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Abstract. The Liane River is a small costal river, famous for its floods, which can affect the city of Boulogne-sur-
Mer. Due to the complexity of land cover and hydrologic processes, a black-box non-linear modelling was chosen 
using neural networks. The multilayer perceptron model, known for its property of universal approximation is thus 
chosen. Four models were designed, each one for one forecasting horizon using rainfall forecasts: 24h, 12h, 6h, 3h. 
The desired output of the model is original: it represents the maximal value of the water level respectively 24h, 12h, 
6h, 3h ahead. Working with best forecasts of rain (the observed ones during the event in the past), on the major 
flood of the database in test set, the model provides excellent forecasts. Nash criteria calculated for the four lead 
times are 0.98 (3h), 0.97 (6h), 0.91 (12h), 0.89 (24h). Designed models were thus estimated as efficient enough to 
be implemented in a specific tool devoted to real time operational use. The software tool is described hereafter: 
designed in Java, it presents a friendly interface allowing applying various scenarios of future rainfalls, and a 
graphical visualization of the predicted maximum water levels and their associated real time observed values.  

 

1 Introduction 
Flood forecasting in populated areas is a major 

challenge for early flood warning systems. For the wa- 
tershed under consideration in the present paper, 
heterogeneity of geology and contrasted relief makes 
physical models difficult to calibrate. Therefore, 
machine-learning models based on past flood 
measurements in the same watershed are attractive 
alternatives. 

After a presentation of the original flood vigilance 
signal investigated in the present paper, the Liane 
watershed whose floods are famous from more than one 
century, is described along with the database. In the 
subsequent section, after the presentation of neural 
network modelling for flood forecasting, and description 
of the model design methodology, with emphasis on 
variable and model selection by cross-validation, training 
and regularization, and independent testing, two 
candidate models for nonlinear dynamic process 
forecasting are presented: recurrent neural networks and 
feed-forward neural networks with time delays; a 
combination between both models seems more 
appropriate and is investigated in the present work.  

The results are then described, and we show that 
satisfactory 24-hour ahead forecasts are feasible, thereby 
opening the way to issuing reliable population warnings 

in real time. In the final section the specific tool designed 
to efficiently help forecasters to manage decision in real-
time is provided. 

2 Strategy of warning of Artois-Picardie 
warning service 

2.1 Level of vigilance 
Europe is a temperate region, yet subject to water-

related disasters causing casualties and material damages. 
Faced with this hazard, each country provides its own 
early warning system [1]. Facing the necessity to warn 
and protect the population, the French flood warning 
service (SCHAPI, Service Central d’Hydrométéorologie 
et d’Appui à la Prévision des Inondations) provides real-
time vigicrues map feeding. The Vigicrues map displayed 
on the http://www.vigicrues.gouv.fr site offers four 
vigilance levels (http://www.developpement-
durable.gouv.fr): 
• Green: no particular vigilance required 
• Yellow: risk of high or rapidly rising water not 

involving significant damage but requiring particular 
vigilance in the case of seasonal and/or outdoor 
activities 

• Orange: a flood with considerable overflows liable to 
affect significantly daily life and security of people 
and property 
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• Red: major risk of flood directly and extensively 
threatening people and property. 
For each area covered by the SCHAPI service, a 

Flood Information Rule is published. The Artois-Picardie 
region is monitored by the Artois-Picardie forecasting 
service; its Flood Information Rule [2] provides water-
level values for the various levels of vigilance in each 
basin. This information will help assessing the relevance 
of forecasts with respect to practice of the local flood 
forecasting service. 

The model performance will be assessed with respect 
to its ability to indicate to the forecaster the appropriate 
maximum level within the range of the forecast lead-
time. However, the decision to broadcast a level of 
vigilance is made not only by monitoring the predicted 
discharge. Forecasters must also identify local issues that 
can be correlated with a specific period during the year 
(e.g. campsite filling rate, popular events), thus allowing 
them to modulate their decision criteria. In sum, the 
information provided by the level of vigilance forecasting 
will not be adequately thorough, prompting us to 
introduce other criteria that measure efficiency while 
evolving continuously. 

2.2 Desired forecasts 
In order to simplify the work of analysis and 

forecasting in real-time, forecasters of Artois-Picardie 
FFS (Flood Forecasting Service) use specific 
information: the maximum of water level at 3h, 6h, 12h 
and 24h lead-time. This information must be delivered by 
models. It can be calculated straightforwardly by models, 
or deduced from water level forecasting at each lead-
time. 

If one denotes as k the discrete present time (the 
instant of forecast); forecasting the water level at time 
k+lt (lt is the lead time) consists in converting rainfall 
forecasts up to time k+lt in water level at time k+lt. It can 
be pointed out that the information about the maximum 
of water level at time k+lt, doesn't represent the physical 
behaviour of the basin, as it is shown in Fig. 1, because of 
the plateau that is observed: the plateau doesn't appear in 
water level or discharge measurements. 

In the present study we focus on the design and 
utilization of a specific software tool for a river 
associated with important stakes in relation with flood 
hazards: the Liane, whose vigilance levels are provided in 
(Table 2). 

3 Liane Basin 

3.1 Presentation of the basin 
The Liane is a coastal river of 35 km long situated in 

the North of France. The river begins at 101 m upper sea 
level at Quesques. Its outlet is the coastal city of 
Boulogne-sur-Mer (130,000 inhabitants in conurbation) 
that represents major stakes regarding flood hazards. The 
area of the basin is 244 km2; it is principally composed of 
impervious soils except at the upper part where one can 
find limestone escarpments exceeding 200 m elevation. 

The mean slope of the basin is 2,8%, and can reach 6% 
upstream (Figure 2) [2]. 

Upstream, the watershed is covered by forests and 
grasslands. Downstream the river crosses more urbanized 
zones and ends up in the Channel at Boulogne-sur-mer. It 
is at its downstream part that risks regarding flooding are 
the more important. 

 
Figure 1. Vigilance signals required by Flood Forecasting 

Service of Artois-Picardie at several lead-times: 3h, 6h, 12h, 
24h. 

 

 
Figure 2. Liane Watershed. 

3.2 Weather 
Weather is oceanic with a mean temperature of 10°. 

Snow is marginal. The upper part of the watershed 
constitutes an anomaly considering mean precipitation 
because of the altitude gradient (rise of 220 m in 40 km 
long). Mean yearly rainfalls evolve from 750 mm near 
the cost to 1000 mm at the upper part of the basin. During 
summer the basin can receive important rainfalls during 
storms. Intensity can reach 30 mm/h. 

Rainfalls are measured thanks to 3 rain gauges: 
Desvres, Henneveux and Wirwignes. Wirwignes is the 
outlet considered in this study; it is also a limnimetric 
station. 

3.3 Database 
Database used in this work includes hourly 

measurements of water level at Wirwignes and rainfalls at 
Desvres, Henneveux and Wirwignes from 1983 to present 
day. Model design was done with data up to 2012. The 
model is currently in operational working in FFS Artois-
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Picardie. 4 major events can be identified in the database 
(Table 1). They all correspond to orange vigilance level. 
The more intense event is the event of November 2012. It 
reaches 4.36 m at Wirwignes. The red vigilance level is 
not currently defined. This event has been satisfactorily 
predicted, during the flood, as shown on the vigicrues 
map (Figure 3.). 

 

Event Water level 
Wirwignes 

Vigilance 
level 

Return 
period 

28/10/1981 4,18 m orange  � 10 years 
01/11/1998 4,32 m orange  �  12 years 
21/11/2000 4,16 m orange  �  10 years 
02/11/2012 4,36 m orange  �  12 years 

Table 1. Higher events of the database (30 years). 

3.4 Vigilance levels 
Liane inundations are well known from several 

centuries, and Maurice Champion yet evokes this hazard 
in 1859 [3] specifically for low land inundation 
downstream of the basin. Due to numerous hydraulic 
settlements, downstream Liane river flows currently in 
artificial riverbed, but is yet subjected to frequent floods 
causing inundations. For this reason, and also because of 
the presence of canal lock at the outlet, the gauge station 
of Wirwignes, in the centre of the basin, is targeted for 
the vigilance definition because downstream water level 
would be difficult to manage and predict. Vigilance 
levels at Wirwignes gauge station are reported in Table 2. 
However, another gauge station downstream Wirwignes 
is working since 2012. It will help refine quantification of 
the risk regarding downstream stakes.  

 
Water level Wirwignes Vigilance level 

Under 2.7 Green 
3.1 - 3.9 m Yellow 
Over 4.1 m Orange 
Not defined Red 

Table 2. Vigilance levels for the Liane at the station of 
Wirwignes. 

 
Figure 3. Vigicrues map of the flood of the Liane (2 November 

2012). 

3.5 Available models 
Forecasts could be performed using several models 

[4]:  
• two abacus, one from SPC, one from SCHAPI for 24h 

vigilance (too difficult to be applied in operational 
conditions), 

• several ARMAX models at 2h lead-time, without 
forecast of rain, visualized by the SOPHIE platform, 

• a set of GRP models, visualized through the SOPHIE 
platform, using future rainfalls. Several models can be 
run with various lead-times at the same instant. 

• four neural networks models at following lead-times: 
3h, 6h, 12h, 24h. 

Synthetically, as explained in [4], the abacus used in real 
time can't take into account the past rainfalls, it is thus 
better at the beginning of the event. ARMAX models 
don't take into account future rainfalls, they can also be 
used for very short term forecast (2h).  
In 2012 GRP was not used in real time, simulations were 
done after the flood. 
Four models based on neural networks were shown 
efficient [5]. For this reason, the need of real-time 
efficiency during flood events and the update to a longer 
database a new design and the development of an ad hoc 
software tool was required. The new design of neural 
networks models and the description of the operational 
tool are the aim of this paper. 

4 Neural networks for flood forecasting 

4.1 General issue 
Artificial neural networks are statistical black box 

models that use input-output measurements to identify 
nonlinear functions of a system [6]. Basics about neural 
modelling can be found in [7], only specific information, 
mandatory for a comprehensive presentation of this study 
will be provided hereafter. The chosen model is the 
multilayer perceptron because of its properties of 
universal approximation [8] and parsimony [9].  

 

 
Figure 4. Multilayer perceptron. Neurons are symbolized by 

circles and input variables by squares. 

The universal approximation is the capability to 
approximate any differentiable and continuous function 
with an arbitrary degree of accuracy. In this study, the 
multilayer perceptron is both a feed-forward and a 
recurrent model. The feed-forward model is widely used; 
it is a finite impulse response model. The recurrent part 
allows to better identifying the internal state of the basin 
[10, 11]. It corresponds to the infinite impulse response 
part of the model.  

Designing a multilayer perceptron consists mainly of 
selecting input variables and the number of hidden 
neurons. This determines the number of parameters 
mechanically; model complexity increases with the 
number of parameters. The general equation of the 
predictor calculated by the feed-forward multilayer 
perceptron is the following: 
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, (1) 

where the estimated value of the output at the discrete 
time k+lt is yk+lt, the observed value of this variable at the 
current time is yp

k (at present), the input vector is uk, the 
nonlinear function implemented by the neural network is 
gNN; w and r are the widths of windows used to apply the 
input time-series, they are linked to the length of the 
vectors of input variables u and yp; C is the matrix of 
parameters of the model, also called "weights". 

It is also possible to use the recurrent model, which 
makes forecasts thanks to its own estimation of the water 
level: 

, (2) 

with the same notations than previously. 
One can note that the only difference with the 

previous equation (1) is that the calculation of the model 
depends only on its previous outputs, and doesn't 
necessitate observations anymore. The feed-forward 
model is well known to be generally the most efficient 
model; nevertheless, it was shown by [11] that the 
recurrent model generally better represents the dynamic 
of the system. 

As statistical models, neural networks are designed in 
relation to a database. This database is usually divided 
into three sets: a training set, a stop set, and a test set. The 
training set is used to calculate parameters through a 
training procedure that minimizes the mean quadratic 
error calculated on output neurons. The training is 
stopped by the stop set (usually called validation set, cf. 
Sect. 4.2), and model quality is estimated by the third part 
of the database: the test set, which is separate from the 
training and stopping sets. The model’s ability to be 
efficient on the test set is called generalisation. However, 
it was shown that the training error is not an efficient 
estimator of the generalisation error: the efficiency of the 
training algorithm makes the model specific to the 
training set. This specialisation of the neural network on 
the training set is called overfitting. Overfitting is 
exacerbated by large errors and uncertainties in field 
measurements: the model learns the specific realization 
of noise in the training set and could thus be unable to 
generalize. This major issue of neural network modelling 
is called bias-variance trade-off [12]. Usually 
regularization methods are used to avoid overfitting; to 
this end, two regularisation methods were used in this 
study. 

4.2 Regularisation methods 
In the context of this study, the goal of regularisation 

methods is to minimize output variance. To this end, 
cross-validation [13, 14, 15] was used to empirically 
select input variables and the number of hidden neurons. 
Cross-validation thus minimizes model complexity and 
therefore output variance [16].  

Another regularization method is commonly 
employed: early-stopping [17]. This method stops 
training before overtraining occurs. A dedicated set, 

called a stop-set, is considered separately from the 
database. During training, the chosen quality criteria is 
calculated on both the training set and the stop set. When 
it is observed that the quality criteria always improves on 
training set but worsens on the stop set, which means that 
the model begins to not be able to generalise, training is 
stopped. Early stopping is thus a method to prevent the 
model to train too much.  

Working on flash floods of the Lez hydrosystem 
(Southern France) [15] concludes that early stopping used 
in conjunction with cross-validation was efficient. We 
thus adopt this way to prevent overfitting. 

In the current study, parameters are iteratively 
calculated using the Levenberg-Marquardt algorithm 
[18]. 

It is well known also that model performance depends 
strongly on the parameters initialisation before training. 
To define a reliable simulation independent from the 
initialisation, [19] proposed to establish an ensemble of 
50 models trained from different initialisations. The 
output is calculated at each time step by the median of the 
50 outputs. It was shown that, applied to the database of 
the Liane, cross-validation and early stopping worked 
well; it was thus unnecessary to build an ensemble model. 

4.3 Complexity selection 
In order to get the best of the model in generalization 

and taking into consideration the bias-variance dilemma, 
the complexity, which is mechanically linked with the 
number of parameters of the model, must be rigorously 
adjusted. It consists in selecting the set of variables and 
the number of hidden neurons providing the best results 
in validation phase. This selection can be done thanks to 
cross-validation, in a rigorous and systematic method, as 
extensively explained in [14,15]. 

After the model design, final performances must be 
assessed on a dataset independent of the training and 
stopping sets: the test set. Contrarily to the statement, 
sometimes found in the literature, stating that neural 
networks models “are prisoners of their training set”; 
neural networks rigorously designed can generalize 
satisfactorily to events or behaviour out of the range of 
the training or stop set [21]. 

4.4 Uncertainties drawing 
Because of the important noise and uncertainties 

present in hydrologic data, it is specifically important to 
take into account the estimation of uncertainties in the 
result of modelling and forecasting. This estimation will 
be required in the future version of the vigicrues map 
called vigicrues 2. Usually one has to distinguish 
uncertainties coming from data and coming from 
modelling. Artigue et al. in [11] showed for 
Mediterranean flash-floods that the neural network model 
doesn't exacerbated uncertainties due to rainfalls: the 
noise artificially added in the rainfalls variables is 
transferred to the forecast without amplification, nor 
attenuation. Regarding the uncertainties linked to the 
model, another approach was proposed in [21]. It is 
possible to build an ensemble model composed of, for 
example 100 models, differing only by the parameters 
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initialization before training. During real-time forecast 
the ensemble is run and at each time step the max and 
min of the forecast is chosen. Such max and min values 
determine an envelope that visualizes the uncertainty of 
modelling. In the present study, 100 models were taken 
and the extreme values max and min were removed from 
the envelope, so only the second value from the top and 
the bottom were taken into account. This allows thus to 
visualize if the forecast has a great dispersion depending 
on the model selection. Envelopes can be seen on Fig. 9) 

4.5 Quality criteria 
Several criteria can be used to quantify the quality of 

the model. The Nash criterion [22] is often used in the 
field of hydrology; it corresponds to the R² determination 
coefficient, i.e.: 

 (3) 

with the same notation than previously (section 4.1), s 
is the number of observed couples, respectively simulated 

values targeted by the simulation, yp
k+lt is the average 

observed value on the n-sized sample. In this definition 
we took into account the lead-time lt because the lt-1 first 
values of the considered set are not taken into account 
(too early to be predicted). 

This criterion must be close to one, which means that 
the predicted water-level is close to the observed water-
level. A 0 value represents an average discharge 
equivalent forecasting whereas a negative value indicates 
that the forecasting provided is even worse than the 
simple average of the observed value during the event. 
Generally speaking, for flash floods purposes, a Nash 
criterion value greater than 0.8 is considered satisfactory. 
However, especially when using a feed-forward model, a 
risk for the model to provide a naive forecasting (when 
the model provides the same value at the forecast lead 
time as the one observed at the instant of forecasting) 
exists. That kind of result generally induces, for short 
lead times, a good value of the Nash criterion whereas the 
model does not bring any information. In order to assess 
the forecasting provided compared to the naive 
forecasting, the persistence criterion [23] has been 
defined. Usually the persistency criterion must be used to 
assess rigorously the forecast performances. Nevertheless 
in the case of Liane water-level forecasting, as the desired 
signal is not the water-level, but directly the vigilance 
signal (the maximum of water level lt time steps ahead), 
the persistency has no interest.  

In this case it is possible to use a simpler index which 
focuses on both value and synchronization of the peak: 
SPPD as Synchronous Percentage of the Peak Discharge 
[11]. If the instant of the maximum of peak discharge is 
denoted as tpeak, SPPD is computed as: 

SPPD = ykpeak

yp
kpeak

,   (4) 

with the same notations as before. 
SPPD is expressed in percentage, if the forecast 

underestimates the maximum of the flood, the SPPD is 
lower to 100%. In the contrary case it is superior to 
100%. 

5 Results 

5.1 Model design 
In order to design a continuous model (not based on 

event modelling) and based on previous presentation of 
neural network modelling, we choose to use a model 
taking profit of both advantages of recurrent and feed-
forward multilayer perceptrons. This model is shown in 
Fig. 5. Using simultaneously recurrent and feed-forward 
models is rarely done. The model receives as variables: 
(i) rainfall from the 3 rain gauges of Desvres, Henneveux 
and Wirwignes, (ii) a gaussian estimation of 
evapotranspiration, (iii) recurrent (previous estimated 
water level), and (iv) present measurements of water level 
at Wirwignes. We choose to use a rough estimation of 
evapotranspiration (gauss curve) as it was shown by [24, 
25, 26] that this signal has significant efficiency for 
reservoir models as well as neural networks models. 

 

 
Figure 5. MLP inspired model for Liane water level 

forecasting. 

Moreover the used architecture was not exactly a 
multilayer perceptron (MLP). Indeed, because of the 
modelling time step (1 hour), and the long lead-time 
(24h) the rainfall window widths must be long, increasing 
thus mechanically the number of parameters. As an 
uncontrolled rise of the number of parameters should 
worsen the ability to generalise (remember bias-variance 
dilemma in section 4.1), it was necessary to constrain the 
number of parameters to be as low as possible. To this 
end we introduced a linear neuron connected to rainfall 
data in order to diminish the number of connections 
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between the input layer and the second hidden layer of 
the Fig. 5. These supplementary neurons are represented 
in Fig.5 in the first hidden layer. 

 

 
Figure 6. Evolution of the cross-validation score versus the 

number of neurons of the second hidden layer. The best value 
maximizes the Nash-based score forecasting. In this case, the 

best hn=6.  

As presented in Sect. 4.3, model selection is done 
using cross-validation and early stopping. During cross-
validation we choose to use a cross validation score based 
on Nash criterion. The score (Sv) is simply the average of 
each score calculated for each validation set. Each 
validation set comprises 1 year. For database of 19 years, 
we have thus 17 validation sets of 1 year each, 1 stop set 
of 1 year and 1 test set equal to the year 2012 that 
comprises the most intense event of the database. 
Selected values of various window-widths and hidden 
neurons numbers are provided in Table 3.  

One can note that the complexity of the model is 
moderate (small number of hidden neurons).  

To make the model assessment more reliable on the 
most intense events of 2012, model selection was done 
without this year (blind assessment).  

In order to illustrate the way of selecting variables and 
hidden neuron numbers, we represent in Fig. 6 the 
evolution of the cross-validation score during the 
selection of the number of hidden neurons of the second 
layer of hidden neurons, for the lead-time of 12 hours. 

 
Figure 7. Forecast for the year 2012 at the station of 

Wirwignes. Lead-time 24h. The observed vigilance signal is in 
solid line and the predicted one in dotted line. Both are quite 

superposed. 

It can be noticed that the highest value of the cross 
validation score is 0.923 for 6 hidden neurons. This value 

was thus chosen, and was indicated in the Table 3 
synthetizing the selected architectures, for the 4 lead-
times.  

 
lt wD wH wW wETP wo wr hn 

3h 11 8 11 2 1 6 4 
6h 2 12 12 2 1 7 4 

12h 4 4 3 1 1 4 6 
24h 5 5 1 2 1 2 7 
Table 3. Result of the complexity selection for each lead-time 
(lt). The role of each hyper-parameter can be found on Fig. 5. 
For example wD is the length of the sliding window of Desvres 

rainfalls; hn is the number of neurons of the second hidden 
layer. 

5.2 Validation 
The validation of the model can be done in 

considering cross-validation scores. Indeed these scores 
measure the efficiency of the model in situation of 
validation: neither in training, neither in stopping 
situation. It can be seen on Fig. 6 that these scores are 
very good for the selection of hn, that occurs at the end of 
the process.  

5.3 Efficiency on 2012 year 
Let us remember that the test set is the 2012-year: the 

year including the highest event of the database. This 
allows to both evaluate the quality of forecasts, and to 
verify that the neural network model is able to generalize 
the learnt behaviour on the most intense event.  

This can be verified visually by drawing the 
hydrograph of the year 2012 for the 24 h lead-time (Fig. 
7). One can see that both curves are quite superposed. 
These satisfying forecasts are attested by R2 scores 
presented in Table 4. It appears that they exceed 0.89 for 
all lead-times, yearly or at the level of event, allowing 
thus to predict the good vigilance level, 24h in advance.  

 
Nash 

criterion 
3h 6h 12h 24h 

Year 0.99 0.98 0.96 0.94 

Event 0.98 0.97 0.91 0.89 

Table 4. Nash scores on the test set. 

In order to evaluate more accurately the quality of the 
forecasts, hydrographs focused on the event of 2 Nov. 
2012 are given in Fig. 8.  

5.4 Available models 
Comparison with other models applied to Liane basin 

by SPC Artois-Picardie is not straightforward because of 
their differences in use. Set of GRP models were run and 
provided forecasts for several lag-times using future 
observed rains (as well as neural networks model). In the 
Return of Experience document of the 2012 floods [4], 
several values of SPPD (see eq. 4) can be calculated and 
are provided in Table 5. It is not possible to compare R2 
scores because NN models and abacus provide vigilance 
signals while SOPHIE and GRP provide hydrographs. 
The SPPD score makes comparisons possible as it takes 
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into account only the forecast of the peak amplitude. This 
information is available for all models. Only SOPHIE, 
abacus and an old version of NN models were available 
in real-time during the flood, but the return of experience 
integrated forecasts provided by GRP. In the present 
paper we add also forecasts of the new NN model 
implemented in the LianePlayer©. 

 
Lead-

time/SPPD

GRP Neural 
networks 

SOPHIE Abacus 

2h 86% - 94% - 
3h - 93% - 107% 
5h 70% - - - 
6h - 99% - 126% 
7h 77% - - - 
9h 65% - - - 

12h - 83% - 96% 
15h 69% - - - 
21h 74% - - - 
24h - 89% - 103% 
26h 74% - - - 
33h 69% - - - 
Table 5. SPPD scores on the test set (event of 2-3 November 

2012). 

For long-term vigilance (24h) abacus works as well as 
NN model. Roughly the neural network models works 
better for smaller lead-times; this is not the case of the 
abacus which has bad forecast at 6h lead-time. Regarding 
GRP, it doesn't provide good estimation of the peak with 
a good synchronization for this event. Looking at 
hydrographs in [4], one can note that the forecasts peak 
occurs 5h in advance compared to the real peak. The max 
value of the peak is thus better, leading to peaks between 
70% to 86% of the observed peak.  

For this specific major event, the neural network 
model seems thus to provide useful forecasts. 

5.5 Discussions 
The event of 2 November 2012 is the major event of 

the database; it follows the event of 30 October that was 
the second greater event of the database. This specific 
configuration induced difficulties for estimating the soil 
moisture between both events; indeed the HU2 index is 
not available at the good temporal resolution. Also, as the 
flood event lasted a long time with several rain events, 
abacus was not considered as a reliable model; 
nevertheless one can note that it was very accurate at the 

Figure 8. Forecasts of the flood of 3 November 2012: (a) 3h lead time; (b) 6h lead time; (c) 12h lead time; (d) 24h lead time. 
Measured water level (solid line), ideal forecast (dashed lines), forecast (dotted line). 
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beginning of the event, before the rain increase. Logically 
it fails for the 6h lead-time due to the rise of water in 
conjunction with a new rain impulse. 

Regarding GRP, forecasts were not good in amplitude 
and had an important advance (generally 5 hours), this 
could be due to the calibration of the model that was done 

Figure 9. Forecasts of the flood of 16-17 January 2015: (a) 3h lead time; (b) 6h lead time; (c) 12h lead time; (d) 
24h lead time. Estimated uncertainties due to the model are shown in grey-degraded envelope. 
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on 1997 without recent important events.  
Neural networks models provided reliable forecasts as 

shown in Fig. 8 and Table 5. For this reason an 
operational tool was investigated in order to calculate and 
visualize vigilance signals and their associated 
uncertainties.  

6 Operational tool design and 
implementation 

6.1 Specifications 
Specifications of the prototype were: 

• Visualize several curves: (i) observed water level, up 
to the instant when the forecast is done, (ii) the 
maximum of water level lt hours before, (iii) envelope 
of uncertainty associated to each forecast, vigilance 
levels yellow and orange, (iv) rainfalls, (v) the current 
instant when the forecaster uses the software. 

• Be able to try several scenarii of future rainfalls by 
feeding manually the software. These future rainfalls 
are visualized continuously with the actual ones.  

6.2 Implementation 
The software LianePlayer© was implemented in Java 

in order to be able to be run on any platform. It follows 
the specifications, and the interface is shown in Fig. 10 
thanks to a screen shot. One can distinguish several areas: 

Zones 4 and 5 allow visualizing outputs of several 

models (each having a different lead-time) and the 
associated uncertainty. The way to visualize uncertainty 
is illustrated in Fig. 9, on the event of January 2015 
during real-time utilization. Several scenarii can be 
compared (loaded from a file or entered with the user 
interface). Models can be provided in the RNFPro format 
(the software used to design models) or in a specific text 
format (java like formula). Each run configuration 
includes several models, each one for a different horizon. 

In the screenshot (Fig.10) one can see in 1), the 
observed inputs loaded from a file and also updatable by 
the user. When they come from a file, missing data are 
replaced when possible by the average value from the 
other rainfall stations or interpolated for the water level. 
These modified values are highlighted in the table and a 
tooltip indicates which operation has been done. As well 
user modified values are highlighted the same way with 
different colours. In 2), the table shows the values 
computed by the models. In 3), it is possible to setup a 
rainfall scenario for which the outputs are automatically 
computed and displayed in the table and the charts. In (4) 
and (5), charts display outputs at a given time that can be 
chosen with arrow keys or a table selection. It shows also 
the vigilance levels and can display vertical bars when 
missing values are replaced. 

This tool is used in real time from the beginning of 
the year 2016, and is tested in less convivial form from 
the beginning of 2015.  

Figure 10. Screenshot of the LianePlayer real-time software tool. 
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7 Conclusion 
Forecasting floods in populated areas is an important 

and difficult task. However, financial losses related to 
floods have made their study and forecasting a very 
challenging concern. For this reason research is active 
regarding flash floods, especially for Mediterranean 
regions, and the lack of knowledge on the processes 
operating during these catastrophic events persuaded 
SCHAPI to investigate black-box models as neural 
networks. In this paper, same argument incited to study 
flood forecasting of Liane, a small river of the North of 
France, but known for its important floods. To do this, we 
have evaluated one original type of model based on 
machine learning: a neural network combining both 
recurrent and feed-forward models. The first category is 
seldom used in hydrology; it represents models using 
previous estimated water level values, while the second 
belongs to feed-forward models using previous observed 
water level values. The model was assessed, in four 
versions corresponding to four forecast lead-times and in 
comparison with three kind of other models: abacus, GRP 
and ARMAX models. The forecast signal was not water 
level but a specific vigilance signal based on forecast 
water level. It appeared then that models provided very 
good forecasts up to the response time assuming that 
future rainfalls were as good as observed rainfalls.  

A rigorous variable selection process and an accurate 
application of regularisation methods (early stopping, 
cross-validation) have highlighted one more time the 
ability of neural networks to model nonlinear recurrent 
systems such as rapid basins. Their parsimony is highly 
valued in the context of flood forecasting, as 
characterised by a poorly known hydrological context. 

As exhibited in the literature, the feed-forward model 
is very efficient. Applied to the Liane basin, it yields effi- 
cient forecasts on major events, tested up to a 24 h 
horizon.  

Thanks to these results a software tool dedicated to 
predict vigilance signal receiving several scenarii of 
future rainfalls was designed and implemented. Its 
friendly interface will help forecaster to manage 
efficiently measured and artificial data as well as the 
various responses of the model and of the real river. It 
will be extended to several other basins of the FFS 
Artois-Picardie. 
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