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Abstract

A recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus
(SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac).
Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic
DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective
when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than
those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration), speed-of-kill or
budded virus production in vivo. In contrast, the production of OBs/larva was reduced by 39% in insects infected by Sf32null
compared to those infected by Sfbac. The SF32 predicted protein sequence showed homology (25% identity, 44% similarity)
to two adhesion proteins from Streptococcus pyogenes and a single N-mirystoylation site was predicted. We conclude that
SF32 is a non-essential protein that could be involved in nucleocapsid organization during ODV assembly and occlusion,
resulting in increased numbers of nucleocapsids within ODVs.
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Introduction

The family Baculoviridae comprises a group of viruses character-

ized by a large double-stranded, circular, supercoiled DNA

molecule of 80–180 Kb, enveloped in a rod-shaped nucleocapsid

[1]. These viruses are pathogenic to arthropods, particularly

Lepidoptera, and have a number of characteristics that favor their

development as bioinsecticides, such as restricted host range and

high pathogenicity and virulence [2,3]. Baculoviruses are present

in the environment, in soil and on foliage, as occlusion bodies

(OBs), which are formed by a protein matrix that occludes the

occlusion derived virions (ODV). Two phases can be distinguished

in their cycle of infection. Primary infection occurs when the larva

ingests OBs that degrade in the alkaline midgut and release ODVs

that infect epithelial cells. Virus replication and transcription

begins in midgut cells and new nucleocapsids are formed in the cell

nucleus. Some of these nucleocapsids bud out of the cells acquiring

an envelope as they do so, and form budded virions (BV), that

disperse within the infected insect to initiate secondary infection.

The nucleocapsids that remain in the nucleus of infected cells

acquire an external envelope, either singly or in groups, to form

the ODVs that are occluded in the polyhedrin matrix to form the

occlusion bodies. Upon death the insect disintegrates and liquefies

and OBs are released into the environment for transmission to

susceptible larvae [1]. As such BVs are specialized for cell-to-cell

systemic infection, whereas ODVs are required for insect-to-insect

transmission.

The fall armyworm, Spodoptera frugiperda, is an important pest of

maize, rice and sorghum in North and South America. This insect

can be infected by S. frugiperda multiple nucleopolyhedrovirus

(SfMNPV) and natural epizootics of virus disease can spread

through high density populations of the pest [4]. Several SfMNPV

isolates have been characterized [5–7], but development of the

virus as a biological insecticide has been limited, mainly due to

high production costs and moderate levels of pest control observed

following application of viral occlusion bodies (OBs) to infested

crops [8,9]. The identification of the genetic factors that determine

particular insecticidal properties of the virus may facilitate the

selection of particular genotypes with desirable traits for use in

bioinsecticidal products, or the development of recombinant

viruses, with improved characteristics compared to the wild type
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[10]. The deletion of certain genes [11] or the insertion of insect-

specific toxin genes [12] has been shown to increase the speed of

kill of these viruses.

Studies on the genes involved in the insecticidal characteristics

of SfMNPV have been facilitated by genome sequencing of three

different isolates of this virus [13–15]. A total of 62 open reading

frames (ORFs) present in these genomes have homologues in all

lepidopteran-specific baculoviruses (genus Alphabaculovirus) [16].

Most of these genes encode structural proteins or are involved in

DNA replication or transcription [17]. The majority of SfMNPV

genes show high sequence homology to genes of Spodoptera exigua

multiple nucleopolyhedrovirus (SeMNPV). However, there are

twelve open reading frames (ORFs) in the SfMNPV genome that

have been identified as unique genes that do not have homologs in

other baculoviruses sequenced to date [13,14]. These genes may

play a role in the unique characteristics or host specificity of

SfMNPV [18,19].

The sf32 gene of SfMNPV is a unique gene located in a

hypervariable region of the genome within which mutations and

deletions influence viral phenotype [13,20]. In the present study,

we examined the role of this gene in the insecticidal properties of

this virus. A PCR and a bacmid-based recombination system were

used to delete sf32 from the genome and a selection of phenotypic

characteristics of the recombinant product was studied. We found

that the sf32 gene is not essential for the SfMNPV infection cycle,

as infectious viral progeny were obtained following replication of

the sf32 deletion bacmid. However, deletion of the gene caused a

reduction in OB production per larva, whereas the size of OBs and

the number of viral genomes (nucleocapsids) within ODVs

increased. We suggest that SF32 may be involved in nucleocapsid

organization during ODV assembly and occlusion.

Material and Methods

Insects, Cells and Viruses
Spodoptera frugiperda larvae were obtained from a colony that was

started using pupae from a laboratory population maintained in

Honduras and refreshed periodically with pupae from southern

Mexico. The colony was maintained at 2561uC, 75% relative

humidity (RH) and 16 h light: 8 h dark photoperiod on a

wheatgerm-based semisynthetic diet [21]. Spodoptera frugiperda Sf9

cells were maintained in TC100 medium containing 10% fetal calf

serum at 28uC [22]. A wild-type isolate of SfMNPV was collected

in Nicaragua and characterized genotypically by Simón et al. [23].

The B genotype (SfMNPV-B) includes the largest genome of the

virus. This genotype was selected for the SfMNPV bacmid

construction (Sfbac). The complete genotype was cloned into a

pBACe3.6 vector modified by replacing the pUC19 element with

pBluescriptKS I containing AscI restriction sites, which cuts the

SfMNPV-B genome once [24].

Construction of Sf32null and Sf32null-repair Viruses
The Sf32null bacmid was constructed by deleting sf32 from

Sfbac by homologous recombination using Red/ET recombina-

tion (Gene Bridges GmbH). A kanamycin resistance gene was

amplified twice using the Tn5-neo PCR template and primers that

added 50 nucleotide (nt) terminal sequences corresponding to

either 39 or 59 untranslated regions of sf32. First, a PCR fragment

was amplified using Sf32del.1 and Sf32del.2 primers (Table 1) and

the Tn5-neo template. Then, in a second PCR, 25 nt terminal

sequences were added using Sf32del.3 and Sf32del.4 primers

(Table 1) and the PCR product of the first amplification. The

bacteria containing Sfbac were made electrocompetent and

transformed with the Red/ET plasmid pSC101-BAD-gbaA (Gene

Bridges GmbH). The PCR product containing the terminal

sequences of the sf32 gene was used to transform the electro-

competent cells containing Sfbac and pSC101-BAD-gbaA. These

cells were also made electrocompetent and induced with arabinose

(0.1–0.2% w/v) to express the recombination protein (gbaA).

Recombinants were selected as resistant colonies on medium

containing chloramphenicol and kanamycin. To confirm deletion

of sf32, restriction PstI profiles of the bacmid DNA were examined

and PCR amplifications with Sf32del.3 and Sf32del.4 primers

were sequenced.

For the construction of the repair virus, the sf32 coding region

was amplified by PCR using primers amplifying outside the coding

region, Sf32rep.1 and Sf32rep.2 (Table 1), and the Sfbac DNA as

template. Fourth-instar S. frugiperda larvae were injected with 10 ml

from a mixture containing 50 ml of Sf32null bacmid DNA

(100 ng/ ml), 50 ml of the PCR product that covered the sf32

region (500 ng/ ml) and 50 ml of Lipofectin reagent (Invitrogen).

Inoculated larvae were transferred to diet and reared individually

at 25uC. Virus-induced mortality was recorded daily. The OBs

were purified from cadavers and virus DNA extracted as described

below. A PCR was performed with Sf32rep.1 and Sf32rep.2

primers to determine whether recombination had replaced the

kanamycin cassette with the sf32 gene in the Sf32null bacmid.

DNA was transfected into DH5a electrocompetent cells. In order

to select colonies containing the sf32 gene, bacmid DNAs were

purified by alkaline lysis and restriction PstI profiles and PCR

amplifications with Sf32del.3 and Sf32del.4 were examined. PCR

amplification products generated using Sf32del.3 and Sf32del.4

primers of the selected bacmid, were sequenced to confirm the

correct insertion of the gene.

Temporal Expression of sf32
Total RNA was isolated from Sfbac-infected larvae at 0, 2, 4, 6,

8, 10, 12, 24, 48, 72, 96, 120 and 144 hours post infection (hpi)

with TRIzol reagent (Invitrogen) according to the manufacturer’s

protocol. The extracted total RNA was treated with RNase-free

DNase (Promega) to remove genomic DNA. First strand cDNA

synthesis was performed using the Improm-IITM reverse tran-

scriptase (Promega) and the internal oligonucleotide Sf32.1

(Table 1). The resulting cDNA mixtures were amplified using

the sf32-specific primers Sf32.1 and Sf32.2 (Table 1). Amplifica-

tions of the very late and highly transcribed polyhedrin gene (polh)

with Sfpolh.1 and Sfpolh.2 primers and the early egt gene with

egt.1 and egt.2 primers (Table 1) were performed as a control.

PCR products were subjected to electrophoresis in 1% agarose gel.

Sfbac and Sf32null DNA Infectivity and Production of the
OBs

Sfbac, Sf32null and Sf32null-repair bacmid DNAs were purified

by alkaline lysis and caesium chloride gradient centrifugation [22].

To determine DNA infectivity and produce Sfbac, Sf32null and

Sf32null-repair OBs, S. frugiperda fourth instars were injected with a

DNA suspension including bacmid DNAs and Lipofectin reagent

(Invitrogene) in a 2:1 proportion [24–25]. A 100 mL volume of

each bacmid DNA containing 100 ng/ mL was mixed with 50 mL

of Lipofectin. After 10 minutes, 10 mL of this suspension was

injected into individual larvae (666 ng/larva). Inoculated larvae

were transferred to diet, reared individually at 25uC and virus

mortality was recorded daily until death or pupation. Groups of 24

larvae were injected with DNA from each virus and the

experiment was performed three times.

OBs obtained from dead larvae were filtered through cheese-

cloth, washed twice with 0.1% (w/v) sodium dodecyl sulphate

(SDS) and twice with double-distilled water, and resuspended in

The sf32 Unique Gene of SfMNPV
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double-distilled water. The resulting OB suspensions were counted

in a Neubauer chamber and were stored at 4uC. To confirm the

authenticity of the recombinant OBs, DNA was extracted from

OBs as described in the following section and verified by

restriction endonuclease and PCR analyses.

DNA and ODV Content Within OBs
Genomic DNA was extracted from samples of 16106 OBs of

Sfbac, Sf32null and Sf32null-repair bacmids. ODVs were released

from OBs by mixing OB suspensions with 100 mL of 0.5 M

Na2CO3 and 50 mL of 10% (w/v) SDS in a final volume of 500 mL

and incubating at 60uC during 10 minutes. Undissolved OBs were

removed by low speed centrifugation (3,8006g, 5 minutes). The

supernatant fraction containing virions was treated with 25 mL of

proteinase K (20 mg/mL) and incubated at 50uC for one hour.

Viral DNA was extracted twice with 500 mL of phenol and once

with chloroform and isolated by alcohol precipitation. The

resulting pellet was resuspended in 50 mL of 0.16TE buffer by

incubation at 60uC during 10 minutes. DNA samples were diluted

1:100 and quantified using qPCR based on SYBR green

fluorescence in an ABI PRISM 7900HT Sequence Detection

System (Applied Biosystems). The reaction mixture (20 mL)

contained 10 mL SYBR Premix Ex Taq (2x), 0.4 mL of ROX

Reference Dye (50x), 0.2 mL of each SfMNPV primer (10 pmol/

mL) (Table 1) and 1 mL of DNA template. qPCR was performed

under the following conditions: 95uC for 30 s, followed by 45

amplification cycles of 95uC for 5 s and 60uC for 30 s and finally a

dissociation stage of 95uC for 15 s, 60uC for 15 s and 95uC for

15 s. Data acquisition and analysis were handled by Sequence

Detector Version 2.2.2. software (Applied Biosystems). Known

dilutions of SfMNPV CsCl-purified DNA (1025–1 ng/ ml) were

used as internal standards for each qPCR reaction. Melting-curve

analysis was performed to confirm specific replicon formation in

qPCR.

Mean ODV content within OBs was determined by end point

dilution in Sf9 cells [25]. ODVs were released from 56108 OBs in

a volume of 500 mL by incubation with Na2CO3 0.1 M at 28uC
for 30 minutes. This suspension was filtered through a 0.45 mm

filter and serially diluted 1:5 in TC100 medium. Sf9 cells were

infected with 10 mL of each ODV dilution in 96-well plates.

Twenty-four wells containing 16104 cells/well were inoculated

with each dilution in triplicate. Dishes were incubated at 28uC for

7 days and then examined for signs of virus infection. Results were

analyzed by the Spearman-Kärber method [26] to estimate 50%

tissue culture infectious dose (TCID50). TCID50 values were

subsequently converted to infectious units per 5 108 OBs and

compared by t-test in SPSS 15.0 (SPSS Inc, Chicago, IL).

Table 1. Primers used in this study.

Primers Sequences Amplification purpose

Sf32del.1 59-ATCATTATATTGCTTTGTATTTTATGGACAGCAAGCGAACCGGAA-39 Sf32 deletion from SfMNPV bacmid; forward primer with 24 nt homologous to
Tn-5neo sequence (underlined) and 21 nt homologous to 39 untranslated sf32
region (nt 30,932–30,955 in SfMNPV-B genome).

Sf32del.2 59-AATTTTTTTTATATTTGGGCATAGTCTCAGAAGAACTCGTCAAGA-39 Sf32 deletion from SfMNPV bacmid; reverse primer with 19 nt homologous to
Tn-5neo sequence (underlined) and 26 nt homologous to 59 untranslated sf32
region (nt 31,363–31,338 in SfMNPV-B genome).

Sf32del.3 59-GGAAAAGTTGTGTAAATAAAACAACATCATTATAATGCTTTGTAT-39 Sf32 deletion from SfMNPV bacmid; forward primer with 20 nt homologous to
Sf32del.1 primer (underlined) and 25 nt homologous to 39 untranslated region
(nt 30,907–30,931 in SfMNPV-B genome).

Sf32del.4 59-TTATTAGAAAATTAAGAAAAGTTCAATTTTTTTTATATTTGGGCA-39 Sf32 deletion from SfMNPV bacmid; reverse primer with 21 nt homologous to
Sf32del.1 primer (underlined) and 24 nt homologous to 59 untranslated region
(nt 31,383–31,364 in SfMNPV-B genome).

Sf32rep.1 59-CGCTATTGTTAGCGACACGA-39 Sf32 insertion into Sf32null bacmid; forward primer that amplifies 809 pb
upstream the sf32 gene (nt 30148–30167 in the SfMNPV-B genome).

Sf32rep.2 59-GGTGCGATACGATCAATGTG-39 Sf32 insertion into Sf32null bacmid; reverse primer that amplifies 1348 pb
downstream the sf32 gene (nt 32804–32823 in the SfMNPV-B genome).

Sf32.1 59-AAGTGGATGCCGATAAAACG-39 Sf32 transcription analysis (RT-PCR); forward primer that amplifies 280 bp
upstream of the sf32 stop codon (nt 31,243–31,224 in SfMNPV-B genome).

Sf32.2 59-CCAATTGGTATGAATGCCAC-39 Sf32 transcription analysis (RT-PCR); reverse primer that amplifies in the sf32
stop codon (nt 30,963–30,982 in SfMNPV-B genome).

Sfpolh.1 59-CCCGACACCATGAAGCTGGT-39 Polh transcription analysis (RT-PCR); forward primer that amplifies 500 bp
upstream of the polh stop codon (nt 241–260 in SfMNPV-B genome).

Sfpolh.2 59-TTAGTACGCGGGTCCGTTGTA-39 Polh transcription analysis (RT-PCR); reverse primer that amplifies in the polh
stop codon (nt 741–721 in SfMNPV-B genome).

egt.1 59-TACGACCTGTTGCACCATAA-39 egt transcription analysis (RT-PCR); forward primer that amplifies 479 bp
upstream of the egt stop codon (nt 25154–25173 in SfMNPV-B genome).

egt.2 59-TTACACAAAATTAAGTCTCA -39 egt transcription analysis (RT-PCR); reverse primer that amplifies in the egt stop
codon (nt 25633–25614 in SfMNPV-B genome).

qSf.1 59-TGTGGTATATTTATGCACAGA-39 BVs production (qPCR); forward primer that amplifies in the sf68 (nt 63,179–
63,199 in SfMNPV-B genome).

qSf.2 59-ATTCAATGCTATCGTTTGAGC-39 BVs production (qPCR); reverse primer that amplifies in the sf68 (nt 63,279–
63,259 in SfMNPV-B genome).

doi:10.1371/journal.pone.0077683.t001
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Biological Activity of OBs
The 50% lethal concentration (LC50), mean time to death

(MTD) and OB production were determined in second instars by

per os inoculation following the droplet feeding technique [27]. To

estimate LC50 values, larvae were starved overnight and allowed to

drink viral suspensions in 10% (w/v) sucrose solution containing

0.001% (w/v) blue food dye and one of the following concentra-

tions of OBs of each virus: 1.96103, 9.66103, 4.86104, 2.46105

and 1.26106 OB/ml. This range of concentrations was previously

estimated to kill between 5 and 95% of the insects. Larvae that

drank OB suspension in a 10 min period were reared individually

on diet at 25uC and virus mortality was recorded daily until death

or pupation. Bioassays were performed on four occasions using

groups of 24 larvae per virus concentration and 24 control larvae

that consumed sucrose and food dye solution without OBs. Virus

induced mortality data were subjected to probit analysis with the

POLO statistical program [28].

In order to determine speed-of-kill, groups of 24 recently-molted

second instars were starved overnight and allowed to drink an OB

concentration estimated to result in 90% mortality, namely,

2.196105 OB/mL for Sfbac and 2.246105 OB/mL for Sf32null.

Larvae that drank OB suspensions within 10 min were reared

individually on diet at 25uC and mortality was recorded at 8 hour

intervals until larvae had died or pupated. The experiment was

performed on four occasions. Time-mortality results were

subjected to Weibull analysis using the generalized linear

interactive modelling (GLIM) program [29] and to Kaplan-Meier

survival analysis using SPSS 15.0.

OB production was determined in larvae that died in the MTD

assays. Each corpse was homogenized in 100 mL distilled water

and OBs were counted in a Neubauer hemocytometer. OB counts

from each larva were performed in duplicate using three of the

four replicates from the MTD experiment. Results were subjected

to t-test in SPSS 15.0.

Budded Virus Production In Vivo
Budded virus (BV) production was studied in newly-molted

fourth instars that had drunk a suspension of 108 OB/ml,

estimated to result in ,95% mortality for both viruses. The

number of viral genome copies present in larval hemolymph was

estimated by qPCR. Hemolymph samples taken from groups of 20

larvae at 0, 12, 24, 48, 72, 96, 120 hpi were centrifuged at 2,0006g

for 10 minutes at 4uC to pellet cells. DNA extraction was

performed on the supernatant using the MasterPure Complete

DNA Purification kit (Epicentre Biotechnologies) and DNA

concentrations were measured by qPCR as described for DNA

content quantification.

Electron Microscopy
Scanning electron microscopy (SEM) was used to determine OB

diameter. OBs in suspension were fixed overnight by mixing with

an equal volume of fixative (4% formaldehyde and 1% glutaral-

dehyde in 0.1 M phosphate buffer, pH 7.4) and then washed twice

with 0.1 M phosphate buffer. Samples were then partially

dehydrated with ethanol 70%, dried, placed on aluminum mounts

using carbon tags, sputter-coated with gold-palladium and

photographed at magnifications of 6,0006 and 25,0006 using a

scanning electron microscope (Philips SEM 550). Images were

analyzed with the ImageJ software (National Institutes of Health)

and Feret’s diameter (the longest distance between two parallel

tangents) was taken as a measure of OB diameter. A total of 500

OBs were analyzed for the Sfbac virus and 345 were analyzed for

the Sf32null virus. OB measurements were normalized by square-

root transformation and compared by t-test using SPSS 15.0.

The number of ODVs occluded within OBs and the number of

nucleocapsids per ODV were determined by examination of OB

sections by transmission electron microscopy (TEM). OBs in

suspension were fixed for 2 h at 4uC with 1.5% glutaraldehyde.

Samples were then concentrated in 0.4% agar, washed with

phosphate buffer (0.2 M, pH 7.3), post fixed with 2% osmium

tetroxide for 2 h, followed by 1 h treatment with 2% uranyl

acetate. Samples were then embedded in epoxy resin, sectioned,

stained with lead acetate and observed under TEM at 100 KV

(JEOL JEM 1010). Different fields of each sample were

photographed at a magnification of 640,000. Images were

analysed using ImageJ software for each sample, the number of

ODVs was counted in 30 OBs. Similarly, the number of

nucleocapsids was counted in 300 ODVs. The mean numbers of

ODVs and nucleocapsids for each sample were compared by t-

test. Feret’s diameter was also measured in approximately 100

OBs of each virus (89 for Sfbac and 100 for Sf32null) and

compared by t-test using SPSS 15.0.

Gene and Protein Sequence Analysis
To determine the nature of the putative SF32 protein,

nucleotide and amino acid sequences homologs were searched in

the updated Genbank and EMBL databases using BLAST [30].

Protein properties were studied using the Peptide Property

Calculator (Center for Biotechnology, Northwestern University).

PSIPRED and JPRED3 tools were used to predict protein

secondary structure [31] and signal sequences were screened

using SIGNALP v3.0 [32]. Cellular location was predicted by

TargetP 1.1 server [33]. The presence of transmembrane domains

was detected using TMHMM v2.0 and MEMSAT3 [34]. Finally,

post-translational modifications were predicted using PROSITE

[35].

Results

Generation of Sf32null and Sf32null-repair Viruses
The selected Sf32null bacmid was expected to contain a

deletion of the sf32 gene, located between the nucleotides 30,955

and 31,338 in the SfMNPV-B genome [14]. Replacement of the

sf32 gene by the kanamycin cassette in Sf32null was confirmed by

restriction endonuclease analysis and PCR with specific primers

targeted at the predicted recombinant junction regions. The

genomic arrangement of the recombinant virus was verified by

sequencing. The same method was performed to confirm the

correct insertion of sf32 gene in the Sf32null-repair bacmid.

sf32 is an Early Transcribed Gene
Temporal regulation of the sf32 transcript was examined by

RT-PCR using total RNA isolated from S. frugiperda larvae orally

infected with Sfbac OBs. Control amplifications performed to

ensure the absence of contaminant DNA in the samples were

consistently negative. Equal volumes of the treated RNA were

used for the sf32, polh and egt transcript amplifications. Single

RT-PCR products of the expected sizes were obtained following

amplification of sf32, polh and egt. The sf32 amplification product

was detected at a very low level at 2 hpi, increased at 4 hpi and

remained at a steady-state level up to 144 hpi. In contrast, an

amplification product from the early transcribed egt gene was

detected from 4 hpi to 144 hpi. The late transcribed gene polh

amplification product was detected at a very low level at 24 hpi,

increased at 48 hpi and remained at a steady-state level up to 144

hpi (Figure 1). A diffuse band was observed below the expected

amplification product due to excess primer.

The sf32 Unique Gene of SfMNPV
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Reduced Infectivity of Sf32null DNA
Intrahemocelic injection of Sf32null bacmid DNA resulted in

significantly lower mortality of larvae than observed following

injection of Sfbac or Sf32null-repair DNA (F2,8 = 25.878,

p = 0.001). Mean (6SE) mortality was 15.761.3% for insects

injected with Sf32null bacmid DNA, whereas 49.164.5% and

53.865.3% was recorded for those injected with Sfbac and

Sf32null-repair DNA respectively (Figure 2a), indicating that

Sf32null DNA was approximately three fold less infectious than

viral DNA that included the gene. DNA extracted from the

resulting OBs was subjected to restriction endonuclease analysis

and PCR which confirmed that the three viruses had similar DNA

restriction profiles and amplification products to those obtained

with the parental DNA.

Sf32null Bacmid OBs have an Increased DNA Content and
Similar ODV Content

DNA content was quantified by qPCR (efficiency = 101%,

r2 = 0.998). The presence of non-specific amplification resulting in

the high PCR efficiency was considered unimportant, as only one

peak could be observed in the melting curve. Significant

differences were observed in the mean concentration of DNA in

OB samples from Sfbac, Sf32null and Sf32null-repair

(F2,30 = 7.468, p = 0.002). Sf32null OBs yielded an average

(6SE) of 148.4618.0 ng DNA/106 OBs, that was significantly

more DNA than Sfbac (91.5613.6 ng DNA/106 OBs) or

Sf32null-repair OBs (72.769.0 ng DNA/106 OBs) (Figure 2b).

However, similar titers of infectious units (ODVs) were present in

Sfbac and Sf32null viruses in standardized samples of 56108 OBs

(t = 0.28, df = 10, p.0.05). In this case, the ODV titers were

6.6610361.56103 infectious units/ml for Sfbac compared with

7.4610362.66103 infectious units/ml for the Sf32null virus

(Figure 2c). The complete recovery of biological activity in the

Sf32null-repair virus in terms of DNA infectivity and DNA

content led us to use only the Sfbac as a control virus in the

following experiments.

Deletion of sf32 had no Significant Effects on OB
Pathogenicity or Speed of Kill but Increased OB
Production

The estimated LC50 values of Sfbac and Sf32null bacmid OBs

were almost identical at 1.766104 and 1.776104 OBs/mL,

respectively. The 95% confidence levels of the relative potencies,

representing the ratio of effective concentrations [36], overlapped

broadly in both viruses indicating no significant differences in OB

infectivity between these viruses in S. frugiperda larvae (Table 2).

Following inoculation with an estimated LC90 concentration of

OBs the mean (6SE) observed mortality of second instars was

86.764.8% for Sfbac and 86.563.6% for Sf32null. The mean

time to death (MTD) value was 161 hours post infection (hpi),

which was identical for both viruses (Table 2). Mortality results

were also subjected to survival analysis in SPSS 15.0. Kaplan-

Meier curves (Figure 2d) and Log Rank test (x2 = 0.210, df = 1,

p = 0.647), which confirmed that the speed-of-kill was similar in

both viruses.

OB production differed significantly between Sfbac and

Sf32null viruses (t = 6.6; df = 4; p = 0.003). Sfbac infections

produced 8.68610760.576107 OB/larva (mean 6 SE) whereas

Sf32null produced 5.29610760.426107 OB/larva (Figure 2e),

which represents 39% fewer Sf32null OBs/larva compared to the

production observed in insects infected by Sfbac.

Figure 1. Temporal expression of a) sf32, b) polyhedrin (polh) and c) egt of SfMNPV. RT-PCR analysis of sf32, polh and egt was performed on
total RNA extracted from infected larvae at indicated times post infection (hpi). Transcript amplifications were performed using Sf32.1 and Sf32.2
primers for sf32, Sfpolh.1 and Sfpolh.2 primers for polh and egt.1 and egt.2 primers for egt. RNA was previously treated with DNase and the same
amount of RNA was used for sf32, polh and egt amplifications. M indicates RNA from mock-infected larvae (negative control) and C is a positive
amplification control of DNA.
doi:10.1371/journal.pone.0077683.g001
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Figure 2. Effects of sf32 deletion in the biological activity of the virus. a) Mean virus-induced mortalities following DNA injection. Values
above the columns indicate means and those labeled with different letters are significantly different (p,0.05). Error bars indicate the standard error
of the mean. Mortality was recorded until larvae had either died or pupated. b) Mean amounts of DNA extracted from samples of 106 OBs of Sfbac,
Sf32null and Sf32null-repair viruses. Values above columns indicate means and those labeled with different letters differed significantly (t-test,
p,0.05). Error bars indicate the standard error of the mean. c) ODV content in 56108 OBs of Sfbac and Sf32null. Sf9 cells were serially infected (1:5,
1:25, 1:125, and 1:625) with ODVs released from OBs. ODV titers (ODV/ml) were calculated by end point dilution. Error bars indicate the standard error
of the mean. d) Kaplan-Meier survival curves showing estimates of that the probability of an infected S. frugiperda larva surviving to different intervals
following infection by each virus. Continuous and discontinuous lines represent Sfbac and Sf32null survival curves, respectively. e) OB production
values in larvae infected with Sfbac and Sf32null viruses. Values above the columns indicate means. Error bars indicate the standard error of the
mean. f) Dynamics of BV production through the time. Squares represent Sfbac values and triangles represent Sf32null values. Error bars indicate the
standard deviation. No significant differences were observed in BV temporal production patterns between Sfbac and Sf32null viruses (p.0.05).
doi:10.1371/journal.pone.0077683.g002
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Sf32 had no pronounced effects on budded virus production

(Figure 2f). The amounts of viral genomic DNA in hemolymph for

both viruses at different times post-infection were very similar as

determined by qPCR (efficiency = 108%, r2 = 0.998), i.e., sf32

deletion appeared to have no clear influence on BV production at

any stage of the infection. The presence of non-specific

amplification was considered improbable as only one peak was

observed in the melting curve.

Sf32null Virus OBs are Larger than those of Sfbac Virus
and Occlude ODVs Containing a Higher Number of
Nucleocapsids

Sf32null OBs had diameters between 1.40 and 3.37 mm with an

average (6 SE) value of 2.2560.02 mm (N = 345), which was

significantly larger than the diameter of Sfbac OBs, which ranged

from 1.00 to 3.16 mm with an average value of 1.9160.02 mm

(N = 500) (t = 12.3, df = 843, p,0.001). Although Sf32null OBs

were approximately 18% larger than those of Sfbac, no additional

gross morphological differences were observed in OB structure

between these viruses when examined by SEM (Figure 3A).

TEM observation revealed that the number of ODVs present

within the OBs was similar in Sfbac and Sf32null OBs (t = 1.367,

df = 26, p = 0.183) (Figure 3B, C). However, the number of

nucleocapsids per ODV was approximately 17% higher in

Sf32null ODVs than in Sfbac ODVs (t = 2.513, df = 311,

p = 0.013) (Figure 3D). Significant differences in the size of the

OBs were confirmed by measuring the Feret’s diameter in the

TEM images (t = 3.47, df = 184, p = 0.001). The mean diameter of

the Sfbac OBs was 1.6460.04 mm, whereas the mean diameter of

the Sf32null OBs was 1.8460.04 mm.

Sequence Analysis
Sequence analysis revealed that sf32 is a reverse gene located

between nucleotides 30,957 and 31,475 in the SfMNPV Nicar-

aguan isolate genome [14]. This gene is positioned between sf31,

which encodes a putative protein-kinase interacting protein similar

to ac24, and sf33, a putative actin rearrangement-inducing factor

similar to ac20 and ac21. A TATA box and a baculovirus

consensus early promoter motif CAGT were present at 277 and

292 nt upstream from the initiation codon (ATG), respectively,

suggesting that sf32 might be an early gene, which was confirmed

by RT-PCR temporal expression analysis (Figure 1).

SF32 is a unique small protein of 172 amino acids (Aa), present

in all sequenced SfMNPV genotypes; no homologs were detected

in other baculoviruses. The SF32 protein showed 26% identity

and 44% similarity to the trypsin-resistant T6 surface protein of

Streptococcus pyogenes serotype M6 and also showed sequence

similarity with the fimbrial structural subunit of the same bacterial

species (26% identity, 44% similarity). No signal peptide or

transmembrane domains were detected in the putative protein.

The estimated volume of this protein was 24,688 A3 using the

Peptide Property Calculator (Chazan). Secondary structure

prediction revealed nine strands and five helices, but larger

structures could not be predicted from these data. The PROSITE

tool predicted some post-translational modifications and functional

motifs of SF32, including a protein kinase C phosphorylation site

(Aa7–9), two N-glycosylation sites (Aa60–63, 156–159), a tyrosine-

kinase phosphorylation site (Aa89), a casein-kinase II phosphor-

ylation site (Aa158–161) and an N-myristoylation site (Aa166–171)

(Figure 4).

Discussion

Baculoviruses may acquire genes from their hosts or from other

coinfecting agents resulting in viruses with novel phenotypes [18].

Such modified phenotypic characteristics may confer a selective

advantage related to the host range of the virus, its insecticidal

activity or its transmissibility [17,19,37]. SfMNPV has twelve

ORFs which have no homologs in other sequenced baculoviruses

[13]. The number of unique genes varies between baculoviruses:

24 unique ORFs were identified in the genome of Chrysodeixis

chalcites NPV (ChchNPV) [19], 20 unique ORFs were identified in

the Helicoverpa armigera NPV (HaNPV) genome [38], whereas only

three genes are unique to the AcMNPV genome [1,39].

In order to increase our understanding of SfMNPV as a fall

armyworm pathogen, the role of the sf32 unique gene in the

replication and transmission of this virus was studied by producing

bacmid-based mutants that lacked the gene. Transcription of sf32

starts very early during infection and continues for at least 144

hours. The temporal expression observations are in agreement

with the presence of the early promoter detected by sequence

analysis. The products of baculovirus early genes are often

involved in DNA replication, regulation of late gene expression

and host-modification processes [40]. Early gene transcription is

mediated by the host RNA polymerase II and is strongly

influenced by the immediate-early IE-1 and IE-2 factors [40].

Deletion of sf32 resulted in a three-fold decrease in DNA

infectivity of the bacmid virus, for reasons that remain unclear.

Nonetheless, this early gene is clearly not essential for virus

replication, as infectious OB progeny were obtained from the sf32

deletion bacmid.

A 62% increase in the average amount of DNA per OB was

observed in the Sf32null recombinant, but a similar number of

ODVs were present in both Sfbac and Sf32null OBs. Other early

genes, such as ac23, modify the number of nucleocapsids per OB

without affecting the number of occluded ODVs [41]. In this case

it can be assumed that gene deletion decreased total DNA content,

in contrast to that observed with the sf32 deletion mutant. The role

Table 2. LC50 values and mean time to death (MTD) for Sfbac and Sf32null in second instar S. frugiperda larvae.

Virus LC50 Relative 95% Confidence limits MTD 95% Confidence limits

(OBs/ml) Potency Low High (h) Low High

Sfbac 1.766104 1.00 2 2 161a 157 165

Sf32null 1.776104 0.99 0.66 1.50 161a 157 166

Probit analysis was performed using the PoloPlus program. The hypothesis of equality was not rejected (x2 = 0.01, df = 2, p = 0.997) and a test for nonparallelism was not
significant (x2 = 0.01, df = 1, p = 0.947) such that regressions were fitted with a common slope of 1.16360.092 (mean 6 S.E.). Relative potency was calculated as the ratio
of effective concentrations relative to Sfbac OBs. Mean time to death values (MTDs) were estimated by Weibull analysis [29]. MTDs labeled with same letter did not differ
significantly (p.0.05).
doi:10.1371/journal.pone.0077683.t002

The sf32 Unique Gene of SfMNPV

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e77683



of sf32 in the SfMNPV virus therefore differs from that of ac23 in

AcMNPV.

Despite the increased DNA content of Sf32null OBs, sf32

deletion had a negligible effect on OB pathogenicity or speed-of-

kill. This was an unexpected result given that when a larva ingests

an Sf32null OB it will be exposed to a greater number of viral

genomes than occurs following ingestion of an Sfbac OB.

However, deletion of the previously mentioned ac23, which also

modifies the DNA content within OBs, had no significant

influence on OB pathogenicity but increased the mean time to

death of infected insects [42], so that changes in the DNA content

of OBs are not neccessarilly linked to changes in their

pathogenicity.

Interestingly, Sf32null OBs were 18% larger in diameter than

those of the complete virus. This difference may not seem

particularly important, but an 18% increase in diameter represents

a 60% increase in volume of the OB (assuming that an OB

approximates to the shape of a sphere), which is very similar to the

observed increase in the DNA content of Sf32null OBs.

The total production of OBs/larva was ,39% lower in Sf32null

infected insects compared with those infected with the complete

virus, whereas BV production was similar in both viruses.

Increased OB productivity is often linked to an extended period

of infection and an increase in the mean time to death [24,43,44],

but this was not observed in insects infected by the Sf32null virus.

Altered OB production could also be the consequence of

alterations in the packaging and occlusion process. Clear

Figure 3. Electron microscopy of Sfbac and Sf32null OBs. A) Scanning electron microscopy (66,000) of Sfbac and Sf32null OBs. Sf32 deletion
did not affect gross OB morphology although Sf32null OBs were approximately 18% larger in diameter than those of the Sfbac virus. B) Transmission
electron microscopy (640,000) of Sfbac and Sf32null OBs showing the distribution of single and multiple nucleocapsid ODVs. C) Mean number of
ODVs occluded within OBs as determined by TEM analysis. D) Mean nucleocapsid content of ODVs estimated by analysis of OB sections following
TEM. Values above columns indicate means and those labeled with different letters differed significantly (t-test, p,0.05). Error bars indicate the
standard error of the mean.
doi:10.1371/journal.pone.0077683.g003
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similarities in the dynamics of BV production between viruses

suggested that DNA synthesis was not affected by sf32 deletion, yet

Sf32null OBs contained approximately 62% more DNA than

Sfbac OBs. This led us to suspect that more ODVs would be

occluded in Sf32null OBs compared to Sfbac OBs, or a greater

number of nucleocapsids would be enveloped in the Sf32null

ODVs. The number of virions occluded within OBs was

determined in cell culture and by direct TEM observation of

OB sections, and was not affected significantly by deletion of sf32.

However, deletion of this gene resulted in a significant increase in

the number of viral nucleocapsids enveloped within each ODV,

which reflects the higher DNA content of Sf32null OBs.

Therefore, it appears that sf32 likely affects nucleocapsid

organization during ODV assembly and occlusion. The higher

nucleocapsid content of Sf32null OBs compared to that of Sfbac

may be responsible for the reduced OB production, as more

genomic DNA is required for production of Sf32null OBs than in

Sfbac OBs. Whether or not the increase in the number of

nucleocapsids per ODV has a direct influence on the occlusion

process, leading to the physically larger OBs that we observed, is

unclear at present.

Analysis of the putative SF32 protein revealed that this protein

does not contain any signal peptide or transmembrane domains,

suggesting that is likely to be an intracellular polypeptide.

Nevertheless, this protein is homologous to the trypsin-resistant

T6 surface protein of Streptococcus pyogenes serotype M6 and the

fimbrial structural subunit of the same species, both of which have

adhesion functions [45]. The idea that SF32 could be involved in

adhesion processes is an appealing concept that appears consistent

with its hypothesized role in nucleocapsid organization during

ODV assembly and occlusion. Some strains of Streptococcus are

pathogenic to insects [46,47] and horizontal transfer between

viruses and bacteria has been proposed for other baculovirus

genes, notably chitinase [48,49]. The idea that SF32 may be

involved in adhesion functions is reinforced by the presence of an

N-myristoylation site in the amino acid sequence as this

modification is usually related to weak and reversible protein-

membrane and protein-protein interactions [50,51]. In other

viruses, myristoylated proteins are involved in assembly, structure,

budding, intracellular host interactions and viral entry [52].

We conclude that the SfMNPV unique SF32 protein is a non-

essential protein, as viral replication was not compromised by gene

deletion. This gene might be directly or indirectly involved in

mediating nucleocapsid organization during ODV assembly and

occlusion. Deletion of sf32 resulted in a reduction in OB

production per insect and substantial increases in the size of

OBs and an increase in the average number of nucleocapsids

present within ODVs. Gene deletion did not affect OB

pathogenicity, speed of kill, ODV content within OBs or the

dynamics of BV production. Homology with bacterial adhesion

proteins and the presence of an N-myristoylation site suggests that

SF32 may affect nucleocapsid packaging in ODVs via interactions

with other proteins.
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