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Abstract. Predictions from classification models are most often used
as final decisions. Yet, there are situations where the prediction serves
as an input for another constrained decision problem. In this paper, we
consider such an issue where the classifier provides imprecise and/or
uncertain predictions that need to be managed within the decision prob-
lem. More precisely, we consider the optimisation of a mix of material
pieces of different types in different containers. Information about those
pieces is modelled by a mass function provided by a cautious classifier.
Our proposal concerns the statement of the optimisation problem within
the framework of belief function. Finally, we give an illustration of this
problem in the case of plastic sorting for recycling purposes.

Keywords: Belief functions · Sum rule of mass functions · Mixture
optimisation · Plastic sorting

1 Introduction

Mixing materials in the right amount is a common problem in many industries. 
Depending on the desired properties, the mixture must meet certain constraints 
on the proportions of each material. In the case where the mixing is done progres-
sively, one must know, at each step, the materials present in the piece to be added 
and the materials present in the existing mixture in order to check if the new 
mixture respects the proportion constraints. This problem can be encountered in 
several applications; when refining crude-oil into useful petroleum products, one 
has to manage the mixture of different hydrocarbon products; when recycling 
plastic, the portion of some material type should not exceed some thresholds; 
when producing different types of wood paneling, each type of paneling is made 
by gluing and pressing together a different mixture of pine and oak chips; etc. 
The work presented in this paper is motivated by the problem of plastic sort-
ing for recycling purposes, that will serve as a running and illustrative example
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of our proposal. More precisely, we have to assign plastic pieces issued from a
deposit to various containers, knowing that pieces can be of different materials,
and that each container should satisfy some constraints w.r.t. the proportion of
materials it contains. Our goal is then to find the sorting optimizing the recycling
process.

As sorting plastic manually is time and cost-consuming, automatic processing
machines are now put in place, with several sensors (e.g., infra-red cameras)
installed to recognize the material of a plastic piece. The obtained signal is
then processed by automatic model learned from pieces labelled in favourable
conditions (see [8] for more details). Of course, as real conditions are much less
favourable, there may be a lot of uncertainties regarding the actual material of
on-line processed pieces, which explains the need for reliable yet precise enough
classifiers [2,8,11,15]. In our setting, we consider that such classifiers returns
mass functions modelling our knowledge about the material type.

A classical tool to perform optimization under uncertainty is stochastic opti-
mization. We will extend such a setting to belief functions, first by considering
the Choquet integral instead of the classical expectation as an objective function,
and second by replacing the probability measure by the pair belief/plausibility
measures. As we add pieces to a given container, we will also have to compute the
global uncertainty of a container by adding mass functions of different weights.
To do so, we will adapt the technique proposed in [7] for general intervals to the
case of discrete proportions.

The paper is organised as follows. The problem is formalized as a stochas-
tic optimisation problem in Sect. 2. Section 3 gives some reminders about belief
functions, summing operation of mass functions, cautious prediction, and Cho-
quet integral. In Sect. 4, the optimisation problem of pieces sorting is formalized
in the framework of belief functions. The illustration concerning plastic sorting
is presented in Sect. 5.

2 Stochastic Optimisation Problem Formalisation

We consider a deposit of scrap plastic, crude-oil, wood, etc., with a total physical
weight W . This weight represent a set of pieces that will be put in C containers
depending on the composition of each piece. In the end, each container c will

contain a weight of material wend
c , with

C∑

c=1
wend

c = W . The n types of mate-

rials are represented by the set S = {s1, . . . , sn}, and we denote by θc,end
i the

proportion of material si present in the container at the end of the sorting.
Since pieces are supposed to be on conveyor belts, the optimisation pro-

cess will be performed step-wisely, deciding for each new piece in which con-
tainer it should go. Doing so, the final step, i.e., end, gives the proportions
θc,end
1 , θc,end

2 , . . . , θc,end
n in each container and the weights wend

1 , . . . , wend
n can

be deduced by weighting each container. To avoid complicating notations, we
omit the time or step reference in the optimisation problem. The optimisation
problem can be set as follows:



max
c∈{1,...,C}

gc(sf ) (1a)

subject to hc(θc
1, . . . , θ

c
n) ≤ 0, c = 1, . . . , C, (1b)

n∑

i=1

θc
i = 1, c = 1, . . . , C (1c)

where:

– The objective function (1a) is such that g : S → R
+, with gc(si) the gain

obtained if a material of type si is added to container c;
– θc

i is the proportion of material type si in the container c after adding the
new piece to it,

– The constraints (1b) are expressed using function hc : [0, 1]n → [−1, 1]. They
are of the form hc,A(θ1, . . . , θn) =

∑

i∈A

θi − αc ≤ 0 with A ⊆ S, meaning that

the proportion of materials of types A should not exceed αc in container c;
– The constraint (1c) means simply that proportions sum up to 1.

The deterministic version of this problem is easy to solve, but becomes more
complicated if the piece f composition is uncertain, for instance given by a
probability mass function (pmf) p(.|f) over S. The optimisation becomes then
stochastic, and (1a) is replaced by

max
c∈{1,...,C}

Ep(.|f)[gc] (2)

where Ep(.|f) is the expectation w.r.t. p(.|f). Remark then that p(.|f)
can be converted to a pmf over the discrete subset of proportions
{(1, 0, . . . , 0), . . . , (0, . . . , 1)} of [0, 1]n. Indeed, to check to which extent con-
straints are satisfied, we will need to compute probabilities over proportions.
We denote by pc ⊕ p(.|f) the result of adding the current probabilistic propor-
tions pc of the container with p(.|f), accounting for the current weight of the
container and the weight of f .

The constraints (1b) are then replaced by chance constraints

Pf,c(hc,A(θc
1, . . . , θ

c
n) ≤ 0) ≥ η, c = 1, . . . , C. (3)

where Pf,c is the measure induced from pc ⊕ p(.|f), and η is typically close to 1.
Finally the stochastic optimisation problem is the following

max
c∈{1,...,C}

Ep(.|f)[gc] (4a)

subject to Pf,c(hc,A(θc
1, . . . , θ

c
n) ≤ 0) ≥ η, c = 1, . . . , C, (4b)

n∑

i=1

θc
i = 1, c = 1, . . . , C. (4c)

However, it may be the case that pieces uncertainty is too severe to be mod-
elled by probabilities, in which case more general models, such as belief functions,
should be used. In the next sections, we discuss an extension of Eqs. (2)–(3) for
such uncertainty models.



3 Reminders

3.1 Belief Functions

Belief functions [12,14] are uncertainty models that combine probabilistic and
set-valued uncertainty representations, therefore providing an expressive and
flexible framework to represent different kinds of uncertainty. Beyond probabil-
ities and sets, they also extend possibility theory [5].

Given a space X with elements x, the basic tools used within belief function
theory is the mass function, also called basic belief assignment (bba), is a set
function m : 2X → [0, 1] satisfying

m(∅) = 0 and
∑

A⊆X
m(A) = 1.

The elements A ∈ 2X such that m(A) > 0 are called focal elements and they
form a set denoted F. (m,F) is called body of evidence.

The belief function Bel : 2X → [0, 1] is a set function that measures how
much an event A is implied by our information such that

Bel(A) =
∑

B⊆X ,B⊆A

m(B).

The plausibility function Pl : 2X → [0, 1] is a set function that measures how
much an event A is consistent with our information such that

Pl(A) =
∑

B⊆X ,B∩A�=∅
m(B).

Note that when focal elements are singletons x, we have Bel = Pl and retrieve
probabilities.

3.2 Sum Operation on Imprecise Proportion

Let us denote the unit simplex by U = {(θ1, . . . , θn) ∈ [0, 1]n :
n∑

i=1

θi = 1}.

Let us consider two sets of pieces sf1 and sf2 made of materials among S =
{s1, . . . , sn} with physical masses w1 and w2. The information about the material
type proportions in sf1 and sf2 are given respectively by the bodies of evidence
(m1,F1) and (m2,F2) defined over U, with discrete focal elements in a finite
number. A focal element in F

1 (resp. F
2) is in the form J = J1 × . . . × Jn

(resp. K = K1 × . . . × Kn) where Ji (resp. Ki), i ∈ {1, . . . , n} is an imprecise
information about the proportion of si in sf1 (resp. sf2).

The information resulting from adding sf2 with sf1 is a mass function
denoted m1⊕2 and defined as follows for I ⊂ U [7]:

m1⊕2(I) =
∑

J∈F
1,K∈F

2

I=J�K

m1(J) . m2(K). (5)



where F
1⊕2 is a finite set made of discrete subsets of U resulting from sum-

ming proportion in F
1 and F

2; the total weight associated to the mixture is
w1 + w2 and � is defined for two focal elements J ∈ F

1 and K ∈ F
2 as follows:

J � K = I1 × . . . × In, with Ii = {w1 x + w2 y

w1 + w2
, x ∈ Ji, y ∈ Ki}.

Note that in case where imprecise information are convex sets, e.g. inter-
vals, only the lower and the upper bounds of the intervals are involved in the
determination of J � K [7].

Example 1. Let us consider the case where S = {s1, s2, s3, s4} and sf1 and sf2

are both composed of a single piece each with weight 1 kg. In Table 1, we give an
example of two bodies of evidence for these two sets of pieces. The focal elements
presented in Table 1 have the following meaning: J1 means that sf1 is a pure
material of type s1 or s2, and J2 means that sf1 is a pure material of type s2,
and similarly for K1,K2.

Table 1. Bodies of evidence.

sf1 (w1 = 1 kg) sf2 (w2 = 1 kg)

F
1 m1

F
2 m2

J1 = {0, 1} × {0, 1} × {0} × {0} 0.5 K1 = {0, 1} × {0, 1} × {0} × {0} 0.6

J2 = {0} × {1} × {0} × {0} 0.5 K2 = {1} × {0} × {0} × {0} 0.4

The obtained mass function when mixing sf1 and sf2 is given by its body
of evidence ({I1, I2, I3, I4},m1⊕2) as follows:

I1 = J1 � K1 = {0,
1
2
, 1} × {0,

1
2
, 1} × {0} × {0}, m1⊕2(I1) = 0.3,

I2 = J1 � K2 = {1
2
, 1} × {0,

1
2
} × {0} × {0}, m1⊕2(I2) = 0.2,

I3 = J2 � K1 = {0,
1
2
} × {1

2
, 1} × {0} × {0}, m1⊕2(I3) = 0.3,

I4 = J2 � K2 = {1
2
} × {1

2
} × {0} × {0}, m1⊕2(I4) = 0.2.

3.3 Inference from Imprecise Proportions

The set Aα of vector proportions that satisfy
∑

i∈A

θi ≤ α is of interest in our

problem because it allows expressing constraints containers must respect, as
indicate Eq. (1b). Thus we need to make inferences over such event. Given focal
elements I = I1 × ...×In, in case where Ii = [�i, ui] are intervals it was shown [7]
that

I ⊆ Aα ⇔ min(
∑

si∈A

ui, 1 −
∑

si �∈A

�i, ) ≤ α



I ∩ Aα �= ∅ ⇔ max(
∑

si∈A

�i, 1 −
∑

si �∈A

ui) ≤ α

In the discrete case where Ii = {τ1, τ2, . . . , τ|Ii|}, τi ∈ [0, 1], the two previous
formulae remain valid when considering ui = max

t=1,...,|Ii|
τt and �i = min

t=1,...,|Ii|
τt.

3.4 Cautious Predictions

In our case, belief functions will be produced by classifiers that will be learned
from a set of examples/pieces f1, . . . , fl having m features X1, . . . , Xm having
received a label in S. Given a new object f , this classifier will output a mass
m(.|f) as a prediction.

Such classifiers are indeed useful in our application, as they provide more reli-
able information, and can account for many defects, such as the missingness of
some feature Xj for f (due to a broken sensor), or the fact that measurements are
done by industrial on line machine device instead of laboratory measurements,
meaning that variability in measurement due to atmospheric disturbances, age-
ing of plastics, black or dark-coloured materials, etc. lead to reducing the quality
of the spectrum obtained from plastic pieces. In this situation, classifier produc-
ing point prediction, i.e., single element from S as prediction, will make to many
errors to provide a reliable sorting. Instead of point prediction classifiers, we will
use classifiers providing cautious predictions in form of a posterior mass func-
tion over S [8], but the approach could apply to other such classifiers [3,4,11].
It should be stressed that in our case, one could prefer to put a good plastic in a
low price container rather than ruining a high price container by violating con-
straints (1b), so being cautious by accounting for imperfectness of information
is essential.

3.5 Choquet Integral

The Choquet integral [9] is an integral that applies to non-additive measures,
often referred as fuzzy measures [10]. Since a Belief function defined over a
space S is such a fuzzy measure1, we can apply the Choquet integral to it in the
following way: given a vector of real positive values y = (y1, ..., yn) ∈ R

+n, its
Choquet integral w.r.t. Bel is defined as

CBel(y) =
n∑

i=1

(yσ(i) − yσ(i−1))Bel({sσ(i), sσ(i+1), ..., sσ(n)}) (6)

where 0 = yσ(0) ≤ yσ(1) ≤ yσ(2) ≤ ... ≤ yσ(n) (σ is a permutation over
{1, . . . , n}).

If Bel = Pl, then Eq. (6) is simply the standard expectation operator. Oth-
erwise, it can be interpreted as the lower expectation taken over all probabilities
Bel ≤ P ≤ Pl, i.e., all probabilities bounded by our imprecise knowledge.
1 It is such that Bel(∅) = 0, Bel(S) = 1 and is montonic, i.e., A ⊆ B → Bel(A) ≤

Bel(B).



4 Optimisation Problem Statement in the Framework
of Belief Function

We now provide an equivalent of the optimisation problem ingredients (4a)–(4c)
in the framework of belief function. We consider all the previous ingredients,
except that now the information about a new piece to add to a container is given
by a mass function m(.|f) defined over S = {s1, . . . , sn}, and our information
about the proportions of materials in a given container c is also given by a mass
function mc bearing on U. As before, one can easily go from a mass m(.|f) on
S to a mass on U (see Example 1 for an illustration).

4.1 The Objective Function

The expected value in the objective function (2) can be replaced by the Choquet
integral based on the belief function Bel(.|f). As in Sect. 2, we will only be
interested to model in the objective function the potential gain of adding the
new piece f to one of the container, without bothering about the container
current proportions, as those will be treated in the constraints. If g is the overall
gain of a container containing materials of a specified kind A, where elements
A ⊂ S are considered as impurities whose percentage should not exceed αc, we
simply consider the function gc(s) = g(s) for s ∈ A, and gc(s) = αc · g(s).

Example 2. Consider four material types S = {s1, . . . , s4} and three containers.
Table 2 presents an example of gains obtained when adding piece f to each con-
tainer. We consider that container 1 is dedicated to s1 and other type proportions
should not exceed α1; container 2 is dedicated to s2 and s3 (deemed compatible
for recycling) and other type proportions should not exceed α2; container 3 is
the garbage bin, so α3 = 1.

Table 2. Container gains.

s1 s2 s3 s4

Container 1 100$ α1 . 100$ α1 . 100$ α1 . 100$

Container 2 α2 . 100$ 100$ 100$ α2 . 100$

Container 3 1$ 1$ 1$ 1$

The example of Table 2 shows that the larger the threshold, the higher the gain
when adding impurities to a container.

Still denoting by gc(si) the gain obtained if the real type of the added piece
to the container c is si, Eq. (2) becomes:

max
c∈{1,...,C}

CBel(.|f)(gc(s1), . . . , gc(sn)) (7)



The objective function (7) is an expected value based on Choquet inte-
gral where gains are weighted related to our belief on the material type of
the new piece including imprecise information. Let denotes x(1) = min

i=1,n
gc(si),

. . ., x(n) = max
i=1,n

gc(si) such as x(1) ≤ x(2) ≤ . . . ≤ x(n), then this expected

value guarantee x(1) surely and adds to it the gaps x(i) − x(i−1) weighted
by Bel({s(i), . . . , s(n)}|f).

Example 3. Let us consider a mass function m(.|f) with the following body of
evidence ({{s1}, {s1, s2}}, (0.2, 0.8)). The resulting Bel(.|f) is given in Table 3.

Table 3. Belief function.

∅ {s1} {s2} {s1, s2} {s3} {s1, s3} {s2, s3} {s1, s2, s3}
Bel(.|f) 0 0.2 0 1 0 0.2 0 1

{s4} {s1, s4} {s2, s4} {s1, s2, s4} {s3, s4} {s1, s3, s4} {s2, s3, s4} {s1, s2, s3, s4}
Bel(.|f) 0 0.2 0 1 0 0.2 0 1

If we consider α1 = 0.25 and α2 = 0.3 in Table 2, we obtain the gains in
Table 4. In this case, without considering constraints, f should go in container 1.

Table 4. Container gains.

s1 s2 s3 s4 Expected gain

Container 1 100$ 25$ 25$ 25$ 25 + 75 Bel({s1}|f) = 40

Container 2 30$ 100$ 100$ 30$ 30 + 70 Bel({s2, s3}|f) = 30

Container 3 1$ 1$ 1$ 1$ 1

4.2 The Constraints

Let us consider that the physical weight of f is wf and the physical weight of
the current pieces in the container c is wc. The formula (5) gives us the new
mass function mf⊕c when adding the piece f to the container c. The constraints
in (3) check whether impurities in containers are not too high. However, we
must now replace he probability measure P

f⊕c in this constraint is by the pair
(Belf⊕c, P lf⊕c). One may reasonably requires the degree of certainty that a
constraint is satisfied to be very high, and the degree of plausibility of this same
constraint to be satisfied to be close to 1. Such a reasoning can be applied by
replacing the constraint (3) by two constraints:

Belf⊕c(hc(θ1, . . . , θn) ≤ 0) > ηc, c = 1, . . . , C, (8a)

Plf⊕c(hc(θ1, . . . , θn) ≤ 0) ∼ 1, c = 1, . . . , C. (8b)



where ηc ∈]0, 1] are enough large. Note that such ideas are not new, and have
been for instance recently applied to the travelling salesman problem [6].

Example 4. If we go back to the Example 2, the considered constraints for each
container can be given as follows:
Container 1:

Belf⊕c(
∑

i�=1

θi ≤ α1) > η1, P lf⊕c(
∑

i�=1

θi ≤ α1) ∼ 1,

Container 2:

Belf⊕c(
∑

i�=2,3

θi ≤ α2) > η2, P lf⊕c(
∑

i�=2,3

θi ≤ α2) ∼ 1,

Container 3:

Belf⊕c(
∑

i�=4

θi ≤ α3) > η3, P lf⊕c(
∑

i�=4

θi ≤ α3) ∼ 1.

Let us denote Aα the set of vector proportions that satisfy
∑

i∈A

θi ≤ α. In

Sect. 3.3 we give the way to determine Bel(Aα) and Pl(Aα) that are required to
check the constraints (8a) and (8b).

Finally, we have the following optimisation problem to decide in each con-
tainer a piece f should be added:

max
c∈{1,...,C}

CBel(.|f)(gc(s1), . . . , gc(sn)) (9a)

subject to Belf⊕c(hc(θc
1, . . . , θ

c
n) ≤ 0) > ηc, c = 1, . . . , C, (9b)

Plf⊕c(hc(θc
1, . . . , θ

c
n) ≤ 0) ∼ 1, c = 1, . . . , C, (9c)

n∑

i=1

θc
i = 1, c = 1, . . . , C. (9d)

To solve the optimisation problem (9a)–(9d) one needs to assess (9a) for each
container for the finite number of pieces in the deposit. Complexity issues arise
when the number of pieces is very large. Indeed, the number of focal elements
involved when determining Belf⊕c (9b) and Plf⊕c (9c) become exponential, yet
one can easily solve this issue by considering approximations (e.g., deleting focal
elements of very small mass).

5 Illustration

In this section we present an application concerning plastic sorting where the
pieces of a deposit should be separated by types of materials in different con-
tainers prior to recycling due to some physico-chemical reasons related to non-
miscibility. Optical sorting devices are used to automatically sort the pieces. As



Fig. 1. Example of sorting device

it is shown in Fig. 1 borrowed from [1], pieces of plastics arrive continuously on
a conveyor belt before being recorded by an infra-red camera. However, the on
line acquired information is subject to several issues inducing the presence of
imprecision on one hand, i.e. some features information are not precise enough
to draw clear distinctions between the materials type, and uncertainty on the
other hand, i.e. due to the reliability of information caused by atmospheric dis-
turbance, etc (please refer to [8] for more details). Two sources of information are
used to collect data. The first source of data is the Attenuated Total Reflection
(ATR) which gives excellent quality of spectra that allows experts to label pieces
easily. The second source is the optical device which provides spectra of lesser
quality. Since small quantity of badly sorted plastics can lead to high decreases
of impact resistance [13] and of monetary value, impurities should be limited.
Thus, experts have defined tolerance threshold on the proportions of impurities.

In this illustration we propose a sorting procedure based on the optimisation
problem in (9a)–(9d). The cautious classification is provided using the evidential
classifier proposed in [8].

Let us recap the procedure performed to sort each fragment f :

– Estimate the resulting composition of each container c if we add f to it as a
mass function mf⊕c using the sum operation defined in Sect. 3.2.

– Select the containers verifying the constraints (9b) and (9c).
– Compare the objective function (9a) for the selected container.
– Update the evidence about the chosen container.

5.1 Data Presentation

Let us consider a plastic waste deposit composed of 25 pieces of four material
types s1, s2, s3, s4. All the pieces have the weight w = 1. Each piece should be
sent to one of the three containers dedicated for specific material types. The first
container is dedicated to plastic types s1, s2 and the proportions of impurities, i.e
s3, s4, should not exceed α1 = 0.05. The second container is dedicated to plastic
types s3, s4, and the proportions of impurities, i.e s1, s2, should not exceed
α2 = 0.05. The third container is actually the reject option, thus all types of



plastics are considered as impurities (or considered as valid materials), but there
is no need to control them, thereby α3 = 1. Table 5 gives the gains considered
for the containers.

Table 5. Container gains for plastic sorting.

s1 s2 s3 s4

Container 1 100$ 100$ 5$ 5$

Container 2 5$ 5$ 100$ 100$

Container 3 1$ 1$ 1$ 1$

The database used for the experimentation are 23365 industrially acquired
spectra. Each example of the database is composed of its 154-dimension features
and its ATR label.

5.2 Simulations

The evidential classifier proposed in [8] has been trained on the 11747 examples
and applied on the testing set, i.e., 11618 other examples. We obtained 11618
mass functions m(.|f1), . . . ,m(.|f11618). In order to evaluate the sorting proce-
dure, we tested the performances on 40 simulations of fragment streams. The
simulation of a stream was done by selecting randomly indexes orders of test-
ing fragments f1, . . . , f11618. For computational reasons, we stopped the sorting
procedure at the 25th fragment for each simulation. Note that the complexity
of the sorting procedure is exponential, i.e., O((2|S|)nb of pieces) [7]. Figure 2, 3
and 4 show respectively the evolution of the weight of materials in the two first
containers, the belief that the constraints are respected and the real proportions
of impurities. Each curves represents one simulation and we keep the same color
in all the figures. The thresholds are set to η1 = η2 = 0.6.
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Fig. 2. Evolution of the weight of materials in container 1 and 2.



In Fig. 2 we observe that the choice between the two first containers is
balanced. As we can see in Fig. 3, the constraints defined in (9b) are always
respected. Using the testing labels we can evaluate the real proportions of impu-
rities.
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Fig. 3. Evolution of the belief that the constraints are respected in containers 1 and 2.

In Fig. 4, we observe that the proportion of impurities are most of the times
below the required threshold except for a few simulations where mistakes are
made for the first pieces added in container 1 and 2. Since at the beginning of
the sorting, there are only few pieces, the mistakes have a high impact on the
proportions. After checking, it turned out that the mass functions provided for
these examples were not accurate. In order to evaluate the quality of the result-
ing sorted material, we introduce the score qc as the percentage of simulations
respecting impurities proportions constraints at the end of the sorting in the
container c. With the proposed approach we obtain q1 = 77.5% and q2 = 62.5%.
This is significantly higher than the required levels 60%, which is in-line with the
fact that we are acting cautiously. In terms of gains, the average gain obtained
in the simulations is 1901.475$ while the optimal would have been 2500$, in
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Fig. 4. Evolution of real proportions of impurities in containers 1 and 2.



the ideal case where all pieces are sorted in the correct container. However, this
would only have been possible if we had perfect classification results, something
that is unlikely.

5.3 Discussion

In order to verify the benefit of the proposed sorting procedure based on the
optimisation problem (9a)–(9d), named here evidential procedure, we compare it
to the stochastic procedure based on the stochastic optimisation problem (4a)–
(4c) and to the deterministic procedure based on optimisation problem (1a)–(1c).
We consider stochastic procedure based on the Pignistic probability derived from
m(.|f) while the deterministic procedure is based on a classifier producing point
prediction. The simulations whose results are in the Table 6 are made in the
same settings and numbers as in Sect. 5.2. Two criteria are used to perform this
comparison: the quality of the resulting materials in the two containers q1, q2;
the rate of average gain obtained on all simulations, denoted Rag.

What we see here is that not accounting for uncertainty, or considering a less
expressive model (i.e., probabilities) do indeed bring a better average gain, but
fails to meet the constraints imposed to the containers for them to be usable at
all. Indeed, the evidential procedure achieves high quality of the sorting mate-
rial while the two other procedures do not respect the required constraints on
the containers composition. This could be solved by considering more penalizing
gains in case of bad sorting for the deterministic procedure and stochastic pro-
cedure, yet this would complexify the procedure. Thus the evidential procedure
seems preferable for applications where constraints on impurities are strong, i.e.
very small α or when the confidence level required for the application is high,
i.e., η closer to 1. When such requirements are not necessary, we would advice
the use of an alternative procedure less computationally demanding.

Table 6. Comparison with alternative procedures

Procedures Rag q1 q2

Evidential 0.76059 77.5% 62.5%

Probabilistic 0.77984 67.5% 57.5%

Deterministic 0.9297 52.5% 27.5%

6 Conclusion

We proposed in this paper a formulation of the mixture problem of material
types in the framework of belief functions. The usefulness of this work is illus-
trated using the sorting procedure of plastic material. A stepwise approach is
proposed to avoid the complicated complete resolution. As perspectives for this
work, one should optimise the stepwise summing of mass functions in on line



sorting procedure by controlling the focal elements generated at each step in
order to overcome the exponential complexity. Furthermore, one may relax the
constraints on impurities at each step by requiring them only at the end of the
sorting procedure.
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