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A B S T R A C T

Plastic recycling is mainly limited by their sorting as their natures, forms and formulation are very numerous and
most of them are strongly incompatible, leading to poor mechanical properties. Several industrial sorting
technologies exist, and others are in development. However, each of them has drawbacks. Especially, NIR-HSI
(Near-Infrared Hyperspectral Imagery) is limited by the use of carbon black, mainly as a pigment and UV agent
in the case of thermoplastics. MIR-HSI (Mid-Infrared) could be a suitable and viable alternative to resolve this
issue. Hence, this work, based on laboratory FTIR-ATR (Fourier-Transform Infrared Attenuated Total Reflection),
focuses on possible sources of spectral alteration, which could impair identification of usual polymers using
industrial MIR-HSI. It aims to help simple and rapid laboratory characterization and give tools to avoid mis-
identification or enable specific segregation during industrial sorting. First, acquisition parameters were de-
graded to simulate those imposed by industrial conditions: short acquisition time, diminished resolution and
blank defaults. Then, impact on formulations of usual WEEE (Waste of Electric and Electrical Equipment) plastics
were evaluated, with PE, PP, ABS and HIPS as matrices, and carbon black (at different concentrations), calcite,
talc, titanium oxide and some flame retardants as additives. Several patterns found in homemade standard
samples were recognized within a stock of about one hundred of real waste samples.

1. Introduction

Plastic recycling is viewed as one of the most interesting ways to
deal with environmental problems linked to both their production and
disposal (Wäger and Hischier, 2015; WRAP, 2008). Nevertheless,
reaching interesting properties, as processability, aspect or mechanical
performance, is very difficult to achieve as plastics natures, additives,
fillers, forms and applications are incredibly diverse. Most of them are
non-miscible and even incompatible (Maris et al., 2018), since their
blends display functional properties inferior to each of them taken

separately. An efficient and accurate sorting of end-of-life plastics is
thus primordial for recycling to be economically pertinent
(Vrancken et al., 2017). However, end-of-life management itself also
entails ecological impacts. For instance, these plastics needs to be
cleaned and thus need water and sometimes detergents. Also, collection
and, transport can also bear a severe carbon footprint, especially if
these actions are geographically scattered (WRAP, 2008).

Several types of separation technologies exist. They can be classified
in two different groups: direct and indirect (Gundupalli et al., 2017).
When separation is intrinsically due to property differences, it is direct.

Abbreviations & acronyms: ABS, Acrylonitrile Butadiene Styrene; APP, Ammonium Polyphosphate; ATR, Attenuated Total Reflection; CaCO3, Calcium carbonate or
calcite (chalk); CB, Carbon Black; DSC, Differential Scanning Calorimetry; FR, Flame Retardant; FTIR, Fourier Transform Infrared; HBCD, Hexabromocyclododecane;
HDPE, High Density Polyethylene; HIPS, High Impact Polystyrene; HSI, Hyperspectral Imagery; LIBS or LIPS, Laser Induced Breakdown/Plasma Spectroscopy; LWIR,
Long Wavelength Infrared (7.4-14.0 μm or 1350-700 cm−1); MIR, Mid-Infrared (4000-400 cm−1 or 2.5-25.0 μm); MWIR, Middle Wavelength Infrared - 2 to 5 μm
(5000 to 2000 cm−1); NIR, Near-Infrared – 0,8 to 2,5 μm (12500 to 4000 cm−1); PC, Polycarbonate (from bisphenol A); PE, Polyethylene; PMMA,
Polymethylmethacrylate; PP, Polypropylene; PPC or PP copo, Polypropylene copolymer; PPH or PP homo, Polypropylene homopolymer; PVC, Polyvinyl chloride; PS,
Polystyrene; RoHS, Regulation of Hazardous Substances; SEM/EDX, Scanning Electron Microscopy / Energy Dispersive X-ray spectroscopy; Sb2O3, Antimony (tri)
oxide; SNR, Signal-to-Noise Ratio; TBBPA, Tetrabromobisphenol A; TGA, Thermogravimetric analysis; THz, Terahertz; WEEE or W3E, Waste of Electrical & Electronic
Equipment

⁎ Corresponding author.
E-mail address: didier.perrin@mines-ales.fr (D. Perrin).

T

https://doi.org/10.1016/j.resconrec.2020.104980
mailto:didier.perrin@mines-ales.fr
https://doi.org/10.1016/j.resconrec.2020.104980
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resconrec.2020.104980&domain=pdf


laboratory scale, precise identification and quantification of flame re-
tardants can be rather burdensome compared to simple infrared
spectra, especially with the need of appropriate extraction (Guzzonato
et al., 2016a; Otake et al., 2015; Schlummer et al., 2005;
Vilaplana et al., 2008). However, Puype et al. (Puype et al., 2019) re-
cently showed that Direct Analysis in Real Time - High Resolution Mass
Spectrometry (DART-HRMS) was adequate to rapidly and accurately
identify brominated FR at laboratory scale.

Another very common additive, carbon black, which is the most
common way to color plastic in black or grey, strongly absorbs in NIR
(Beigbeder et al., 2013; Huth-Fehre et al., 1995; Serranti et al., 2012),
making NIR-HSI unable to sort dark colored plastics. Its absorption is
easily explained by the almost infinite unsaturations conjugation within
its graphitic structure (Kang et al., 2016), also explaining its deep black
color as it absorbs in the visible range. It also absorbs beyond these
boundaries in NIR but also in UV (Allen et al., 1998; Liu and
Horrocks, 2002), making it an interesting additive to protect polymeric
materials from photodegradation. Consequently, it also impacts Raman
spectra more or less depending on the excitation wavelength
(Bokobza et al., 2013; Yamaji et al., 2013). More generally, carbon
black is used for coloration and UV protection from 0.5 to 2.0 wt. %
(Turner, 2018), up to 20 wt. % for electrical conductivity where per-
colation is necessary (Probst et al., 2009; Zhou et al., 2006) and up to
50 wt. % for mechanical reinforcement (Kang et al., 2016; Li et al.,
2019), especially in elastomers as in tires. As NIR-HSI, the most used
technology to finely discriminate plastics according to their natures, is
limited with dark plastics, several alternative sorting technologies are
subject to extensive research (Grégoire et al., 2011; Huang et al., 2017;
Küter et al., 2018; Langhals et al., 2014; Roh et al., 2017; Wang et al.,
2015; Zhao et al., 2018; Zhao et al., 2018). MIR-HSI is one of them
(Kassouf et al., 2014; Rozenstein et al., 2017; Signoret et al., 2019a,
2019b). It was chosen in the present study because this technology
begins to be commercially available. Also, Fourier-Transform Infrared
(FTIR), its laboratory equivalent as it works within the MIR range, was
used for a long time for polymer analysis.

The present study aims to complete our previous works on spectral
identification of polymers through the use of FTIR-ATR (Attenuated
Total Reflection) with the scope of transposition to MIR-HSI. The first
study described intrinsic signals of styrenics polymers and their blends
(Signoret et al., 2019a). The second one focused on polyolefins and
polymers with close spectra, namely PVC and POM (Signoret et al.,
2019b). A third one was about spectral alterations due to ageing of
LDPE, PPH, HIPS, ABS and PC in the scope of their identification
(Signoret et al., 2020). Whereas these previous works focused on
characteristic signals of polymers, the subject here is to anticipate how
these patterns can evolve because of formulation: carbon black,
common mineral fillers and flame retardants. The objective is to de-
termine if loaded polymers could still be recognizable, even in degraded
acquisition conditions. Also, characteristic patterns related to for-
mulation can be useful to quickly identify additives, at least at la-
boratory scale, instead of using a heavier technique as ICP (Inductively
Coupled Plasma) or X-ray fluorescence which can be more time and
money consuming. However, accurate quantification needs another
technique, namely thermogravimetric analysis (TGA).

2. Materials and methods

2.1. Materials

Several polymers were used for formulated standard preparation:
ABS reference was Terluran GP22 (Styrolution), HIPS was Polystyrol
485I (Repsol), ABS/PC was Bayblend T85 XF (Covestro), PE was HDPE
Alcudia 4810 (Sabic), PP was PPC 83MF10 and PPH 505P (Sabic).
Carbon black used in this study was Elftex 570 (Cabot). Several mineral
fillers references were also involved: XP12-5630 kaolin (IMERYS),
Omya BL calcite (Omya), Luzenac HAR T84 talc (IMERYS) and

It is the case with sink-float tanks (Gent et al., 2009) where sorting is 
based on density differences. Other examples are froth flotation for 
surface tension (Wang et al., 2015), trommels for granulometry 
(Ashkiki et al., 2019), magnetic overhead belts and Eddy current for 
(para)magnetic properties (Krivtsova et al., 2009). Sorting is indirect 
when identification and separation are performed through two different 
steps (Gundupalli et al., 2017). Generally, these are optical technolo-
gies. Items to be sorted are moved on a conveyor belt where a sensor 
acquires their spectral signature after adequate excitation. Then, these 
items are physically sorted, usually through the use of compressed air 
nozzles.

The transposition to industrial dynamical conditions of several static 
technologies, used at laboratory scale, such as UV-Vis 
(Gundupalli et al., 2017), NIR (Near-Infrared) (Beigbeder et al., 2013; 
Huth-Fehre et al., 1995; Leitner et al., 2003), MIR (Mid-Infrared)
(Bae et al., 2019; Becker et al., 2017; Rozenstein et al., 2017), Raman 
spectroscopies (Bae et al., 2019; Florestan et al., 1994; Roh et al., 
2017), LIBS (Laser Induced Breakdown Spectroscopy) (Barbier et al., 
2013; Grégoire et al., 2011), X-ray transmission or fluorescence 
(Hasan et al., 2011; Mesina et al., 2007) is currently studied. Laboratory 
analysis generally explores a single sample at a time, on a relatively 
small spot, can take from several seconds to hours, can be sometimes 
made with contact to the sample. However, industrial identification 
toward waste sorting is radically different. Objects are generally scat-
tered along a high-speed conveyor belt and their identification must be 
made remotely within milliseconds to enable sorting at the end of the 
conveyor. This leads to strong technological differences, which, with 
the harsh acquisition conditions, often lead to difficult-to-analyze sig-
nals. Available data, spatial and spectral resolutions, signal-to-noise 
ratio (SNR) can be, at first glance, insufficient to enable identification. 
This requires signal processing and use of advanced classification al-
gorithms (Roh et al., 2017; Spetale et al., 2016; Tachwali et al., 2007; 
van den Broek et al., 1998). However, a real physicochemical under-
standing of the differences at the source of classification is needed to 
avoid false identifications.

Additives and fillers can also have repercussions on sorting. As 
polyolefins are the main polymers with intrinsic densities below 1 g/
cm3, they can be recovered thanks to tap water sink-float. Sadly, an 
important fraction is filled with calcite (calcium carbonate, CaCO3) or  
talc (Aluminum Silicate, Al2Si2O5(OH)4) and thus sinks (Maris et al., 
2015). Peeters et al. (Peeters et al., 2014) highlighted density over-
lapping because of the use of flame retardants and styrenic blends, 
making density separation inefficient. In the frame of WEEE (Waste 
Electrical and Electronic Equipment) legislation and RoHS (Regulation 
of Hazardous Substances), numerous widely spread halogenated flame 
retardants (FR) are now forbidden because of their toxicity. Several 
other widely used FRs could also become forbidden in the future 
(Delva et al., 2018; Vilaplana et al., 2008). This imposes sorting ma-
terials according to these additives for recycled materials to stay below 
legal thresholds (Hennebert and Filella, 2018). X-ray transmission and 
fluorescence are among the most promising technologies towards this 
goal (Gallen et al., 2014; Kuang et al., 2018; Sharkey et al., 2018). Even 
in a dual energy configuration, which is well developed and perfectly 
suitable to metals (Mesina et al., 2007), transmission lacks selectivity 
between heavy elements. In the case of additive plastics, both con-
centration and thickness are unknowns in the Beer-Lambert law 
whereas concentration was assumed 100% in the case of metals. As it 
needs to detect way more wavelengths, fluorescence is technologically 
more challenging and thus more expensive. Solvent extraction of FRs or 
total dissolution could be very efficient (Grause et al., 2015; 
Vilaplana et al., 2009; Zhao et al., 2018), although transposition to 
industrial scale can be difficult, especially with solvent management. 
Pyrolysis, towards energy recovery and/or chemical recycling 
(Ma et al., 2016; Yang et al., 2013) could be seen as the only viable 
solution, even if rather controlled waste stocks (thus sorted) are needed 
not to disrupt the process and its efficiency too much. Even at



Aeroxide TiO2 P 25 titanium dioxide (Evonik). Some flame retardants
(FR) were used as received to prepare standard blends: ammonium
polyphosphate (APP Exolit AP 423 (Clariant), Dechlorane C25+
(ABCR) and TBBPA reference 330396 from Sigma-Aldrich. Two other
FRs were analyzed in powder form because of insufficient available
amounts: antimony (tri) oxide (Sb2O3) was Empura (Merck), and HBCD
(1,2,5,6,9,10-hexabromocyclododecane) was the SI-21691 analytical
standard provided by Analytical Lab (France). The 112 waste samples
were kindly provided by the Suez company from their plants in Feyzin
(SUEZ RV DEEE) and Berville-sur-Seine (NORVAL) in France, mainly
from WEEE but also from municipal deposits. About two third of them
were dark-colored.

2.2. Formulated standards preparation

For ABS, HIPS and ABS/PC transformation, materials were dried at
least 16 hours at 80°C before transformation. For large quantity for-
mulation campaigns, of the order of kilograms, masterbatches were
realized in a Rheomix 3000 internal mixer (Haake). Masterbatches were
then diluted with a Clextral 900 BC21 twin screw extruder (Clextral).
For small quantity formulation campaigns, of the order of tens to a
hundred grams, a DSM MC40 microextruder (Xplore) was used.
Masterbatches were made then diluted twice to four times depending
on the desired concentration. The minimum of two-step was chosen to
ensure concentration homogeneity as first mixes are often hetero-
geneous, especially in internal mixer. All materials were processed
between 210 and230°C. For spectral characterization, especially in
FTIR-ATR, standard samples were produced in the form of disks with 25
mm diameter and 1.5 mm thickness. A Zamak-Mercator injection
molding machine was used in this purpose.

2.3. Thermogravimetric analysis

A Pyris 1 TGA provided by Perkin-Elmer was used to estimate
carbon black loadings within real waste samples and produced stan-
dards. Temperature was raised from 30°C to 900°C at 10°C/min.
Samples were analyzed under nitrogen at 20 mL/min up to 650°C,
where most of polymeric parts are degraded, then under air at same
flow where carbon black degrades. At least, three measures were
averaged for each batch. Curve examples are given in appendix A. It can
be seen that virgin samples are not totally degraded before after the gas
switch. Thus, the ≈1.8 wt. % loss attributed to ABS must be subtracted
from the carbon black rate. Additionally, the final mass is subjected to
tare imprecision and losses below 200°C can be associated to volatiles,
especially humidity. Thus, the carbon black loading rate τNC (wt. %) is
calculated as follows from mass losses Δm(ΔT)X (wt. %) where ΔT (°C)
corresponds to temperature ranges and X refers to samples or refer-
ences:

=

− −

−

∘
− × −

−

∘

∘ ∘

∘

τ
m C

m C

Δ (650 900 )

Δ (200 900 )NC

sample
m C m C

m C

sample

Δ (650 900 ) Δ (200 650 )
Δ (200 900 )

ref sample

ref

2.4. FTIR Spectroscopy

A Vertex 70 FT MIR spectrometer from Bruker with an ATR unit
equipped with a diamond crystal was used. Unless indicated otherwise,
resolution was at 4 cm−1, 16 scans for background acquisition and 16
scans for the sample spectrum. Most of the samples were directly ana-
lyzed on the crystal. Some were cut to obtain better acquisition as ATR
is sensitive to surface aspects. Analyzed surfaces were cleaned with
ethanol and left to dry. Spectra were acquired from 4000 to 400 cm−1

and analyzed thanks to the OPUS software provided with the spectro-
meter. Matlab 2018 and Origin 9 were also used for further processing.
FTIR-ATR (Attenuated Total Reflection) was chosen for convenience
and to be closer to HSI cameras as both are reflective technologies. For
carbon black powder analysis, a transmission unit was used on KBr
(potassium bromide) disks at a 4 cm−1 resolution, 32 scans for back-
ground and for sample.

2.5. SEM/EDX: Scanning electron microscopy – Energy dispersive X-ray
spectroscopy

SEM analysis was performed with a Quanta 200 FEG from Thermo
Fischer Scientific on waste samples. The use of an Oxford energy-dis-
persive X-ray spectroscopy (EDX) sensor allowed to carry out elemental
imaging of samples.

2.6. Spectra comparison methodology description

The overall methodology of this work is based on the use of charts as
Table 1. It gathers every encountered within 10 cm−1 wide columns.
Other charts are available in supporting information, covering both
MWIR and LWIR, and every polymer described in previous works. The
applied colors relate the visually relative intensities of the corre-
sponding signal within the considered range, similarly with the “strong”
or “weak” mentions frequently found in correlation tables. Purple, red,
orange, yellow and light yellow respectively correspond to “very
strong”, “strong”, “medium” “weak” and “very weak”. Blue is used for
signals highly variable in intensity. These charts are useful as signals
and specific patterns of a chemical species or a family are highlighted
by columns empty elsewhere. Also, they can be used in the other way
when looking for an unknown encountered peak. However, one should
pay attention to complementary signals, as an isolated peak can cor-
respond to several species.

Table 1
Specific signals of some mineral fillers and atmospheric species specific signals – from pale yellow to red to qualify relative intensity



3. Results and discussion

3.1. Degraded acquisition

3.1.1. Background/blank default: Atmospheric IR absorbent species - CO2

& H2O
CO2 and H2O are more and more visible as background/blank is too

old compared to current acquisition and as intrinsic signals from the
polymer are weak as seen on Fig. 1. As all analyzed surfaces were first
cleaned with ethanol and left to dry, observed water signals are prob-
ably corresponding to atmospheric water. The polymer corresponding
to this spectrum can still be identified as calcite loaded PVC. Calcite
specific signals are described in Part 3.3. PVC is mainly identified
through its 700 and 610 cm−1 pattern characteristic of C-Cl stretching
(Signoret et al., 2019b). H2O signals, seen from 4000 to 3500 cm−1 for
MWIR, and 1900 to 1300 in MIR, framed in blue on Fig. 1, could be
perceived as noise but its particular pattern is characteristic of several
gaseous species, preventing confusion with plastics. Whereas rotational
levels are strained in condensed phases by surrounding molecules, they
are “pure” in gas phase, each gap between observed lines corresponding
to a distinct excitation level, explaining their regularity and respective
heights (Hollas, 2004). Other atmospheric species as nitrogen or oxygen
cannot absorb in infrared as asymmetry cannot be introduced in their
dipole moment with bending (Hollas, 2004). However, they can in
Raman as excitation mode is different (Fletcher and Rayside, 1974) and
this could strongly disrupt industrial applications.

Way more pronounced than H2O, CO2 has two very famous bands at
2370 and 2340 cm−1 in MWIR. Excluding isocyanate (N=C=O)
stretching at 2270 cm−1 which can be residually found in some poly-
urethanes, and nitrile (C^N) stretching at 2237 cm−1 for ABS or SAN,
no specific polymer signals were found from 2000 to 2500 cm−1

(MWIR chart in supporting information). Thus, this signal should not
mask important peaks. In LWIR, CO2 has a very thin peak at 670 cm−1

(Hossain et al., 2014). Within 10 cm−1, as seen in the LWIR chart in
supporting information, calcite, TBBPA and Dechlorane have a peak here,
but being larger for the first one, and accompanied by many other peaks
for the two others, as described further below. Checking com-
plementary signals rapidly eliminates any doubt.

Atmospheric species should moderately impact polymer industrial
identification as concerned ranges do not overlap each other or signal
nature is different (as with atmospheric water). It is thus important to
consider them separately in a classifier learning phase, not to include
atmospheric parameters in plastic identification, as they can be hardly
controllable at reasonable costs. Also, they can represent a numerical

“dead weight”, inducing useless data treatment.

3.1.2. Short acquisition time: diminishing number of scans in FTIR
Figure 2.a) shows the spectral evolution by diminishing the number

of scans in FTIR-ATR on an ABS standard. Both sensor noise and “at-
mospheric noise” are amplified with reduction of scans. In this parti-
cular case, it does not challenge identification as the polymer signal was
strong. In industrial conditions, acquisition time is very short for ma-
terial throughput reasons but several pixels are acquired for each ob-
ject, mimicking plural scans. It can however be expected that Signal-to-
Noise Ratios (SNR) should be far lower.

3.1.3. Evolution with resolution
Figure 2.b) shows the impact of resolution refinement on a PP re-

ference MIR spectrum. A strongly defined spectrum tends to display
stronger noise, especially here, where only one scan was performed for
each spectrum. Again, atmospheric species are fostered. Thus, resolu-
tion and acquisition time must be tuned altogether. With degraded
resolution, peaks get convoluted and weaker, as they tend to be par-
tially averaged with baseline. Especially here, the four distinct peaks of
PP (C-H stretching) between 2800 and 3000 cm−1 merge into a single
shape (blue frame in Fig. 2.b)). It happens even more rapidly with CH3

C-H bending at 1375 cm−1 (purple frame and magnification) where the
presence of shoulder underlines crystallinity (Signoret et al., 2019b). It
is evident that convolution intervene faster as peaks are close and weak.
Noise can appear milder at 4 cm−1 resolution than on its equivalent on
Fig. 2.a) but it is probably mainly due to scaling and numerical offsets
different which were differently chosen here to highlight convolution of
signals. Finally, the black framed magnification of Fig. 2.b) shows how
a weak signal disappears as it is averaged with the baseline. It is the
example of the 2725 cm−1 peak, very specific to PP as it is alone within
its column in the MWIR chart (supporting information). Combined with
rather weak signals due to short acquisition time, this can lead to im-
portant information loss, detrimental to fast identification.

3.1.4. Conclusions on degraded acquisition
Atmospheric species can display important signals but are located in

specific zones and should not negatively impact polymer identification
if well taken in account. Short acquisition time mainly impacts signal-
to-noise ratio whose degradation can be tempered with radiation source
intensity. However, this can lead to serious heating. The depreciation of
resolution leads to the convolution of peaks and global reduction of
intensities, which can lead to the visual disappearance of small peaks.

Figure 1. Pathologic FTIR-ATR spectrum of waste sample n°1.37 & corresponding background spectrum - signals of CO2 framed in red, H2O in blue, PVC in green and
calcite in purple



3.2. Carbon black impact on MIR spectra

As carbon black strongly absorbs in UV, in the visible range and in
NIR, one could worry about its absorption in MIR and possible induced
disturbances in polymer identification. In the purpose to qualify this
impact, carbon black powder and homemade dark colored samples
were characterized in FTIR-ATR.

3.2.1. Carbon black-KBr disks in FTIR-Transmission
To avoid spectral defects from ATR, which distorts baselines as in-

frared penetration depends on its wavenumber, carbon black was
analyzed in transmission after dilutions within dried KBr. Fig. 3 shows
spectra obtained with 1.00 and 0.25 wt. % disks which were equally
totally black to the naked eye. At 1.00 wt. %, transmission is at 0% on
the whole range and the absorbance curve highlights the sensor's limit
of sensitivity. At 0.25 wt. %, transmission is below 2% on most of the

Figure 2. Impacts of acquisition parameters in FTIR-ATR on the quality of spectra: a) Number of scans reduction on an ABS standard with a 4 cm−1 resolution b)
Resolution degradation on a PP standard with 1 scan per measure – blue frame for C-H stretching convoluting signals and purple for crystallinity marker



range and rapidly rises up to 20% on the last 1000 cm−1. Logically,
absorbance slightly and steadily decreases from 2000 to 400 cm−1,
from 2 to 1 A.U. It appears that a higher carbon black content leads to a
higher absorbance baseline (and lower transmission baseline).

No special features, as C-H, O-H or C=O marks, can be observed,
meaning that the graphitic structure is rather predominant and material
is not visibly oxidized. As the graphitic sheets are semi-infinite and thus
double bonds highly conjugated, absorption seems continuous from UV
up to MIR.

3.2.2. 2 wt. % loaded PE, PP, HIPS & ABS samples
PE, PP, HIPS and ABS spectroscopic standards were made and

controlled by TGA at 2 wt. % carbon black. This concentration was
chosen as it is the most current loading rate for coloring thermoplastics
and for protecting them from photodegradation. As specified pre-
viously, higher rates are applied for elastomers reinforcement, or
electrical conductivity, which are both scarce among WEEE. Fig. 4 was
produced without numerical offsets of the curves and by repeating each
measure four times on different specimens or spots. The resolution was
4 cm−1 and acquisition was made in 16 scans. Same parameters are
applied for all data given from this point. The most important feature is
a shift of absorbance baseline, more or less important depending on the
polymer, but generally of about 0.01 to 0.02 A.U. It is coherent with
spectra of carbon black alone in KBr, as it is a continuous absorption.
Interestingly enough, HIPS and ABS baselines were already above 0
U.A., at about 0.04 U.A. at 4000 cm−1 and at about 0.07 U.A. at 400
cm−1, highlighting the ATR defect. This defect, intrinsic to ATR, fosters
stronger absorption at lower wavenumbers because infrared penetra-
tion within the sample depends on its wavenumber. This defect is also
more or less intense depending on the quality of acquisition, mainly due
to the surface-crystal contact.

Even though carbon black intrinsically absorbs less at low wave-
numbers, its presence seems to amplify this defect as the shift is of only
0.01 U.A. on the left side and up to 0.06 U.A. on the right side. This can
be explained as infrared rays penetration is affected by the presence of
carbon black. Effects on polymer peaks intensity seem negligible in this
concentration range. Identification through MIR seems unaffected for
these polymers at these loading rates.

3.2.3. ABS at different carbon black loading rates between 0.05 & 4.50 wt.
%

To study further the impact of carbon black on MIR spectral fea-
tures, several ABS standards were made at different loading rates of
carbon black. Always under TGA control, a first series from 0.5 to 2.0
wt. % was made in extrusion from a ≈20 wt. % masterbatch made
using an internal mixer and a first dilution which was checked at 4.5
wt. %. A second series was made from the 0.5 wt. % batch in a mi-
crocompounder to reach loadings from 0.05 to 0.20 wt. %. Appendix B
shows pictures and spectra of spectroscopic standards made from these
batches, 5 spectra by sample and no normalization or numerical offset.
Even at 0.05 wt. %, the obtained sample was totally black to the naked
eye, visually difficult to differentiate from other samples. Grey material
was obtained from purging the apparatus but carbon black was not
detectable through TGA. Baseline shift and distortion through ATR
defect steadily follows the carbon black rate. ABS characteristic peaks
heights do not seem to evolve. The concentrations between 0.05 and
0.20 wt%, in light pink display very close spectra. The magnification on
2100 to 2000 cm−1 shows that the baseline progressive shift is still
observable even though in the same order of magnitude than repeat-
ability.

To quantify previously described phenomena, Fig. 5 shows integral
values obtained from the spectra in order to quantify the observed
baseline shift and intrinsic signals intensity. Fig. 5 a) shows signals
chosen to evaluate these phenomena: C-H stretching from 3100 to 2800
cm−1, both aliphatic and aromatic; C^N stretching from 2255 to 2220
cm−1; aromatic C-H bending from 800 to 720 cm−1. Area between
spectrum and a straight line drawn at the base of each peak were
considered in this case. No normalization but repeatability was applied
as the whole range should be impacted by effects to qualify. As no peak
should be spared, none can serve as a reference for normalization. A
baseline indicator was chosen by integration between spectra and the X
axis on the 2100 to2000 cm−1 range. This choice was made because
this range is free of signals attributed ABS, degraded ABS
(Signoret et al., 2020) or other parasites as moisture. Also, integration
averages the impact of individual values on this range, thus attenuating
noise perturbation. Finally, this range was little affected by ATR de-
formation.

Fig. 5 b) shows that results dispersion is important on specific
polymer signals and hampers a clear discussion. However, C^N and C-
H stretching signals seem to slightly decrease with also a reduction in

Figure 3. FTIR spectra in transmission of carbon black in KBr disks, no normalization or numerical offset – picture of pure KBr and 0.25 wt. % carbon black KBr disks



dispersion. Polymer lesser absorption could be explained as it receives
less incident signal because of carbon black and as its reflected signal
gets also partially absorbed. Aromatic C-H does not show a decrease
and could even exhibit a reduction in dispersion toward higher values.
These contradictory trends can be explained by the previously observed
ATR deformation, fostered by carbon black, which promotes absorption
at low wavenumber. Potential effects of pi-stacking between carbon
black and aromatic cycles of ABS seem unlikely as this pigment stays
under an agregated form, thus not very well dispersed. It is also partly
oxidized and does not exhibit a highly organized structure. Purer, better
dispersed and better structured forms of mineral carbon, as nanotubes,
graphite or graphine could however exhibit pi-stacking interactions.

Fig. 5 c) displays the chosen baseline indicator evolution with
carbon black concentration, which proves to be rather linear on the
considered scope, respecting the Beer-Lambert law. Last points at 4.5
wt. % tend to be above the regression, probably because of the ATR
effect. Despite the important values dispersion, the correlation factor is
rather satisfactory (R²=0.986). The 1.98 intercept value is coherent to
the values of virgin samples. Low loading samples do not seem to align
perfectly as seen on the magnification. Concentrations were too low to
be confirmed by TGA. As they were made differently, differences in
dilutions with other samples could explain this. It should be emphasized
that differences of polymer nature, chosen shape, especially surface
aspect and acquisition quality strongly disturb these correlations. Here,
data were well fitted because all above-mentioned parameters are al-
most identical even though results are pretty dispersed.

3.2.4. Real waste samples
Thirty-seven black colored samples among the stock were analyzed

using TGA. Seven had undetectable carbon black levels (below 0.1 as
other fillers were also considered here). Twenty-one had concentrations
between 0.5 and 2.0 wt. %. Six others had concentrations up to 4 wt. %.

Two PVC samples showed 8 and 18 wt. % which could be caused by
other additives as PVC is often heavily formulated. Identification
through FTIR-ATR was not challenged. Baselines and peak heights were
more influenced by surface aspect and acquisition than measured
carbon black concentrations. Indeed, ATR is very sensible to the contact
quality between the sample and the ATR crystal, a default which does
not transpose to HSI as measure is done remotely. However, other
sources of acquisition degradation could be expected, as spatial non-
uniformity of infrared irradiance, or sensibility to surfaces orientation
and objects heights.

As an exception, one PP sample, whose spectrum is shown on Fig. 6,
presented a carbon black loading rate evaluated around 25 wt. % in
TGA. The first ABS masterbatch, measured at 21± 2 wt. %, is also
plotted for comparison. However, because the high carbon black con-
tent prevented disk injection for rheological reasons, test bars were
injected instead. This waste sample had the mention “Velostat” which is
described as conductive polymer (Mazaheri et al., 2009). This is con-
sistent with the high carbon black loading measured. Its spectrum
baseline is strongly slanted (ATR defect), going from 0.03 to 0.08 A.U.,
showing a strong absorption from carbon black, whereas intrinsic sig-
nals amplitude is below 0.02 A.U. Also, the bottom of the peaks is
strangely slanted. This could be explained by a deficient response of
Fourier Transform to phase shift (Keeler, 2004; Ledford et al., 1980).
The spectrum is however visually recognizable as PP, with four peaks
for aliphatic C-H stretching from 2840 to 2950 and two peaks at 1450
and 1375 cm−1 respectively for C-H bending of CH2 and CH3. The 21
wt. % ABS reference however is hardly recognizable as its signals are
generally weaker than PP on the whole MIR range through ATR
(Signoret et al., 2019b). Only the strongest signals, aromatic C-H de-
formation at 760 and 700 cm−1, are clearly visible whereas others seem
only baseline defects. This hints that only the strongest signals will
survive. Interestingly enough, even on such a distorted spectrum, peaks

Figure 4. MIR spectra of virgin (red curves) and 2 wt. % carbon black loaded (black curves) polymer standards – PE, PP, HIPS & ABS – 4 spectra by sample, no
normalization or numerical offset



Figure 5. a) Integration zones on ABS FTIR-ATR spectra – green, pink and blue for b), grey for c); b) Intrinsic peaks integrations evolution with carbon black loading
rates; c) Baseline “height” evolution with carbon black loading rates – no normalization, 5 measures/batch, 4 cm−1 resolution and 16 scans by acquisition

Figure 6. MIR comparison of sample n°1.46 (exception within waste stock) to ABS standards at 4.5 and ≈21 wt. % carbon black – sample identified as PP loaded
with ≈25 wt. % carbon black – no normalization, baseline correction or numerical offset – black frames for PP peaks, red for ABS



Figure 7. MIR spectra of common mineral fillers – kaolin (green), calcite (black), talc (blue), titanium oxide (red) – wavenumbers in corresponding colors

retain their exact wavenumber. Finally, baselines for 4.5 and 21 wt. %
overlap for the highest wavenumbers whereas the 21 wt. % spectrum 
should be far above, closer to the waste sample as they share close 
concentration. This indicates that acquisition was not optimal for the 
heavy loaded sample, adding to the poor visibility of characteristic 
signals. If signal is still sufficient in industrial conditions for such 
loadings, strong correction of baseline could be applied to make the 
spectrum exploitable despite the loss of information.

3.2.5. Conclusions on carbon black impact on MIR spectra
Because of its chemical nature, carbon black strongly absorbs from 

UV to NIR, even at low loadings as 0.5 wt. %, conferring its color, its 
protecting ability toward polymers and the current difficulty to sort 
most of dark plastics in an economical way. It displays a continuous 
absorption in MIR, but in a way less dire manner, especially for the 
lowest wavenumbers. For concentrations typically applied for colora-
tion / protection purposes, between 0.5 and 2.0 wt. %, identification is 
not impacted for FTIR-ATR. Similar results could be expected that MIR-
HSI is also whereas NIR-HSI is generally reported ineffective 
(Beigbeder et al., 2013; Huth-Fehre et al., 1995; Serranti et al., 2012).

The main noticed effect of carbon black in FTIR-ATR is a shift of the 
baseline toward higher absorbance, proportional to concentration, ac-
cording to the Beer-Lambert law. The ATR distortion of baseline is also 
promoted. Higher loadings (> 20 wt. %) corresponding to very specific 
conductive applications in thermoplastics and mechanical reinforce-
ment in elastomers are disruptive toward identification which is still 
possible depending on the material. However, as infusible materials, 
elastomers should be industrially segregated as unsuitable to mechan-
ical recycling. Thus, highly distorted spectra, which hint for high 
carbon black concentration, should lead to refusal.

3.3. Usual mineral fillers

3.3.1. Powder references
Calcite and talc are widely used as fillers, to reduce costs mainly for 

the former, but they also bring stiffness for the latter and unfortunately

density for both (Maris et al., 2015). Titanium oxide (TiO2) is widely 
used as an opacifier and a whitening agent. With kaolin, these three 
additives were analyzed in FTIR-ATR, directly in powder form (Fig. 7). 
They display very few and very weak signals in the MWIR range, even 
none for TiO2, leaving their lines almost empty in the corresponding 
chart in supporting information. However, corresponding wavenumbers 
are in usually empty ranges: three sharp signals between 3620 and 3695 
cm−1 for kaolin; a bump at 2510 cm−1 for calcite; three signals at 
3675, 3555 and 3415 cm−1 for talc. In the LWIR range, they display 
very strong, very large (except for kaolin) and distinctive signals: for 
kaolin a very characteristic quadruplet 1114, 1032, 1008 and 914 
cm−1, and three signals between 430 and 540 cm−1 (off range); for 
calcite a very broad asymmetric signal at 1406 cm−1 and a very specific 
signal at 874 cm−1; for talc a very broad signal at 1010 cm−1, a very 
specific signal at 670 cm−1 and three intense signals between 465 and 
425 cm−1 (off range); for TiO2 a wide and strong signal from 800 to 500 
cm−1, at the limit of LWIR. It is interesting to note that the 670 cm−1 

signal for talc and the 873 cm−1 for calcite are in rather empty columns 
within the LWIR chart (supporting information), thus enabling rapid 
identification. However, confirmation should be done with the large 
and intense signals.

3.3.2. Real waste samples
Because of the specificity of these wavenumbers (totally or almost 

alone in their columns of the charts in supporting information), even 
weak signals could be easily seen on numerous plastic waste samples, 
every encountered PVC and most of polyolefins samples. On the dis-
played example of polymer waste in Fig. 8.a) and b), both calcite and 
talc can be very clearly seen in LWIR, especially with the specificity of 
respectively the 873 and the 670 cm−1 peaks, which enabled rapid 
identification for most of the waste stock. Impressively enough, the 
fillers very weak peaks in MWIR are also visible on part a). The 37 dark 
plastic waste samples analyzed above in TGA for their carbon black 
concentrations were also studied in SEM/EDX for other additives. Most 
of the polyolefins contained talc and/or calcite and spectroscopic marks 
described here were observed each time. Residual weights in TGA



indicates that typical loading rates were between 10 and 20 wt.% which
is coherent with industrial use. Only 3 styrenics were found to contain
fillers according to EDX and characteristic peaks were visible on the
spectrum of only one of them.

The signal from 800 to 450 cm−1 of TiO2 was indicated in orange in
the charts because it was less visible within real samples as its loading
rates were probably weaker as it is a pigment rather than a filler.
Indeed, spectral marks of TiO2 were formally confirmed on only one
sample (Fig. 8.c)), particularly white, of the hundred available ones
even if SEM-EDX revealed traces in 6 of the 37 analyzed samples. Its
main signature is confined between 500 and 600 cm−1 and is re-
presented by a round band. The other weak round peak at roughly 1440
cm−1 overlaps with CH2 deformation and is thus masked in numerous
polymers (as polyolefins, styrenics or polyamides). Use of other ad-
ditives, especially talc, and bad acquisition leading to strong ATR
baseline defect often lead to doubts about signals which could indicate
TiO2 presence. In HSI application, almost no signals are specific, except
for a rise on the lowest wavenumbers in LWIR. No sample was found
with kaolin peaks, in accordance with the current limited commercial
use of this filler. If present in sufficient amount, it could be detected
through its peaks between 3693 and 3620 cm−1 since peaks of talc
between 3675 and 3415 cm−1 were visible despite their low intensity.
Also, its specific peaks at 1115 and 540 cm−1 should enable identifi-
cation, even in presence of talc or calcite that could overlay its signals.

3.3.3. Conclusions on usual mineral fillers
In general, talc and calcite were the main additives to display visible

marks on the real waste samples spectra among the studied stock. It can
be assumed that other additives are in too low concentration or do not

exhibit important enough infrared signature. Interestingly enough, after
sink-float separation, most floating polyolefins still displayed peaks
characteristic of a filler, even if weaker than in sinking ones. Combined
with TGA or calcination, FTIR-ATR can rapidly give natures and con-
centrations of fillers, instead of more laborious methods as ICP or X-rays
fluorescence. Described fillers can be seen in MWIR even though their
specific signals are very weak and diminished acquisition parameters
will surely make them undetectable. Consequently, polymer identifi-
cation should not be disrupted in MWIR. It is not the case in LWIR
because of their large signals, which can partially mask specific signals
of polymers. It is thus important to identify and take into account their
patterns when building classification algorithms. By considering these
signals as those of fillers, it could then facilitate the matrix identifica-
tion. Filler detection could also be a segregation tool, as it would be
devoted mainly to polyolefins and PVC. Finally, it could be interesting
to check additives effects on NIR. If impacts are important on identi-
fication, it could render MIR more interesting, even in the case of light-
colored plastic waste. However, a real comparison of the two technol-
ogies in such waste stocks should be pertinent at least at pilot scale.

3.4. Flame retardants

3.4.1. Powder and polymer references
Flame retarded polymers are widely used in electronic and electrical

equipment and furniture as they can be subjected to fire hazards.
However, many flame retardants (FRs) which were popular a few
decades ago because of their performance at low loadings are now
progressively forbidden, or at least greatly depreciated in reason of
their health and environmental hazards, especially halogenated FRs

Figure 8. MIR spectra of a waste samples containing spectrally visible fillers – a) & b) A sample with both talc (blue frames) and calcite (orange frames) visible, from
4000 to 2400 and from 2100 to 400 cm−1 – c) A sample with visible titanium dioxide (green frame)



LWIR but could disrupt the matrix identification as it complicates the
spectrum. It is however probably undetectable in MWIR.

In MWIR, TBBPA is rather subtle and was mainly seen for rather
high loading (34 wt. %) through its 3475 cm−1 peak (Liu et al., 2016),
as seen squared in blue on the left part of Fig. 9.c). As well, its numerous
LWIR signals are hardly visible below 17 wt. %. The 1173 cm−1 is
probably the most visible marker. For ABS and ABS-PC, the 730 cm−1 is
also pretty remarkable as it inserts itself just between the two aromatic
C-H peaks. However, it is not visible in HIPS as the higher peak is lower
(750 instead of 760 cm−1) and larger, covering it. Outside of ranges
covered by MWIR and LWIR, the peak at 1471 cm−1 is also very visible
in styrenics as it inserts between the ones at 1493 and 1452 cm−1. Just
above, a small but sharp peak can be seen at 1555 cm−1 only for
highest loadings. Finally, a large band at 1739 cm−1 is visible for
higher loading but could be mistaken for polymer ageing carbonyls.

Spectra of flame retardants above, with the addition of HBCD and
Sb2O3 are given in appendix C for better readability.

3.4.2. Real waste samples
Very few samples within the studied waste stock presented re-

markable spectroscopic patterns of flame retardants. Accordingly, only
one of the thirty-seven samples studied in SEM/EDX showed presence
of flame retardant, a brominated one in this case. Except with PVC,
most of marked foreign signals were associated to calcite, talc and/or
ageing. PVC often displays a peak at 1730 cm−1 associated to phthalate
plasticizer and/or stearate thermal stabilizers (Signoret et al., 2019b).
This can be explained as the waste stock was not primarily chosen to
study flame retardants and probably went through X-ray sorting. Fig. 10
shows two waste samples which were identified as containing flame
retardants. The n°5.11 was identified as HIPS and several Dechlorane
peaks were observed, especially at 1470, 1282, 592 cm−1 and between
1168 and 831 cm−1. The peak at 763 cm−1 is hinted through a subtle
shoulder of the 750 cm−1 peak of HIPS. Sample n°5.30 was identified as
TBBPA loaded ABS, with especially the double peaks of 1272 + 1238
cm−1, the one at 1555 and the one at 867 cm−1. The 730 cm−1 peak is
also well visible between the styrene peaks and the 1471 cm−1 is seen
as a shoulder. Fig. 10 highlights that both Dechlorane and TBBPA
creates “interstitial” peaks within styrenics, between the 1452 and 1493
cm−1 peaks (outside of LWIR) and between 750+695 (PS) / 760+700
(SAN) (at the limit of LWIR). However, they are not very intense and
pretty close from other peaks. Depreciated resolution and sensibility
can be fatal to their detection.

3.4.3. Conclusions on flame retardants
It appears that Dechlorane and APP are well visible in LWIR (from 8

wt. % and 16 wt. % loadings respectively), especially with significant
and numerous signals (Dechlorane) or broader signals (APP). TBBPA is
harder to identify unless a high loading (34 wt. % here) is applied. APP
also strongly distorts MWIR spectra with a large baseline elevation from
2600 to 3400 cm−1, which could be mistaken with acids but a bump at
3165 cm−1 is specific. Dechlorane is impossible to detect in MWIR and
TBBPA O-H stretching can be spotted at 3475 cm−1, but only for higher
loadings.

Flame retardants industrial detection in MIR seems difficult as sig-
nals are subtle, except for APP which could disrupt polymer recognition
as its bands could mask the characteristic polymer spectra. Further
studies on a larger scope of flame retardants (especially PBDE, poly-
bromodiphenylethers) and a waste stock rich in flame retarded plastics
could ensure their detection and pseudo-quantification in FTIR without
relying on heavier techniques as XRF. Hyperspectral detection seems
compromised and industrial segregation of halogenated plastics should
be done thanks to a more reliable technology as industrial XRT or XRF.
However, this also means that polymer identification in MIR-HSI is
unlikely to be hindered by flame retardants presence.

(Aldrian et al., 2015; Peeters et al., 2014; Schlummer et al., 2005; 
Stenvall et al., 2013). It is thus interesting to detect these now forbidden 
or phased out FRs within waste plastics. Elemental techniques as X-ray 
transmission or fluorescence, or LIBS, are rather performant. However, 
mainly X-ray transmission is nowadays applied in industrial and eco-
nomic conditions. Unfortunately, this technology is limited towards 
distinction between elements heavier than oxygen within polymeric 
matrices.

Because of their efficiency at low loadings, brominated flame re-
tardants were quite popular and can be found from a few percent to 
about 15 wt. % within plastic waste (Guzzonato et al., 2016b; 
Schlummer et al., 2005). Tetrabromobisphenol A (TBBPA) and Hex-
abromocyclododecane (HBCD) are amongst its main representatives 
(Puype et al., 2019). Antimony trioxide (Sb2O3) is also often used in 
synergy with these FRs. As only TBBPA was available in sufficient 
quantities to product plastic samples, HBCD and Sb2O3 were only stu-
died as powders. Less frequent, chlorine based FRs as dechlorane are 
also found (Schlummer et al., 2005). Because of the ban of some ha-
logenated FR, phosphor based FRs as ammonium polyphosphate (APP) 
are getting more and more popular (Peeters et al., 2014). FRs specifi-
cally cited above were chosen to produce standard samples because of 
their common use within plastics and because they were rapidly 
available for experiments.

As seen on Fig. 9.a), ammonium polyphosphate (APP) displays a 
very wide signal from 2700 to 3300 cm−1. It covers almost all the 
MWIR range as seen in the associated chart in supporting information. 
Three mounts culminate at 2885, 3015 and 3165 cm−1, associated to 
the O-H bounds of the phosphate groups. The one associated to the 
highest wavenumber is particularly visible on formulated samples. For 
styrenics, this large band tends to mask polymer characteristic signals, 
potentially challenging identification. APP displays numerous, rather 
strong signals and broad signals (50 to 100 cm−1 wide) in the LWIR 
area. The 1246 cm−1 stands out but the 4 peaks from 1080 to 798 cm−1 

offer a very distinctive pattern. The three peaks below 550 cm−1, thus 
out of the LWIR range, are reminiscent of talc but at higher wavelength 
and more spaced out. The 1425 cm−1 peak, above LWIR, tends to add 
up to the very common 1450 to 1470 cm−1 peak associated to CH2 

deformation. The 1680 cm−1 is too weak and present in an area often 
disturbed by carbonyl species produced by ageing. Overall, by its nu-
merous and large signals, APP can complicate identification as it be-
comes the main component of the spectrum in the MWIR and LWIR 
ranges. Interestingly enough, the 1375 cm−1 and 760 to 750 + 700 to 
695 cm−1 peaks, respectively characteristic of PP and styrenics fill the 
gaps between APP peaks. It would be also the case with the 730 to 720 
cm−1 signal of PE. In the range between MWIR and LWIR, roughly from 
2000 to 1400 cm−1, APP does not disturb identification, which is 
mainly based on the carbonyl peak (Signoret et al., 2020) (as PC, 
PMMA, PET and PA).

Dechlorane C25+ (Fig. 9.b)), a chlorinated FR, displays rather weak 
C-H stretching signals at 2950, 2910 and 2850 cm−1, typical of ali-
phatic C-H stretching, in accordance to its chemical nature. These wa-
venumbers are already covered by most polymers. This additive seems 
thus practically impossible to detect in MWIR. However, in LWIR, it 
possesses very numerous, strong and sharp signals. The 1282 cm−1 is 
characteristic as it is in an empty column in the LWIR chart. The several 
peaks, from 1168 to 831 cm−1, covers a more occupied area as none of 
them are in empty column and they tend to make the obtained pattern 
way more complex. The six peaks from 763 to 592 cm−1 possibly 
correspond to C-Cl stretching as there are 12 chlorine atoms within the 
structure which can vibrate with multiple symmetrical and asymme-
trical modes. With almost equal heights of four of them and equal 
wavenumbers gaps between the first three, they create a very dis-
tinctive pattern. Also, they modify the general look of the characteristic 
aromatic C-H deformation of styrenics, two peaks from 760 to 750 
cm−1 and from 700 to695 cm−1. Especially, a new sharp peak appears 
just between them. As APP, Dechlorane should be easily detected in



3.5. Complex samples examples

Several “complex” samples were found among the plastic waste
stock, in the sense that they correspond to several materials bonded

together and could negatively affect sorting operations. Fig. 11.a)
shows a few examples. The top one (n°1.9) corresponds to an ABS
square, characterized by the acrylonitrile peak at 2237 cm−1 framed in
green, in which was included an elastomeric cylinder. This part's

Figure 9. FTIR-ATR spectra of different standards formulated with APP (a), dechlorane (b) or TBBPA (c) – blue frame for FR characteristic peaks seen within polymer
references



spectrum is heavily distorted. Its initial baseline (shifted here for
readability) varies between 0.5 and 0.6 A.U. of absorbance for about
0.1 to 0.2 U.A. for intrinsic peak heights. Peaks also display defaults at
their base, reminiscent of the ≈20 wt% carbon black loaded PP and
ABS of Fig. 6. High carbon black loading is coherent with the elasto-
meric nature of this component. Identification is here challenged,
especially as this study focused on thermoplastics. The two peaks be-
tween 2920 and 2850 cm−1 could hint for an important ethylene base.
Peaks roughly at 1000 and 800 cm−1 could correspond to vinylic C-H
deformation but do not match to PB (910 and 965 cm−1). Polyisoprene
is a possible candidate.

The second sample (n°2.8) consists of a green bulk tinted poly-
ethylene, identified by its simple spectrum, coated with a PVC sheet,
white on one side, lighter green on the other side as seen on the picture.
PVC is identified thanks to the 610 and 700 cm−1 peaks. A plasticizer
and/or thermal additive presence is shown through the 1730 cm−1

peak. The last sample, n°4.19 results of the welding of two transparent
sheets which could be identified as PC and PMMA thanks to carbonyl
peak, respectively 1770 and 1720 cm−1 and characteristic C-O
stretching patterns between 1300 and 1000 cm−1. Interestingly en-
ough, in the welding zone, an intermediate spectrum can be obtained,
with the peaks of both polymers, especially highlighted for the dual
carbonyl peaks.

Several samples were categorized as “shiny grey HIPS”. As shown on
Fig. 11.b), they consist of dark grey bulk tinted HIPS with a shiny grey
coating. Bulk is easily recognized as HIPS thanks to aromatic C-H
bending at 695 and 750 cm−1 (whereas it is 700 and 760 cm−1 for ABS)
(Signoret et al., 2019a). The shiny coating is rather thin and its spec-
trum, even though distorted, is heavily reminiscent of PMMA, an acrylic
polymer, notably with a C=O stretching at 1724 cm−1, rather specific
pattern from 1480 to 1385 cm−1 for C-H bending, culminating peak at
1143 cm−1 for C-O stretching and a peak at 750 cm−1 for C-H rocking
(Szilasi et al., 2011). Acrylic paint is thus strongly suspected, as its main
monomer is also methyl methacrylate.

If analyzed on “bulk” face, these samples would be identified as
HIPS. On the other side, ATR spectra are heavily distorted and cannot
be confused with PMMA. Similar effects can be expected but must be

checked in MIR-HSI. It can be anticipated that this supposed paint
would impact also other identification technologies, as Raman spec-
troscopy or froth flotation. Even if not found within the studied stock,
metallized ABS is rather common, especially in ELV (End-of-Life
Vehicles). These objects can be expected to be hard to identify as ABS.
As the metal layer will surely be problematic during mechanical re-
cycling, it can be positive to remain unidentified.

Other common “complex” objects were also found, as electrical
cables, often combining mainly copper and PVC, screwed plastic parts,
elastomer pads embedded in plastic, paper or plastic label. Metallic
parts were found despite magnetic sorting probably because of their
rather low concentration within plastic. All these objects could nega-
tively impact recycling. First, they can disturb identification. Secondly,
they bring contaminants that can affect processability and use proper-
ties.

4. Conclusions

Nowadays, the industrial sorting of dark-colored End-of-Life plastics
is an obstacle to their recycling, as one of the most spread sorting
technologies, Near-Infrared Hyperspectral Imagery (NIR-HSI) is unable
to perform this task. Mid-Infrared HSI (MIR-HSI) is one the potential
answers to this issue.. Consequently, its laboratory equivalent, Fourier-
Transform Infrared spectroscopy (FTIR), was here studied to evaluate
the theoretical limits of its industrial equivalent. Possible dangers of
decreased acquisition parameters were shown in the first part of this
study. Resolution depreciation leads to convolution of close signals and
acquisition time decrease alters Signal-to-Noise ratio (SNR). This is
particularly detrimental to small and close peaks. Atmospheric species,
namely carbon dioxide and water are visible in both MWIR (5000 to
2000 cm−1 or 2 to 5 μm) and LWIR (1350 to 700 cm−1 at max or 7.4 to
14.0 μm) but should not disturb polymer identification as covered
ranges or signal natures are different.

Carbon black, which is prohibitive for polymer sorting in NIR-HSI,
also impacts MIR spectroscopy. The main feature is an elevation of
baseline. Identification should however still be possible, especially with
relatively low loadings associated to coloration and UV-protection (0.5

Figure 10. Spectra comparison of two waste samples respectively with virgin and 15 wt. % Dechlorane HIPS references and with virgin and 17 wt. % TBBPA ABS
references– blue frame for RF characteristic peaks seen within polymer samples



to 2.0 wt. %). Higher loadings used for electrical conductivity or me-
chanical reinforcement (mainly elastomers) strongly distort spectra and
could negatively interfere with classification algorithms.

Fillers, namely calcite, talc, kaolin and titanium dioxide, and flame
retardants, namely APP, Dechlorane and TBBPA, were also described in
MIR. Most of them display very few signals or none in MWIR. These
signals are also often weak. Thus, they cannot be detected and will not
disrupt polymer identification in MWIR. Their signatures in LWIR are
generally more intense and they cover large ranges, either by very
broad signals or by very numerous peaks. Then, they can severely
disrupt polymer identification in LWIR. This disruption can be seen in
several ways: polymer peaks are masked; additive peaks are recognized
as belonging to another polymer; data amount and general signal ap-
pearance are detrimental to algorithmic treatments. In this way, it is
important to incorporate these pieces of information or, even better,
altered spectra in a working database. In this purpose, these signals
were here collected and described in this study.

Additives studied here were conditioned by what was rapidly
available and what was identified within the studied plastic waste
stock, mainly calcite and talc. Numerous other additives, especially
flame retardants or stabilizers, are to be found within plastic waste.

Thus, an exhaustive referencing in FTIR-ATR could be really interesting
for both fast but rich laboratory analysis and possible impacts on in-
dustrial sorting. After these signals are qualitatively identified, they
could explain significant differences found in a statistical study, espe-
cially with the use of classification algorithms. To consolidate these
results, it would be then necessary, with the help of automatized
methods, to extend the study to a larger waste stock, especially richer in
flame retarded samples.
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