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Abstract: After a presentation of the nonlinear properties of 
neural networks, their applications to hydrology are described. A 
neural predictor is satisfactorily used to estimate a flood peak. 
The main contribution of the paper concerns an original method 
for visualising a hidden underground flow Satisfactory 
experimental results were obtained that fitted well with the 
knowledge of local hydrogeology, opening up an interesting 
avenue for modelling using neural networks.  

I INTRODUCTION 

During the last twenty years there has been considerable 
research devoted, on the one hand, to the field of nonlinear and 
adaptive modelling, and on the other hand to the study of 
neural networks in order to perform such tasks. Nevertheless, 
the idea of using neural networks’ ability to model nonlinear 
and non-stationary behaviours in hydrological systems 
emerged only about ten years ago. Currently, several 
theoretical results and many different learning schemes have 
proven that neural networks are becoming a very effective tool 
in hydrological applications.  

The Gard Region, in the South-East of France, has a specific 
geographical position which makes it particularly vulnerable to 
flash floods: each autumn, storms formed over the sea and 
pushed by southerly winds provoke extreme rainfall events. 
Flash floods are very important natural hazards for the 
Mediterranean Region. Unfortunately, scientific knowledge 
about them is insufficient.  

In that context, this paper has two objectives: the first is to 
present how and why the neural methods are appropriate for 
solving such environmental problems. The second objective of 
this paper is to present how the neural black box can be 
changed into a grey box in order increase our knowledge.  

The paper contains four parts: part one introduces neural 
networks including nonlinear properties. The second part is 
devoted to presenting the principal neural architecture and 
learning rules. The third part presents the problematic and the 
fourth the results. 

II NEURAL NETWORKS FOR IDENTIFICATION 

System identification is the modelling of systems. It is useful 
for the knowledge it gives about the system and in that it 
provides ways to control it, and to predict or forecast its 
behaviour.  

Neural networks are devices capable of learning. In the case of 
signal processing, or system identification, the set of examples 
consists of sampled input and output signals. The second 
fundamental property of neural networks is that they can 
implement non linear functions. This property is a necessary 
one for systems such as catchment areas which may have 
different responses even when the input is the same (for 
example, the behaviour during summer or winter is very 
different).  

The Model of Neuron and Multilayer Network 
An artificial neuron is a mathematical operator which 

generally computes two actions: first the linear weighted sum 
of its inputs, and second the non-linear evaluation of its output. 
Various models of neurons have been proposed depending on 
the evaluation function. The formula is: 
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where ol is the output of the neuron l, im is one of its inputs, 
clm is the synaptic coefficient linking this input to the neuron 
under consideration, and f(.) is the evaluation function. For 
example it is possible to choose f(.) = tanh(.). Linear neurons 
may exist, they have an Identity function. 
A neural network is a set of interconnected neurons. These 
connections (defined by the set of coefficients clm) are 
computed during the learning phase. 

It has been demonstrated that any non linear, smooth 
function can be identified by such a network [1]. The accuracy 
of the identification depends on the number of hidden neurons. 
This result is of course very important, but it only constitutes a 
proof of the existence of the solution; therefore the difficulty is 
to find the solution using the appropriate learning method 
operating on an architecture which includes a sufficient number 
of neurons. In this study we firstly consider the well known 
two-layer perceptron, and secondly an ad hoc network, coding 
in its architecture the function we want to implement. 

Learning 
The neural network learning phase is the computation of the 

synaptic weights in order to minimise a “goal function”. 
Different learning rules can be derived taking into account 
different goal functions and different minimising methods. Let 



us consider only identification and forecasting applications; 
principally two types of goal functions have been proposed: 
supervised or unsupervised one. Amongst the unsupervised 
methods, the Reward-Penalty learning algorithm [2] is very 
interesting because it enables interpretation as the gradient 
descent of a goal function (redo or undo past action) and does 
not need a comprehensive modelling of the environment. We 
have implemented this method for solving a robotic task. The 
aim was to make a hexapod robot learn gait and obstacle 
avoidance. Results obtained both in simulations and with the 
real plant [3] were very satisfactory; the robot learnt its task 
without explicit modelling of the actuator-environment 
relations.  This application highlights the fact that neural 
networks find their field of excellence when they are applied to 
model the real world or natural environment. 

On the other hand, the cost function G is more 
understandable in the case of supervised learning, since this 
function is generally the sum of the squared errors between the 
measured outputs and the computed values, for each input-
output couple of interest. It is possible to consider this “cost” 
function J as follows (only one output neuron):  

J(C,k) =
1
2

ok(C)− dk( )2

{k}
∑

where {k} is the set of input-output couples taken for k past 
values, and C is the set of synaptic coefficients. 

Starting from this cost function, several learning rules have 
been proposed depending on the chosen minimising method. 
The most popular method has been the backpropagation 
learning rule introduced by D. Rumelhart [4] which uses the 
steepest gradient descent. However, other more efficient rules 
have been proposed, for example a descent inspired by second 
order minimisation methods [5] [6]. Amongst these second 
order methods the “Levenberg-Marquardt” learning rule [7] is 
at present the most powerful and leads in a few iterations to a 
very satisfactory solution.  

Backpropagation learning rule 
The backpropagation learning rule provides a method for 

modifying the network’s synaptic weights according to the 
gradient of the quadratic error. It was the first learning rule 
which enabled learning on nonlinear networks, and which 
could also efficiently operate on multilayer networks. 

Let us consider the network shown in Figure 3. An input-
output couple is presented to the network which has to 
associate the input vector ik {ik1, ik2, ik3, …} to the desired 
output dk (scalar value in case of one output neuron). It can be 
noticed that the intermediate, or hidden, neurons have no 
desired value. After computation of the network’s output ok, 
the modification to apply to the coefficients, at time t, using a 
gradient method with a constant step µ is: 

cm
k (t +1) = cm

k (t) − μ ∂J(C;t)
∂ck

m
 (4)  

Therefore, using the backpropagation learning rule, the 
synaptic coefficients of a multilayered neural network can be 
computed. Its principal drawbacks are the sensitivity of the 
result to the initialisation of the synaptic weights, and the 

slowness of the convergence rate toward a minimum of the cost 
function. 

Levenberg-Marquardt Learning Rule 
Because of its efficiency, the Levenberg-Marquardt rule 

should be used whenever possible. Nevertheless, the 
Levenberg-Marquardt learning rule suffers from two 
drawbacks: first it has to invert a matrix which is an 
approximation of the Hessian: the second order derivative of 
the cost function relative to the synaptic coefficients, i.e a 
matrix whose dimension is equal to nc.nc if nc is the number of 
synaptic coefficients. Sometime this matrix is too huge to be 
inverted; sometimes this Hessian matrix may be non-invertible 
[8]. We will see later that in case of hydogeological modelling, 
the data are very noisy and lead to difficult problems for which 
Levenberg–Marquardt algorithm may be inefficient. In such 
cases, the backpropagation algorithm provides adequate results. 

In some words (see [7][8] for full presentation), Levenberg-
Marquardt algorithm starts, as bakpropagation, from a problem 
of cost function minimization. The principle of the rule is to 
apply to the coefficients an increment taking into account the 
first and second order of the Taylor decomposition of the cost 
function (notes that Levenberg-Marquardt addresses the cost 
function, taking into account the whole set of learning couple at 
the same time t). Noting that the second term of the Taylor 
decomposition needs the computation of the Hessian Matrix, 
Levenberg–Marquardt method considers an approximation of 
the Hessian:  

H=ΔTΔ, where Δ is the vector composed of the first order 
derivative of the cost function (computed by the 
backpropagation), the formula is: 

[H]ij, lm ≅
∂J
∂cij{k}

∑ ∂J
∂clm

The Levenberg-Marquardt rule assumes that at each 
presentation t of the whole set of learning couples {ik,ok}, an 
increment to the coefficients is computed in the direction of the 
gradient: Δ, with amplitude µ(C,t) such that: 

( ) 1T Id).t()t,C(
−

λ+ΔΔ=μ
where Id is the Identity matrix. 
The interpretation is the following: at the beginning of the 

learning process, a high value of factor λ(t) is chosen in order 
to lead the matrix µ(C) to be diagonal dominant. The rule is 
therefore close to a first order gradient descent rule. 

The factor λ(t) is then decreased in order to be neglected in 
relation to the approximation of the Hessian part : ΔTΔ. At the 
end of learning, the computation essentially uses the second 
order information and in a few iterations comes close to the 
cost function minimum. 

This presentation of the Levenberg-Marquartd rule shows 
that backpropragation is necessarily computed in order to 
estimate the derivatives Δ. 

A SYSTEM IDENTIFICATION 
Starting from the previous considerations, the identification 

of a dynamic system can be addressed by neural networks in 
computing learning with input-output couples. It is well known 



that the behaviour of a dynamic system depends not only on 
external inputs but also on some internal variables that 
represent the “state” of the system. Under the condition of 
observability of the system, these state variables are assumed to 
be past outputs of the real process. However expertise may 
indicate that another choice may be to select the most relevant 
state variables (see S. Narendra in [9] for further 
considerations).  

Learning of a discrete-time feedback network 
Considering a network at a given instant, learning is 

performed using the previous external inputs: {i(t)} plus the 
state variables: the previous output or complementary state 
variables. Learning on recurrent networks can be performed in 
at least two ways: the first one consists in taking into account 
all the previous values using a recurrent method, see for 
example K. Narendra [9] and  P. J. Werbos [10]; the second 
way takes into account only a few time events, and formulates 
the backpropagation on a small window of time as proposed by 
L. Personnaz [11]. The second way was chosen in this study
because of its simplicity.

Schemes of identification 
Two strategies are possible in order to implement the 

learning: in the first one the objective is to capture the 
dynamics of the process. Then the errors coming from the 
network are taken into account during the learning. The looped 
input is initialised with the past estimated value of the network. 
This scheme of identification is called “non directed”. 

The second way of learning uses measured values coming 
from the system. This mode is termed “directed”. 

It is immediately clear that in the case of a neural model with 
feedback operating on non measurable state variables, the 
previous discussion is not relevant; the only solution is the non 
directed model. The identification of the underground flow of 
water was approached in this way [12].  

III NEURAL NETWORKS FOR HYDROLOGY 

Because of its complexity there are many models dealing 
with the rainfall-runoff relation. Usually the models can be 
classified as: deterministic or statistical; local, global or 
distributed; static or dynamic; empiric, physics-based or 
conceptual. Flash flood forecasting is usually addressed by 
physics-based, conceptual and statistical models. For example, 
TopModel [13] is a physics-based model used for flood 
forecasting, while conceptual models have been developed for 
the same objective: ALHTAÏR [14], MARINE [15] or SCS 
[16]. For real time use, the models generally have to be 
distributed [14] [15] [17] or semi-distributed. 

Clearly, Neural Networks are statistical models. They have 
been used for about ten years in an increasing number of 
applications for elaborate rainfall-runoff models using RBF 
networks [18], or multilayer networks [19]. Other approaches 
are also used, such as fuzzy logic [20] or sequential automata 
[21]. 

Because of the lack of knowledge about fast floods [22] we 
hope that neural network models may significantly improve not 

only flash flood forecasting, but also scientific knowledge 
about them. This point is at the heart of this work. 

A CONTEXT PRESENTATION 
The target of our study is the river Cèze (fig. 1), a tributary 

of the Rhône. The Cèze is 112 km long and its catchment area 
is about 950 km2 [23].  

The upper part of the river flows on antestephanian schists 
and gneiss which are impervious; then, on carboniferous 
deposits (schists, sandstone and coal); in this part of the river, 
galleries of former coal mines bring water from the 
neighbouring catchment of the Avène river to the Cèze via the 
Auzonnet river. This underground flow is quite low, and had 
been estimated at 0.5 m3/s [24]. Then, the Cèze flows on 
oligocen sediments composed of conglomerates which are 
impervious, before crossing cretaceous deposits, mainly 
limestones. In this area, the valley flows in a canyon and the 
plateau has a typically karstic relief. In short, the adjective 
karstic comes from Slovenia and is generally used for 
limestone in which the water has eroded galleries. In this part 
of the river, the relation between the karstic network and the 
river is not very well understood, so the limit of the area which 
contributes to outflow in the Cèze is not precisely known. The 
Cèze joints the Rhône on its right bank at an altitude of 26 
meter above sea level, flowing on impervious and semi-
pervious deposits. 

Fig. 1: Location of study area 

The main two features of the Cèze are its very irregular 
outflow, which reflects the irregularity of the meteorology, and 
the contrast between the part of the river on impervious rocks 
and the part located in a karstic region. 

The particular feature of the Cèze is that its flows are not 
fully explained by the rainfall on its catchment. Several 
hypotheses have been proposed in order to find another 
definition of its catchment. One of these hypotheses is that 
some water could arrive in the river via its affluent the 
Auzonnet, coming via underground circuits from a 



neighbouring, but different, catchment: the Gardon d’Alès 
river. Two explanations can be found: the karstic network, or 
galleries of former coal mines. Coal Mines galleries may be 
neglected because of crumbling in the galleries which limits 
the flow. We therefore propose in this study to explore the first 
hypothesis of karstic communication from the Gardon d’Alès 
catchment to the Cèze catchment (Fig. 1).  

B HYDROLOGICAL DATA

For this study, five floods of the Cèze were selected. The 
following figure shows these events. 
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Fig. 2: Floods Hydrographs of the Cèze (Tharaux outlet) 

These data were collected by the flood warning service of 
the Gard Region. The discharge was measured at Tharaux 
gauging station (fig. 1) and the rainfall measured by five rain 
recorders which located in the Cèze and Gardon d’Alès 
catchment areas. For both the discharge and the rainfall, the 
sampling period was 60 minutes.  

TABLE I 
Hydrological Database Used 

Event Date Peak discharge 
(m3/s) 

Rainfall 
(mm) 

1 22th / 26th October 1993 770 205 

2 25th / 28th November 1995 230 105 

3 11th / 14th November 1996 630 145 

4 06th / 09th October 1997 640 175 

5 28th September /  
22th October 2000 215 145

Table I contains more details on these events. It can be noticed 
that because of the difficulty of accurately measuring the 
rainfall and flows, only five events are available, due to a lack 
of data for other events. 

C FLOOD SIMULATIONS

As usual in the neural network field, the first approach is the 
multilayered perceptron with one hidden layer. We applied 
rainfall as inputs and runoff as output. We chose the rainfall 
measured by 3 rain gauges in the Cèze catchment and two in 
the Gardon catchment in order to observe whether the latter 
input has a major influence on the forecast (Figure 3). An input 
bias is necessary in order to represent the base flow. Its value is 
not 1, as is usually applied, but a lower value due to the great 

number of very low values of the flow during the flood 
recording. This adjustment is necessary in order not to saturate 
the sigmoids during learning. The mean of the inputs was 
shown to be a good value. As shown in Figure 3 we apply the 
rainfall to the network in a temporal window. This temporal 
window is essential in order to capture the temporal behaviour 
of the catchment. Thirty time steps were chosen for rain 
recorders near the Tharaux outlet, and forty five for remore 
recorders, situated far upstream, in order to take into account a 
longer propagation time. 

At the output of the network we measured the quality of the 
response using a criterion used in hydrology and called the 
Nash criterion [25]. The Nash criterion is analogous to the 
coefficient of determination and is calculated as: 

( )
2

k

2kk do
1Nash

σ

−

−=
∑

where σ is the standard deviation of the test signal. 
The Nash criterion takes into accounts the quadratic error 

and normalises this error by the variance of the signal. The 
closer the criterion to the value 1, the better the model. If 
forecasting is limited to predicting the mean value, the criterion 
is equal to zero; negative values are very bad. Table II contains 
the values obtained from learning with validation on an 
example which was not taken into account during learning.  

TABLE  II 
SYNTHETIC RESULT OF THE BEST NASH CRITERIA 

Nash criteria computed after  test on: 
Event 1 Event 7 Event 8 

Network 
architecture 

BP LM BP LM BP LM 
A 0.68 0.68 0.86 0.92 0.68 0.67 

A with Loop 0.75 0.89 0,64 0,88 0,42 0,56 
B 0.70 0.74 0.86 0,94 0.62 0.61 
C 0.75 0.8 0.89 0.92 0.63 0.66 
D 0,75 0.77 0.87 0.92 0.63 0,62 

BP is Backpropagation, LM is Levenberg-Marquardt. 

Fig. 3: Cèze flow modelling using multilayer perceptron as black box model 
(Network A.). Each input has a temporal window of 30 or 45 delays 
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Because of the bad results obtained by this simple static 
network, we applied the same function, with the same external 
input, but with a recurrent network. As suggested above, we 
chose non directed scheme in order better to capture the 
dynamics of the system. In this case, the Levenberg-Marquardt 
rule works well and significantly improves the Nash criterion 
(Table II). It can be noticed that the important estimation of the 
peak value is not improved by the Levenberg Marquardt. The 
advantage of the recurrent non directed network is that the 
input window may be smaller than in the static case. The 
window of temporal values applied to the networks is ten hours 
for all the rain recorders. And it is well known that in this type 
of configuration, the lower the number of coefficients, the 
better the learning. 

Network A - test on example 1
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Fig. 4: Measured and forecast flows with network A – BP rule. 

Recurrent Network A - test on example 1
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Fig. 5: Measured and forecasted flows with looped network A - LM rule. 

Fig. 6: the contribution of each catchments is computed in a separate branch 
of the network, and the addition is performed by the output neuron 

(Network B).

These first simulations allow us to predict the flows 
accurately but not to estimate the contribution of the Gardon 
catchment. The problem of quantifying the impact of a 

particularly input on the quality of the prediction is well 
identified for non-linear models but has no satisfactorily 
solution. Thus, in order to estimate the contribution of the 
Gardon’s catchment we propose an original architecture which 
separates the two catchments into two branches: one for the 
Gardon and one for Cèze catchment, as shown in Figure 6. 
In the proposed architecture, the flow coming from the Cèze 
catchment is computed by a classical network devoted for 
identification: one hidden layer and one linear output network. 
Another network devoted to the Gardon catchment is 
computed in parallel. At the end, both networks, called the 
Cèze branch and the Gardon branch, are integrated in a single 
network using a supplementary linear neuron which is the 
output neuron of the whole network. The flow at Tharaux is 
then computed. 
The interest of this network is that the flow coming from each 
catchment can be obtained by observing the value of the 
neurons of the second hidden layer: we only need to multiply 
the output of the neurons by the coefficient linking this neuron 
to the output neuron. Figure 7 shows the flows obtained in this 
way with architecture B. In order to illustrate the richness of 
this approach, we have plotted the estimation of flows on the 
learning examples, because it is interesting to observe how 
each sub-basin contributes to the whole flow, for each event. 
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Figure 7: Learning curves obtained for architecture B. 
 One can note that the Cèze branch and the Gardon branch 

contribute equally to the final flow. 
The result obtained is that, with architecture B, the 

contributions of the sub-basins are similar except for event 10. 
From the hydrological point of view, this result is not possible: 
the flows coming from the Gardon catchment cannot be equal 
to those from the Cèze. Moreover they cannot be negative, as 
shown for event 10. Thus the architecture is not realistic: the 
Croix de Berthel rain collector should not be inputted to the 
Gardon branch. 

Starting from these considerations, we inputted the Croix de 
Berthel rain collector to the Cèze branch and left only the Ste 
Cécile rain collector inputting the Gardon d’Alès branch, thus 
building network C. 
After learning, we obtained the following results: the 
forecasting has a Nash criterion of the same order as for 
network B, but the water now essentially comes from the Cèze 
catchment and only marginal and limited flows come from the 
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Gardon (Figure 8). We also obtained an estimation of 6.2m3/s 
for the maximum flow and 2.4m3/s for the mean value.  

Network C
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Figure 8: Learning curves obtained for architecture C. On can note that the 
Cèze branch contribute predominately to the final flow. The Gardon 

contribution is very small. 
The interpretation is that the flow of the Cèze river is well 
explained by including the Croix de Berthel rain collector in 
the Cèze catchment without taking into account a huge karstic 
flow from the Gardon. This interpretation is confirmed by the 
bibliography: karstic inputs are diffuse along the stream with 
only one perennial spring: the Peyrouse spring. The very 
interesting property of the neural network is that it estimates 
this hidden flow. 

In fact, the Croix de Berthel is near to the frontier of the 
catchments. Thus, complementarily, we tried an extra network 
where the Croix de Berthel rain collector was connected to 
both catchments (network D) in order to take into account the 
possibility of water going to Tharaux via the Céze or Gardon 
branch. It appears in this case that the results are the same as 
above (Figure 8): no major quantity of water comes from the 
Gardon network. 

IV CONCLUSION 

We have shown in this paper that neural networks can 
usefully be applied to very complex problems in hydrogeology. 
We first showed that because of their ability to identify non 
linear dynamical models, recurrent non-directed neural 
networks are good candidates for simulating fast floods. 
Moreover, using a specific architecture we showed that static 
models can be interpreted in terms of hydrogeology and 
provide an estimation of hidden variables. This last property is 
really innovative and opens up a wide field of fruitful research 
in earth science. 
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