifier for fr is intended to contain the real 
material-type of fr, but also to be as small as possible. In other words, the 
objective of a cautious classifier is to be reliable for any quality of in
formation, i.e. A should always contain ω, and be relevant, i.e. give a 
precise output, when the information is sufficient for a decision to be 
made. The following subsections present in more detail how the pro
posed procedure performs cautious classification of a fragment fr 
composed of k pixels, denoted s1,⋯, sk. First, the information provided 
by a cautious classifier, about the material-type of each pixel of fr is 
represented in the framework of belief functions. Then the information 
is merged to obtain the information about the material-type of fr. 
Finally, the cautious output for fr is performed based on risk mini
misation. The outline of the procedure is represented in Fig. 4 on an 
example of a single plastic fragment composed by six pixels (the rep
resentation pattern of pixels is the same as in Fig. 2 except that the 
fragment image is shown from the front and not in perspective). Finally, 
subsection 2.5 presents some evaluation measures for cautious 
classifiers. 

2.3.1. Pixel classification 
The first step is to collect and represent information about all pixels 

in the belief function framework proposed by Dempster (1967) and 
developed by Shafer (1976). This framework is a generalization of the 
probability framework that assigns mass probabilities to subsets of 
plastics. A classical probabilistic classifier provides a posterior 

Fig. 2. 3D refection image of a plastic fragment.  

1 Pellenc Selective Technologies (or Pellenc ST) is a company that designs, 
produces and markets intelligent and connected sorting equipment and services 
for the recycling industry. 



In the following paragraphs, the notation m(.|x) refers to the poste
rior mass function representing the knowledge about the material-type 
of a pixel or fragment x. For example, m({HIPS}|fr) = 0.4 and m({ABS,

HIPS}|fr) = 0.6 means that the mass, i.e, the degree of belief, of the 
event ”the true plastic type of fr is HIPS” is 0.4 and that the mass of the 
event ”the true plastic type of fr is ABS or HIPS” is 0.6. The subsets that 
are assigned non null masses are referred to as focal elements. In the 
previous example, the 2 focal elements were: {HIPS} and {ABS,HIPS}. 
There are many classification algorithms able to return mass functions 
but they do not always consider the same focal elements:  

• For some classification algorithms, all focal elements are singletons,
here {ABS}, {HIPS}, {PE} or {PP}. This actually amounts to
considering a classical probability mass function (pms), which is a
particular case of mass function where masses are only assigned to
singletons (m(A|fr) = 0, where A is a set comprising more than one
element), i.e. no imprecision is considered. Classifiers outputting a
pms are referred to as probabilistic classifiers.

• Some other classification algorithms consider singletons and the
whole set Ω as focal elements. Unlike probabilistic classifiers, these
classification algorithms are able to express their ignorance, repre
sented by a mass assigned to the whole set Ω. One of the best-known
classification algorithms outputting such mass functions is the belief
function-based version of k-nearest neighbour classification
(Denoeux, 2008) proposed by Denoeux.

Fig. 3. Spectra of the four plastic types compared with their corresponding ATR reference spectrum.  

probability p(.|fr) on Ω as output. In our application a probabilistic 
classifier would return a probability for each material to be the true 
material-type ω of fr, namely p(ABS|fr), p(HIPS|fr), p(PE|fr) and p(PP|fr). 
For example, having p(ABS|fr) = 0.8 means that the probability that ω is 
ABS is 0.8. Some classifiers can provide more general representation of 
uncertainty and imprecision in the data in the form of a mass function. A 
mass function m is a probability mass function (discrete probability) 
defined on all the possible subsets of Ω. A mass function can measure the 
mass exactly assigned to each subsets (excluding the mass provided by 
its elements). In other words, this framework assumes that one can 
”observe” a subset independently from the elements it contains, i.e. 
which corresponds to an imprecise piece of information. 

Example 1. For example consider a pixel having spectral information 
on 2800 −  3300cm−  1 clearly assignable to ABS or HIPS but such that the 
acrylonitrile peak at 2236cm−  1 (theoretically present for ABS and absent 
for HIPS) is highly affected by imprecision. For such a pixel, there is a 
lack of information which prevents discrimination between ABS and 
HIPS thus it is considered as {ABS, HIPS} material, i.e. Styrenic. 



• There are also some classification algorithms outputting mass func
tions with more focal elements. For example, ECLAIR (Evidential
CLAssification of incomplete data via Imprecise Relabelling) pro
posed in Jacquin et al. (2019) provides a belief function-based
version of any probabilistic classifier. This algorithm showed
competitive results on spectra obtained for WEEE plastics by MIR
technology in an industrial context. ECLAIR can assign masses to all
subsets A of Ω.

Once one of the above classifiers has been trained, it is applied to all 
pixels of fr. Then k mass functions representing the information con
cerning each pixel m(.|s1),⋯, m(.|sk) are obtained. 

2.3.2. Fragment classification: Combining pixels information 
In order to synthesize the mass functions provided by each pixel for 

the fragment fr, it is necessary to combine all the mass functions m(.|s1),

⋯, m(.|sk). The most popular combining procedure used in the belief 

Fig. 3. (continued). 

Fig. 4. Schema of the proposed procedure on a example. The notation m(.|x) is explained in more details in 2.3.1.  



function framework is Dempster combination (conjunctive combina
tion) which assumes that all sources of information are independent, 
trustworthy and that there is no conflict between them. Although the 
source of information for each pixel can reasonably be considered as 
independent, this combination does not seem appropriate in our case 
since the information obtained for some pixels severely affected by 
uncertainty might not always provide information consistent with the 
information coming from others. Another common combination is the 
disjunctive combination rule, which also assumes that sources of infor
mation are independent but is appropriate for scn is reliable (Denœux, 
2008). For a fragment fr composed, for example, by two pixels s1 and s2,

the disjunctive combination of m(.|s1) and m(.|s2) is defined for a subset 
of plastic types A by: 

In the case of more pixels (k > 2) the disjunctive combination of all 
the pixel masses is computed using the associative property of the rule. 

Example 2. Consider the following example with k = 2, such that: 

for pixel s1 : m({HIPS}|s1) = 0.4, m({ABS,HIPS}|s1) = 0.6,
for pixel s2 : m({ABS}|s2) = 0.2, m({PE,HIPS}|s2) = 0.8.

Then 

It should be noted that this combination can assign masses to new 
subsets such as {ABS,HIPS,PE} in this example. 

Alternatively, the mass functions can also be combined by taking the 
mean operator, for a subset of plastic types A: 

m(A|fr) =
∑k

i=1m(A|si)

k
. (2)  

Taking example 2, the mean combination of m(.|s1) and m(.|s2) gives: 

m({HIPS}|fr) = 0.2, m({ABS,HIPS}|fr) = 0.3,
m({ABS}|fr) = 0.1, m({PE,HIPS}|fr) = 0.4.

There is a justification for using both disjunctive and mean combination 
in the application. However, mean combination does not produce new 
focal elements and is less computationally complex. The mean combi
nation rule was therefore chosen in this work to merge the information 
about all pixels. 

2.4. Decision 

Once the information has been collected and synthesised for fr, it 
needs to be processed via a decision phase in order to return the final 
output. Classically, in the case of a standard classification problem, the 
decision phase would aim at returning the most suitable material-type 
depending on probabilities and on certain specificities of the problem 
expressed in the form of a loss function L. This loss function classically 
defined on Ω × Ω quantifies the loss incurred when assigning a certain 
material-type when the true material-type is either different or the same. 
For example, having L(ABS,HIPS) = 0.8 would mean that the loss 
incurred when mistaking a real HIPS fragment for a ABS fragment is 
penalized by a loss of 0.8. Using a loss function enables different types of 
errors to be penalised differently. This is particularly useful in our 
application since different types of errors correspond to different types 
of impurities that may not have the same consequences. The most 

B / A ABS  HIPS  PE  PP  Styrenic  Polyolefin  Ignorance  

β = 0.1  Styrenic  0.010 0.010 1 1 0 1 0.498 
{HIPS,PE} 1 0.010 0.010 1 0.500 0.500 0.498  
{ABS,HIPS,PE} 0.019 0.01 0.019 1 0.005 0.502 0.248 

β = 3  Styrenic  0.474 0.474 1 1 0 1 0.091 
{HIPS,PE} 1 0.474 0.474 1 0.50 0.500 0.091  
{ABS,HIPS,PE} 0.643 0.643 0.643 1 0.31 0.655 0.032  

Table 2 
Riskβ(A) for β = 0.1 and β = 3.  

A ABS  HIPS  PE  PP  Styrenic  Polyolefin  Ignorance  

Risk0.1(A) 0.603 0.107 0.604 1 0.349 0.8 0.573 
Risk3(A) 0.742 0.432 0.789 1 0.227 0.8 0.133  

Table 3 
Database.   

Train Test  

ABS  HIPS  PE  PP  ABS  HIPS  PE  PP  
Number of fragments 35 35 35 35 35 35 35 35 
Total number of pixels 2934 2895 2975 2943 2887 2960 2882 2889  

Table 4 
Evaluation of cautious classification algorithms obtained with the proposed 
procedure.  

Classifier providing the mass functions relevance  reliability  F1

Probabilistic version of SVM 0.911 0.925 0.918 
Probabilistic version of k-nn  0.910 0.930 0.920 
Belief function based k-nn  0.821 0.954 0.883 
ECLAIR version SVM 0.896 0.930 0.913 
ECLAIR version k-nn  0.897 0.940 0.918  

Table 1 
Table of losses Lβ(A, B).   



common loss function, called the 0 − 1 loss function, simply gives a 
maximal loss 1 for mistakes and minimal loss 0 when the assigned ma
terial matches the true material. After defining a loss function, the de
cision classically relies on expected loss minimisation also referred to as 
risk minimisation. For each candidate material a ∈ Ω to be the real 
material-type of fr, the risk, i.e. expected loss, is computed according to 
the posterior probability p(.|fr) in the following way: 

Risk(a) =
∑

b∈Ω
p(b|fr)L(a, b), (3)  

then the chosen material is the one with the least risk. For example, 
considering the 0 − 1 loss function and the probabilities p(ABS|fr) = 0.8 
and p(HIPS|fr) = 0.2, leads to 

Risk(ABS) = p(ABS|fr)L(ABS,ABS) + p(HIPS|fr)L(ABS,HIPS)
= 0.8 × 0 + 0.2 × 1

= 0.8.

Similarly, Risk(HIPS) = 0.2. In fact, risk minimisation considering 0 − 1 

loss always amounts to choosing the material having the highest prob
ability. In order to produce a cautious output, i.e. returning a set A, it is 
also necessary to define loss functions for subset outputs. Therefore, 
returning to the framework of the belief function, where the information 
is m(.|fr) instead of p(.|fr), it is possible to adapt standard risk mini
misation in order to produce cautious outputs. One adaption was pro
posed in Jacquin et al. (2019). The main idea is to consider a loss 
function defined by considering both truth and candidate as subsets. For 
example, L(Ω, {ABS,HIPS}) = 0.4 means that the loss incurred by 
assigning Ω, i.e. outputting the ignorance, when the ”real” material-type 
is Styrenic (see example 1) is 0.4. A possible loss for a subset can be 
constructed by taking the maximal loss of its elements. We can also 
consider a loss function that assigns losses to subsets without taking into 
account the elements it contains. Such a loss function based on an 
evaluation criterion is presented in the next subsection. In this case, for 
each candidate output subset A, the risk is defined by: 

Risk(A) =
∑

B⊆Ω
m(B|fr)L(A,B). (4)  

2.5. Evaluation of cautious outputs 

In this subsection, the evaluation of cautious output is discussed. The 
classical evaluation is based on the equality between the truth and the 
prediction. However, the evaluation of cautiousness needs to compare 
the truth and a predicted subset output. This has been the object of 
several works (Yang et al., 2016; Zaffalon et al., 2012). In order to 
illustrate the difficulty of evaluating a cautious classifier, the argument 
presented by Zaffalon et al. (2012) is as follows (adapted for our 
context). Let us consider the classification task with only two 
material-types {ABS,HIPS}. Consider the following two extreme classi
fiers: one is a random classifier, i.e. it randomly returns a single 
material-type in {ABS,HIPS}, the other is a vacuous classifier, i.e. it 

Fig. 5. Example of representation for a container output result.  

Fig. 6. Sorting results with the conventional voting procedure.  



always returns the set {ABS,HIPS}. Both classifiers are unaware of the 
real material-types but they have opposite ways of managing their 
ignorance. How should these classifiers be evaluated? On average, the 
random classifier is wrong half of the time on a balanced testing data
base thus the expected reward would be 1/2. The reward of the vacuous 

classifier is more difficult to assess because it never makes real mistakes, 
but it does not provide any relevant information either. However, it is 
arguable that the behaviour of the vacuous classifier is preferable 
because it expresses its inability, thus this classifier should be rewarded 
more than 1/2. In order to implement this distinction, many evaluation 

Fig. 7. Sorting results with the proposed cautious procedure.  



reliability(A,B) =
|A ∩ B|
|B|

, (5)  

where |A| denotes the number of elements in A. We denote by 1A the 
indicator function defined on Ω having the value 1 for all elements of A 
and the value 0 for all elements of Ω not in A. When the true material- 
type B is a singleton B = {ω}, we have reliability(A,{ω}) = 1A(ω). On 
the other hand, the relevance is defined as the proportion of outputted 
material-types (A) that are true (B): 

relevance(A,B) =
|A ∩ B|
|A|

. (6)  

Similarly, when the true material-type B is a singleton B = {ω}, we have 
relevance(A,{ω}) = 1A(ω)/|A|. 

Example 3. reliability({ABS,HIPS},ABS) = 1 and 
relevance({ABS,HIPS},ABS) = 1/2. 

Note that the measures of reliability and relevance defined above 
concern a single fragment. Those measures are defined for a set of 
fragments as the average of the measures obtained for each fragment. 
The presented measures enable a different aspect of the cautious output 
to be appreciated: for reliability, the true material-type needs to belong to 
the cautious output; for relevance, the cautious output also has to be as 
small as possible. Thus reliability tends to promote output with bigger 
subsets A because the bigger A is the higher the chance of it containing 
ω. Conversely, reliability tends to promote smaller subsets. The main 
challenge of cautious classification is to find a compromise between 
reliability and relevance. This compromise varies according to the situa
tion, and can be evaluated using the Fβ measure (for cautious classifi
cation) defined in Coz et al. (2009): 

Fβ(A,ω) =
(1 + β2)relevance(A,ω)⋅reliability(A,ω)

β2relevance(A,ω) + reliability(A,ω)
, (7)  

with a parameter β > 0 that controls the degree of cautiousness. With 
small values of β, the output relevance is emphasised, i.e. the size of the 
output should be reasonable, while high values of β emphasising reli
ability, i.e. the true material should be included in the output set. 
Continuing with the example 3; for a small β, e.g. β = 0.1, F0.1({ABS,
HIPS},ABS) = 0.5024876 is obtained and for a higher β, e.g. β = 3,
F3({ABS,HIPS},ABS) = 0.9090909. 

The Fβ evaluation measure can also be useful for defining a loss 
function for the risk minimisation of cautious outputs mentioned in the 
previous section. This was first done by Coz et al. (2009) and adapted in 
Jacquin et al. (2019) to the framework of belief functions. 

Considering the true material subset B instead of a single true ma
terial ω, the following generalisation of Fβ for subsets A and B is 
obtained: 

Fβ(A,B) =
(1 + β2)|A ∩ B|

β2|B| + |A|
. (8)  

In this article, the loss function used to minimise the risk defined in the 
Eq. (4) is defined as L(A,B) = 1 − Fβ(A,B). 

In order to illustrate the influence of β in the decision phase, consider 
the example 2: 

m({HIPS}|fr) = 0.2, m({ABS,HIPS}|fr) = 0.3,
m({ABS}|fr) = 0.1, m({PE,HIPS}|fr) = 0.4.

Table 1 shows losses obtained with β = 0.1 and β = 3. It should be 
mentioned that only the losses Lβ(A,B) for meaningful outputs A, i.e. 
that could correspond to valuable containers, and for sets B involved in 
the risk calculation are presented. Note also that {ABS,HIPS} is referred 
to as Styrenic, {PE,PP} as Polyolefin and Ω as Ignorance. 

Table 1 shows that the lack of relevance is more penalised for β = 0.1 
than for β = 3 (the losses are higher with β = 0.1 when the cardinality of 
A is bigger than the cardinality of B). Using the table of losses, the risk of 
candidate outputs can be computed for the two values of β. The resulting 
risks are shown in Table 2 (minimal risk values are shown in bold). 

Finally, as shown in Table 2, choosing β = 0.1, would lead the 
cautious classifier to return HIPS as material-type for the fragment fr 
which means that the fragment fr would be blown into a container 
dedicated to HIPS. Similarly, choosing β = 3 would lead to blowing fr 
into a container dedicated to more than one material. Finally, depending 
on the application, the decision-maker can choose β according to the 
required reliability and relevance. 

3. Results and discussion

In this section, experiments are conducted to show the benefits of
coupling MIR imaging and cautious classification for optimizing recy
cling. First, the database is presented and some results of several 
cautious algorithms (all based on the proposed procedure) are shown. 
Then an example of cautious sorting is compared with a more conven
tional sorting procedure. Ultimately the results and some possible ad
aptations are discussed. 

The experiments were carried out on the 280 plastic fragments 
provided by SUEZ company. After being recorded by the camera, each 
plastics fragment region of interest (roi) was selected manually to obtain 
3D reflection image as shown in Fig. 2. One half of the fragments were 
used as training and the other half for testing. The division of fragments 
by types can be found in Table 3. Note that the total number of pixels 
varies depending on the different categories since each fragment is 
composed by a different number of pixels according to its size (the 
average number of pixels composing a fragment in this database is 83). 

First of all, some cautious classification algorithms obtained by the 
proposed procedure are evaluated. As mentioned in Section 2.3.1, in its 
pixel classification phase the proposed cautious procedure uses an al
gorithm able to return a mass function. Many choices of algorithms are 
practicable, thus for ease of exposition, the algorithms already presented 
2.3.1, i.e. probabilistic classifiers, the belief function-based version of 
the k-nearest neighbour classifier and ECLAIR classifiers, are used in this 
illustration. As probabilistic and ECLAIR classifiers are generic algo
rithms, it was also necessary to choose specific algorithms. The versions 
of k-nearest neighbour (k-nn) and Support Vector Machine (SVM) were 
selected because they are efficient algorithms. Finally, the algorithms 
considered are: two probabilistic versions of k-nn and SVM classifiers, 
the belief function-based version of k-nearest neighbour classifier, and 
two ECLAIR versions of k-nn and SVM classifiers. In order to reduce the 
complexity and enhance the performances, Linear Discriminant Analysis 
(LDA) was applied as a pre-processing operation. These different clas
sification algorithms were used for the ”pixel classification” phase and 
the loss function defined in 2.5 was used for setting the risk mini
misation with β = 1, meaning that relevance and reliability are consid
ered equally important in the decision phase. The cautious 
classifications results are presented in Table 4. 

Table 4 shows that the choice of algorithm has an influence on 
cautious classification performances. The results show that none of the 
classifiers are best in terms of both relevance and reliability. In the next 

measures for cautious classification have been proposed in the litera-
ture: the F-measure (Coz et al., 2009), the utility Discounted accuracy 
(Zaffalon et al., 2012) or the p-discounted cost (Yang et al., 2016), etc. In 
this article, only the generalized evaluation measures of those proposed 
in Coz et al. (2009) are presented since they seem sufficient to under-
stand the main challenges when evaluating a cautious output. To avoid 
confusion with classical measures of precision and recall, we refer to the 
measures proposed in Coz et al. (2009) as measures of reliability and 
relevance. Furthermore, the definitions are given in the general case, 
considering both truth and classification output as subsets, respectively 
denoted B and A. The reliability corresponds to the proportion of the true 
material-types (B) included in the cautious output (A): 



of material fragments under constraints on compositions (see recent 
works dealing with problem of real-time sorting of fragments under 
constraints on containers compositions, Jacquin et al. (2020b), Jacquin 
et al. (2020a)). Considering such an issue, cautious sorting algorithms 
are able to track the evolution of knowledge about a container compo
sition in real time and make inferences about requirements on impurity 
constraints for optimizing the final sorting result. 

Finally, on a more technical level, the proposed cautious sorting 
approach assumes a device able to blow fragments into more containers 
than in conventional sorting procedures. This might require the tech
nical adaptation of sorting devices. However, note that the proposed 
procedure is flexible concerning the number of considered containers 
and is practicable even with fewer containers. 

4. Conclusion

Artificial intelligence, more precisely machine learning, is a prom
ising solution for attaining minimum recovery targets of WEEE and has 
already convinced many industrialists. However industrial-scale tech
nologies to discriminate between plastics provide uncertain/imprecise 
information that compromises the sorting task. Sorting errors seriously 
affect the quality of the recycled material. In this article a cautious 
sorting algorithm is proposed to increase the purity of sorted materials 
based on MIR imaging. Note that this cautious sorting algorithm is 
completely transposable to other context for sorting of other materials. 
The given sorting procedure is based on a belief function framework to 
better represent the uncertainty of the data and provide more cautious 
sorting by enabling plastic fragments to be blown into containers dedi
cated to more than a single material-type. The procedure was compared 
to a more conventional procedure that does not enable cautious outputs. 
It was observed that cautiousness enhances sorting purity, which is 
essential for optimizing the quality of secondary raw materials. Natu
rally, cautiousness also decreases the quantity of precisely sorted ma
terial but this can be controlled by defining a loss function suitable for 
the considered application. The first perspective of this work could be to 
improve the proposed approach by taking into account morphological 
aspects of the fragments. Indeed, the pixels on the edges are often less 
reliable and can disturb the classification process. By discounting the 
beliefs coming from pixels on the edges of plastic fragments, information 
could be better represented and taken into account in the cautious 
output, thus the quality of sorted material could be further improved. A 
second perspective is the integration of the proposed approach in real 
industrial sorting conditions, which implies computational complexity 
issues in cases where a large number of fragments are considered. 

On a more general note, the work presented in this article is part of a 
wider trend that aims at managing waste using artificial intelligence 
(AI). Digitization through the implementation of artificial intelligence is 
a driving force for innovation activities in many sectors of green tech
nologies, such as renewable energy or sustainable mobility. It is a tool 
that can considerably improve the quality of sorting through careful 
decision-making depending on the type of WEEE plastics supplied by the 
Suez firm, leading to the recovery of efficient second-life raw materials 
that are economically affordable and sustainable. This work is a first step 
towards this future perspective of sorting/identifying recycled materials 
2.0. 
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application, ECLAIR version of SVM was selected because it finds a good 
compromise between relevance and reliability and because SVM is more 
appropriate than k-nn for real-time industrial applications. Although it 
was not shown here, to simplify the reading of Table 4, the β parameter 
also has an influence on the performances (see previous section) and 
should be optimized according to the required compromise between 
relevance and reliability. In the rest of the paper, the proposed cautious 
sorting procedure is compared with a more conventional industrial 
sorting procedure. The cautious procedure was run using the ECLAIR 
version of SVM and setting β = 1.6, which could be optimized using 
cross validation. The possible output (dedicated containers) were fixed 
to ABS, HIPS, PE, PP, Styrenic, Polyolefin and Ignorance. Regarding the 
conventional sorting procedure, the voting approach presented in Sec-
tion 1, taking a standard SVM classifier to assign each pixel a single 
plastic type was applied. In this procedure, the possible dedicated con-
tainers are ABS, HIPS, PE, PP. The two procedures are compared by 
looking at the final real composition of the containers in terms of 
quantity, i.e. the fill rate of containers, and composition. 

The sorting results obtained by the voting approach are shown in 
Fig. 6. Each sub-figure should be read as follows: the quantity of added 
material is calculated in terms of percentage of the total sorted plastics 
and displayed in red on the y-axis (hatched lines represent the filling). 
Note that in the ideal case where all the testing fragments are perfectly 
sorted, the fill rate in the precise containers would be approximately 
25% (see Table 3), more precisely it would be 24.85% for ABS, 25.48% 
for HIPS, 24.81% for PE and 24.87% for PP. The pie plots represent the 
real composition of the container after the sorting procedure. For 
example, the explanation for sub-Fig. 6c also showed in Fig. 5: the filling 
rate of this container is 27.16% of total sorted plastics. Its composition is 
mainly PE (86%) but also impurities, 10% of PP, 3% of ABS and 1% of 
HIPS. The sorting results obtained with the proposed cautious procedure 
involve two more containers that are chemically meaningful: Styrenic, 
Polyolefin, and an additional container dedicated to Ignorance. The re-
sults are shown in Fig. 7. 

Comparing Figs. 6 and 7, one observes that the quantities of sorted 
material in the precise container, ABS, HIPS, PE and PP declined in the 
cautious procedure compared to the voting procedure. Indeed 
comparing the sub-Figs. 6a with 7 a one notes that the percentage of 
material in the container dedicated to ABS has decreased by −  52.26%. 
Similarly −  30.07% for HIPS, −  11.52% for PE, −  9.35% for PP. On the 
other hand, the purity of containers was enhanced with the cautious 
procedure: +2% for HIPS, +8% for PE and +6% for PP. Although there is 
a serious decline in quantity with the cautious procedure, it enhances 
the purity rate by a few percent, which could enable sorting quality 
standards to be reached. Note that this sorting quality has a great impact 
on the quality of the future recycled material. For example, a previous 
work (Perrin et al., 2016) studies the values of maximal impurity 
tolerance within HIPS, it states that without compatibilizing agents, 
maximal tolerance of ABS within HIPS can only be up to 4%. This level is 
almost obtained with the proposed procedure. Moreover, with the pro-
posed approach, the containers Styrenic and Polyolefin do not contain 
any impurity, which is also a valuable outcome. Indeed these sorted 
materials could be used for less demanding recycling use or could be 
integrated in a sorting procedure based on several sorting stages. There 
are some points that may be important to discuss concerning the pro-
posed cautious sorting approach. Firstly, the compromise between 
relevance and reliability should be considered carefully. When sorting 
errors do not have serious consequences, output relevance should pre-
dominate in order to maximise the quantity of precisely sorted material. 
When errors have serious consequences, one should keep in mind that 
although ensuring high reliability would lead to an increase in sorting 
quality, it will also naturally decline the quantity of sorted material. 
Industrialist designing sorting algorithms will need to define their own 
loss function to penalise the different types of errors, rather than the 
generic loss function used in this article. Secondly, the cautious pro-
cedure takes its full meaning when it is integrated in a real-time sorting 
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Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., Blasco, J., 
2012. Recent advances and applications of hyperspectral imaging for fruit and 
vegetable quality assessment. Food Bioproc Tech 5 (4), 1121–1142. 

Matarazzo, A., Tuccio, G., Teodoro, G., Failla, F., Giuffrida, V.A., 2019. Mass balance as 
green economic and sustainable management in WEEE sector. Energy Procedia 157, 
1377–1384. 

Nguyen, V.-L., Destercke, S., Masson, M.-H., Hüllermeier, E., 2018. Reliable multi-class 
classification based on pairwise epistemic and aleatoric uncertainty. International 
Joint Conference on Artificial Intelligence. 

Blanch-Perez-del Notario, C., Saeysb, W., Lambrechtsc, A., 2019. Hyperspectral imaging 
for textile sorting in the visible–near infrared range. Journal of Spectral Imaging 8. 

Ongondo, F.O., Williams, I.D., Cherrett, T.J., 2011. How are WEEE doing? a global 
review of the management of electrical and electronic wastes. Waste Manage. 
(Oxford) 31 (4), 714–730. 

Paclık, P., Duin, R.P., 2005. Designing multi-modal classifiers of spectra: a study on 
industrial sorting application. 2nd Spectral Imaging workshop, Villach, Austria. 

Paclik, P., Leitner, R., Duin, R.P., 2006. A study on design of object sorting algorithms in 
the industrial application using hyperspectral imaging. Journal of Real-Time Image 
Processing 1 (2), 101–108. 
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