A. Balahur, S. Mohammad, V. Hoste, and R. Klinger, Proceedings of the 9th workshop on computational approaches to subjectivity, sentiment and social media analysis, Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 2018.

K. Bálint, F. Hakemulder, M. Kuijpers, M. Doicaru, and E. S. Tan, Reconceptualizing foregrounding, Scientific Study of Literature, vol.6, issue.2, pp.176-207, 2016.

D. Cer, Y. Yang, S. Yi-kong, N. Hua, N. Limtiaco et al., Universal sentence encoder, 2018.

J. Cordón-garcía, J. Alonso-arévalo, R. Gómez-díaz, and D. Linder, Social reading: platforms, applications, clouds and tags, 2013.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, 2018.

G. Franzini, E. Franzini, K. Bulert, M. Büchler, and M. Moritz, Tracer: A user manual, 2018.

M. C. Green and T. C. Brock, The role of transportation in the persuasiveness of public narratives. Journal of personality and social psychology, vol.79, p.701, 2000.

F. Hakemulder, M. M. Kuijpers, E. S. Tan, K. Bálint, and M. Doicaru, Narrative absorption, 2017.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, Bag of tricks for efficient text classification, 2016.

E. Kim and R. Klinger, Who feels what and why? annotation of a literature corpus with semantic roles of emotions, Proceedings of the 27th International Conference on Computational Linguistics, pp.1345-1359, 2018.

M. M. Kuijpers, F. Hakemulder, E. S. Tan, and M. M. Doicaru, Exploring absorbing reading experiences, Scientific Study of Literature, vol.4, issue.1, 2014.

M. Kuijpers, S. Douglas, and D. Kuiken, Personality traits and reading habits that predict absorbed narrative fiction reading, Psychology of Aesthetics, Creativity, and the Arts, vol.13, issue.1, p.74, 2019.

D. Kuiken and S. Douglas, Forms of absorption that facilitate the aesthetic and explanatory effects of literary reading, Narrative Absorption, vol.27, pp.219-252, 2017.

P. Lendvai, S. Rebora, and M. Kuijpers, Identification of reading absorption in user-generated book reviews, Proceedings of the 15th Conference on Natural Language Processing, 2019.

B. Liu, Synthesis lectures on human language technologies, 2012.

B. Magnini, R. Zanoli, I. Dagan, K. Eichler, G. Neumann et al., , 2014.

, The Excitement Open Platform for Textual Inferences, Proceedings of ACL Demo Session

S. M. Mohammad, S. Kiritchenko, P. Sobhani, X. Zhu, and C. Cherry, SemEval-2016 Task 6: Detecting stance in tweets, Proceedings of the International Workshop on Semantic Evaluation, SemEval '16, 2016.

M. Pagliardini, P. Gupta, J. , and M. , Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features, NAACL 2018 -Conference of the North American Chapter, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

S. Rebora, M. Kuijpers, and P. Lendvai, Mining Goodreads: A text similarity based method to measure reader absorption, Proceedings of the 3rd Swiss Text Analytics Conference, 2018.

S. Rebora, P. Lendvai, and M. Kuijpers, Reader experience labeling automatized: Text similarity classification of user-generated book reviews, Proceedings of the European Association for Digital Humanities Conference (EADH), 2018.

S. Rebora, P. Boot, F. Pianzola, B. Gasser, J. B. Herrmann et al., Digital humanities and digital social reading. OSF Preprints, 2019.

S. Rebora, P. Lendvai, and M. Kuijpers, Annotating reader absorption, Proc. of Digital Humanities Conference, 2020.

P. Stenetorp, S. Pyysalo, G. Topi?, T. Ohta, S. Ananiadou et al., Brat: a web-based tool for nlpassisted text annotation, Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp.102-107, 2012.

R. Wang and G. Neumann, Recognizing textual entailment using a subsequence kernel method, AAAI, vol.7, pp.937-945, 2007.

M. Zhang, Y. Zhang, and D. T. Vo, Neural Networks for Open Domain Targeted Sentiment, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp.612-621, 2015.