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Abstract—Belief functions are quite generic models when it
comes to represent uncertain data, as it extends a wide range
of uncertainty models (possiblity and probability distributions,
among others). Usually, belief functions are defined over finite
spaces, however many real word problems require to deal with
beliefs over a continuous space while maintaining computational
efficiency. This paper discusses the case of focal sets on the
unit simplex, and proposes efficient inference tools to manipulate
them. Such sets can be used to represent unknown proportions
that one may face in various fields like soil contamination
managing, plastic sorting or image reconstruction. In this paper,
we illustrate their use on an industrial problem of plastic sorting,
where the proportion of material impurities must not go over a
limit while minimizing the rejection of sorted materials, whose
nature is uncertain.

Index Terms—belief function, continuous focal sets, inference,
plastic sorting.

I. INTRODUCTION

Belief functions [1] [2] are very rich uncertainty models,
extending many existing models such as fuzzy sets and prob-
ability distributions [3]. Usually, belief functions are defined
over finite spaces, however many problems require to maintain
belief over a continuous space, even if it is based on a finite,
discrete number of items of information. See, for example [4]
that deals with the bivariate real space.

A specific case is the one where we are interested in focal
sets (subsets receiving a positive mass assignment) that lives
in the n—unit simplex, i.e., the set of positive vectors with n
elements 61, ...,6, summing up to one. Indeed, such vectors
can represent unknown proportions such as the composition
of mixed components in a soil (to assess the amount of
pollutants), in a container (to assess whether it is pure enough
in one given component), or ill-known histograms (e.g., of
pixels of a given colour in an image). Dealing with such
information may be difficult in general, as focal elements are
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possibly infinite, and may take various forms. In practice, it
is therefore necessary to simplify the problem and deal with
specific subsets of the initial continuous space.

In this paper, we consider that we receive imprecise infor-
mation about the vectors of proportions coming in the form of
interval-valued proportions, but have precise information about
their relative weights. More precisely, we will focus on the
addition of such vectors. Section II describes our proposal, as
well as some efficient ways to perform inferences. Section III
illustrates this on a real-case scenario of plastic sorting where
the goal is to recycle the plastic, and therefore to maintain the
degree of impurity of a given container below a given level.

II. FORMAL DESCRIPTION

We consider that we have n kinds sq, ..., s, of materials,
elements, etc. in a given space, for instance a container.
We also assume we have information about their proportions
01,...,0,, ie, 0; € [0,1] and > 0; = 1. We denote
© = {(01,...,0,) € [0,1]"]>,, 0 = 1} the set of all
possible proportions. '

A. Addition of imprecise proportion vectors

In this section, we consider that new information about the
proportions will come as a precisely known total weight of
new elements with imprecise information about their possible
proportions. More particularly, an imprecise piece of informa-
tion j will be formed of two components:

e a precise weight w’ € R* of elements counted up to
now (in number of pixels, of soil area, of mass in the
container, ...) o

o intervals Z7 = {[¢7, ]}, where [¢],u]] C [0,1] denotes
our imprecise knowledge about the proportions 6; of
materials, elements that are of the kind s;. As these
intervals must describe imprecisely known proportions,
they should contain at least one precise set 0y,...,0,
such that 0; € [I7,u]] ie., Y ¢ <1 <3 wu! [5], and be
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reachable, meaning that there exists at least one vector of
proportions (61, ...,0,) with either 6; =[] or 6; = u],
and this for every i € {1,...,n}, e, > i +u; <1

J#i
and ) wu; +1; > 1, Vi [5]. Note that here, we will

J#i
automatically satisfy such requirements, as bounds come
from physical observations.

We now consider that we have an initial information w?!, Z! =
{[¢*,u]} representing the current total weights of items and
their partially known proportions, and that we want to add a
new item of imprecise information w? 72 = {[¢?,u?]}. The
weight of their combination will be w!+w?, and the combined
intervals will be denoted by Z' F Z? where

[0}, uf] B 6, uf] = [I,u] (1)
with
l= w! Iy w? 02
wl+ w2t Tl 2 i
and
U S
wl +w? " wl w2

Example 1: Consider that we have three kinds of materials
S1, 82,53 and we have two pieces of information. The first
information concerns a container with total weight w! = 1kg
of different objects containing a proportion 6, € [1/4,1/2] of
s1, a proportion 2 € [0,1/3] of sy and a proportion 3 €
[V/6,3/4] of s5. The second piece of information concerns a new
element added to the container with the same weight w? =
lkg and with proportions 6, € [0,1/2], 82 € [0,1/2], O3 €
[0,1/2] (no material exceeds half of the total weight). When
the new piece is added to the container, we will have the
following proportions:

war (53] 2] [

Remark 1: A particular type of vectors often found in
applications, and in particular plastic sorting, is the case where
it is assumed that the new element is pure, i.e., is made of only
one kind among s, ..., s,, but where we only know that this
element belongs to a subset § # E C {s1,...,$,}. In this
case, the convex closure of the corresponding information item
T} is

{0}if s; € E,
) =< {1} if E = {s}, 2)
[0,1] if s; € E and |E| > 1.

Without considering the convex hull, the last item should be
{0,1}, yet as all subsequent inferences will be linear, and
therefore will be obtained on extreme points, considering the
hull will not change them, and will considerably simplify our
exposure.

B. From imprecise proportions to evidential proportions

In practice, we may have more refined information about
the proportions than a purely imprecise information. Belief
functions and mass assignments are very flexible models of
uncertainty that encompass in one sweep intervals, possibility
distributions (a.k.a. fuzzy sets describing uncertainty), prob-
ability masses, etc.. In particular, we will consider in our
application (Section III) that information about the elements
added to a container is given by a classifier outputting belief
functions.

A belief function on a space O (here the space of all pro-
portion vectors) is formally equivalent to a mass assignment
m : P(0) — [0,1] where P(O) is the power set of ©. From
such a mass can then be defined different measures, such as
the belief and plausibilities in an event A C O, defined as

Bel(A)= > m(E) 3)
ECO, ECA
Pl(A)= >  mE). “

ECO, ENA#£0D

These measures are dual, in the sense that Bel(A) = 1 —
PI(A€). Here, we will only consider subsets in the form of
bounded proportion vectors Z. For a mass function m/, we will
denote by F/ the set of bounded proportion vectors having a
positive mass.

Given two belief functions m!, m? bearing on proportion
vectors, associated to weights w! and w? of elements, we
define the mass resulting from the sum m'®? as

b

T'eFt 1" eF?
I=T'B1"

1

m'®(7) = m*(Z') . m*(T"). 6)

where H is defined in formula (1) and the total weight
associated to the mass function m!®? is w! + w?. This
operation can of course be repeated iteratively if we have more
than one mass function. It should be noticed that if all mass
functions have a finite number of focal elements, then so has
m!®2, with the number being at most |F*| - |F?|. In practice
we may have to approximate the results to control the number
of focal elements if this number becomes too big.

Example 2: Let us extend Example 1, Subsection II-A where
evidential information is considered instead of imprecise in-
formation. TABLE 1 gives the two masses concerning the
container m! and the new object m?2.

TABLE I
THE TWO PIECES OF EVIDENTIAL INFORMATION

The container (w! = 1kg) The new object (wl = 1kg)

fl ml ]_‘2 m2

7, 0.5 i 0.6
[1/4,1/2] x [0,1/3] x [1/6,3/4] [0,1/2] x [0,1/2] x [0, 1/2]

z 0.5 " 0.4

[0,1/s] x [0, /6] x [3/6, 1] 10, 1/6] [0, /6] x [5/s, 1]




When the new piece is added to the container, we will have
the following focal elements for m!®2:

T, BT, = ([Ys,Y/2] x [0,5/12] x [/12,5/3]),
m'®(7, BI,) = 0.3,

BT, = ([1/s,1/3] x [0, /4] x [1/2,7/s]),
m'®(T, B1,) = 0.2,

T, BT, = ([0,1/3] x [0, /3] x [3/12,3/4]),
m'®2(T, BI,) = 0.3,

L, BT, = ([0, /6] x [0,1/e] x [5/6,1]),
m'®(T, B1,) =0.2.

C. Some inferences over evidential proportions

Of course, once we have computed our uncertain knowledge
about the element proportions, we will have to make some
inferences about them, and in particular compute plausibili-
ties/belief for specific events A. A particular kind of event
(and its complement) we will be interested in are events of the
kind “’the % of materials of kind A is below some threshold
a”, where A C {s1,...,8,} is a subset of specific material
kinds. One may think for instance of having a limited quantity
of pollutants in the soil or a limited number of impurities in
a container of plastic to recycle. Such kind of events, that we

will denote by A,, simply translates into > 6; < «. More
s;i€EA
precisely, A, is a subset of © such that:

ZQiga}

s;€EA
(6)
Let us now consider a belief function m defined over vector
proportions. To compute [Bel(A,), PI(A)], we will have to
check whether focal elements are included, overlap or are
disjoint with A,. For a given focal element 7 € F, this can
be done easily:

e We will have Z C A, if the sums of all possible
proportions in Z of materials within A are below the
threshold «. This can be done simply, as we have

IQAQ(:)min(Z u;, 1 — Z&,)ga
s;i€EA s EA

Ao ={(61,...,0,) €[0,1]": Y 6; =1and
i=1

)

with the first term of the last inequality being the maximal
proportion of material that can be given to A, given our
imprecise knowledge 7.

o We will have ZN A, # ( if there is at least a proportion
vector for which the proportion of materials given to A
is below «. This can again be simply checked as we have

ITNAa#0emax( Y Li,1— Y uw)<a (@8)

s;€EA s EA

01

|
—

02:1 A A :':03:1

Fig. 1. Representation of the different subsets in the simplex

with the first term of the last inequality being the minimal
proportion of material that can be given to A, given
our imprecise knowledge Z. Clearly, if this proportion is
below «, then it proves that at least one vector is within
A,, and if it is above, then no vectors will have a lower
proportion in material within A, and therefore ZNA,, = 0.

Note that, in practice, such events can easily be combined.
Assume for example that elements in A should not be over
a percentage «, and that elements in B should not be over
a percentage 3, then checking whether Z C A, N Bg and
ZN(AaNBg) # 0 simply amounts to perform the checks (8)
and (7) for A, and Bg separately, as we are concerned by
their intersection (this would not be true for their union). Also
note that checking whether elements in a subset C' are above
some threshold ~ simply comes down to check event Cy_.
This remark of course extends to any number of events of this
kind. In particular, one could check whether the percentage
of a particular damaging material {s;} or pollutant is not too
high (or if the amount of an interesting or necessary element
is high enough).

To compute [Bel(A,), Pl(A,)] and  therefore
[Bel(AS), PI(AS)], we only need to perform |F| the
checks described above, or even less if JF has a specific
structure (e.g., nestedness of focal elements).

Example 3: Let us go back to Example 2, Subsection II-B.
Let us consider A = {s1, s2} and o = 0.25 (there should be at
most 25% of type 1 and 2, or equivalently at least 75% of type
3), TABLE II gives the results of different checks described
above related to A, and Fig. 1 shows the representation of
the imprecise vectors in the unit simplex.

TABLE I
COMPUTATION OF Bel(Aq) AND Pl(Aq)

Belief Bel Plausibility Pl

J ml@Q(j) J C Aa J N Aa 7é 0
Ji =1, BT, 0.3 no no
T2 = I; 22) I% 0.2 no yes
T3 = I? BHZ ) 0.3 no yes
Js =1, BI, 0.2 yes yes

Bel(Ay) =0.2 | Pl(Ax) =0.7
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Fig. 2. Example of sorting device

III. APPLICATION TO PLASTIC SORTING

In this section we present an application concerning the
plastic sorting for recycling purposes in industrial condi-
tions. Due to some physico-chemical reasons related to non-
miscibility, plastics must be sorted by types of materials prior
to recycling. For some types of different materials that share
close visual characteristics, manual sorting is infeasible. More-
over the throughput of sorting is demanding. Optical sorting
devices provide benefits for these issues. Fig. 2, borrowed from
[6] illustrates such device. In practice, fragments of plastics
arrive continuously on a conveyor belt before being recorded
by an infra-red camera. The information acquired for each
fragments is then used to decide the sorting of the fragments,
i.e., to which container the fragments should be sent. However,
the acquired information is subject to several issues inducing
the presence of imprecision, i.e. some features information
are not precise enough to draw clear distinctions between the
materials type, and uncertainty, i.e. some obtained features
are not completely consistent with the reality. We refer to
[7] for details. Two steps are considered in the sorting of
a fragment. The first step consists to apply a classifier that
is integrated to the sorting device. Then the second step is
dedicated to perform on line sorting decision with constraints
on the composition of the containers.

Since small quantity of badly sorted plastics can lead to
high decreases of impact resistance [8] and of monetary value,
impurities should by limited. Thus, experts have defined tol-
erance threshold on the proportions of impurities. The second
step is used to check compliance with such constraints. In
this application we focus only on the second step which is an
illustration to the work presented in this paper. We consider
therefore that the results of the first step are available and used
as inputs for the second step.

A. Data presentation

Let us consider a plastic waste deposit of three material
types si1, 82,83, we denote their set by S = {s1,s2,53}.
Let us consider a fragment f to be treated by the sorting
device. The fragment f is composed of the proportion 6, of
s1, the proportion €5 of sy and the proportion 63 of ss. To
simplify we consider only one container that is dedicated to the
plastics respecting some constraints and all other fragments are
rejected. The sorting devise has two options for the fragment f

1) blowing it to the container or 2) rejecting it. The procedure
could be easily generalised to more possible options by adding
other containers.

For example, we can consider that the proportions of mate-
rials of kinds A C S should not exceed some thresholds « in
the container. We use the set A, defined in (6), to express this
kind of constraints. This means that this container is dedicated
for A€ and elements of A are impurities. We refer to "positive
sorting” when the fragment is blown to the container.

As mentioned before the information about the vector of
proportions (01,65, 03) related to f is provided by a classifier.
More precisely, we consider the case of a multi-label classifier
which provide us with the set of the material types present
in the fragment f. The information provided is a posterior
probability p(.|f) of the presence of a combination of elements
of S in the fragment f. In the following we adopt the notation
s; A\ s; to say that the fragment is composed of material types
s; and s;. To simplify we consider only the cases where
the classifier hesitates between two compositions, e.g., if the
classifier hesitates between two compositions s; and s; A ss,
we have p(s1|f) + p(si A ssl f) = 1.

In the latter example where the classifier hesitates to con-
sider f as a pure material type s; or as a combination of both
material types s; and ss, let us consider that it provides the
following probabilities: p(s1|f) = 0.4, and p(s1 Asg|f) = 0.6.
Note that the information ”p(s; Ass|f) = 0.6” does not inform
us about the proportions of materials s; and s in f but only
about their possible presence in the fragment, i.e., we only
know that the proportions #; and 65 are in ]0, 1], that we
will transform into the closed interval [0, 1] without loss of
relevant information in our case (see Remark 1). Finally, from
this information about the presence of materials in fragment
f one can express a mass function m(.|f) on the proportions
of these materials. The corresponding focal elements Z°* and
I51783 are:

I = ([la 1]v [070}7 [07 0])a
Is1/\s3 — ([O’ ]_]’ [O7 O}, [0, 1]),

where Z°' is an information coming from the output of the
classifier: p(s1|z) = 0.4 and Z°*"% from p(s; A s3|z) = 0.6.
The probability masses are transferred to Z5! and Z°1/%3;

m(T5|f) = 0.4, m(T="%|f) = 0.6

More generally, let us consider a fragment f for which the
classifier provides a non-null probability for the composition
C of materials. The corresponding imprecise vector of pro-
portions is then Z¢ = ([ly,u1], [l2, ua], [I3, u3]) where:

[0,0] if S; € C,
[1,1]if C = s;,
[0,1] if s; € C and |C| > 1

[Liy us] =

Furthermore, weighing precisely each small fragments is a
fastidious task, consequently we consider in this application
that the weight of a fragment is approximated by the number
of pixels in its acquired image.



B. Updating bucket composition with classifiers

Consider that f is the new fragment to treat by the sorting
device, we have the following information about f:

o its weight W/,
o its mass function m(.|f),

Concerning the container that contains k£ fragments, we have
the following information before treating the fragment f:

« the current weight W™ of the fragments it contains,
o the mass function my describing our knowledge of the
current proportions of materials it contains.

If f is added to the container, the current weight W™t and
the mass function my, are updated using the sum operation (5):

(M1, WESS) = (my @ m(|f), W™ + W) (9)

From myg.1, we can estimate our belief of whether the
impurities proportions is not currently too high by computing
Belg11(Aq).

We denote myfin, the resulting mass function for the
proportions in the container at the final step and W the total
capacity of the container, i.e., its weight at the end of the
sorting.

C. Making inference about bucket potential

We think that the behaviour of the decision-maker should be
designed carefully, as it has a real impact on the final positive
sorting rate, i.e., the amount of positively sorted material over
the total amount of sorted materials when W is reached . The
higher this rate is, the faster the container is filled and thus
the less material are rejected. However, while the container
should be filled as fast as possible, it should also respect the
impurity constraints.

So far we are able to track the evolution of our knowledge
about the container’s composition in real time and make
inference about impurity constraints satisfaction. One could
then base the sorting decision on the inference about the event
A,,. For instance, a decision procedure for the sorting of f may
rely on the potential resulting composition of the container
if we add f to it. Thus the sorting device would blow the
fragment to the container only if:

Bely, @ Bel(Au|f) > n, (10)

with 7 being a confidence threshold belonging in [0, 1] that
should be large enough to limit the risk of having a bad con-
tainer. Considering this decision for each successive fragment
will ensure that at any time during the container filling, the
belief that impurity constraints are respected will be higher
than 7. This is a very strong constraint, as only very pure
elements added in the future could make Bel(A,) increase.
A more flexible procedure could be considered where the
sorting device may blow some fragments to the container
even if the resulting composition in the container leads to
Beli(Aa) < n. Indeed, the constraints on the impurities are
required to be satisfied only at the end of the filling of the

container, i.e., when the amount of material in the container
reaches the total weight W. The objective then is to verify

Belfinal(Aa) > 1. (11)

The idea behind the flexible procedure is to make hypothe-
ses about the future coming fragments in order to better assess
the benefit of adding the current fragment. Thus Bel 41 (Aq)
needs to be estimated at any time. We think that a reasonable
tolerance on the quality of fragments is preferable at the
beginning, and more exigency is required at the end to
compensate for the first more hazardous decisions. This leads
us to consider rather optimistic thoughts about the future
fragments. A simple hypothesis is to consider that in the short
term, future fragments would be of the same nature of the
current fragment and in the long term the last fragments will
be “good” fragments, i.e., we would have some evidence that
they are composed by materials of kinds A°€.

Let us consider W,esr = W — W™ the remaining weight
required to fill up the container. We consider that the first half
of the future filling fragments correspond to a first fictitious
fragment frartl of weight W,..s:/2 having a mass function
mPetL identical to the mass function of the coming fragment,
i.e., mPat = m(.|f). On the other hand, we consider a
second fictitious fragment frart2 of weigh W /2 for the
second part of the container yet to fill. Traducing optimism
on this second part, we chose to represent the belief about
P2 by a mass function that assigns a large mass for the
event that fP%7*2 is of kind A°, i.e. the elements for which the
container is dedicated. To obtain such mass function we can
consider the focal element ZP?"*2:

[0,0] if s; & A°,
[1,1] if A° = {s;},
[0,1] if s; € A® and |A°] > 1,

Ilpa'rtQ _ (12)

then we define the mass function on the proportion of fPe"t2
by:

mpartQ (Ipm’I‘,Z) =7,

mpart2(®) =1— v,

~ € [0, 1], chosen according to our degree of optimism. See

Fig. 3 for a recap of all information and hypotheses used for
estimating the evidence about the final composition of the
container. By considering the latter fictitious fragments, we
can allow small risk taking at the beginning of the sorting, as
a high v means that we hope future fragment can compensate
previous risky decisions. Indeed, at the beginning W, is
high so our optimistic hypothesis has an important role in the
evaluation of (11). However, as the sorting progress go on,
the portion of future fragments will decrease, and so will its
influence in the estimation of belief of the final composition.
On the other hand the current state of the container composi-
tion will have an increasing influence in the evaluation of (11).
Therefore the sorting would be more exigent when progressing
to the final steps.
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Fig. 3. Estimation of the container composition under our simple hypothesis

TABLE IIT
AVERAGE VALUES OF Bel f;5,41(Aa) AND final positive sorting rate ON 15
SIMULATIONS
Naive | Cautious | Flexible
Belfinai(Aa) 0.666 0.613 0.678
Final positive sorting rate | 0.132 0.022 0.110

D. Simulations

In this subsection we present simulations of the sorting
scenario where the proportions of the plastic of material
types s; and so must be minimized in the container that is
dedicated to material type s3. To simplify the presentation,
we assume that all fragments are composed of a single pixel,
i.e., w = 10g. For each simulated fragment f, the probability
pi is randomly generated (in practice, it would come from
a classifier). Thus we used the following setting: n = 0.6,
a = 0.25 and W = 100g. We have considered different
procedures for filling the container to sort a fragment f:

« Naive procedure: the decision is only based on the infor-
mation concerning the current fragment. If Bel(A,) > 7
is verified for m(.|f) then fragment f is positively sorted.

o Cautious procedure: the decision is based on the infor-
mation concerning the current fragment m(.|f) and the
current composition of the container, i.e., mg—1. If (10)
is verified then fragment f is positively sorted.

o Flexible procedure: as described in the previous subsec-
tion, this procedure is based on some estimation of the
evidence on the container final composition. Eventually
the procedure corresponds to sort positively f only if our
estimation of 7 finq; as my Sm(.|f) & mPertt @ mprart2
implies that (11) is verified. In the simulations, we choose
mPe2 by setting v = 0.8 higher than 7 traducing our
degree of optimism.

The evolution of Beli(A,) is plotted regarding the sorting
progress in Fig. 4, 5 and 6, respectively for the latter three
approaches. Each curves represents a simulation and stops
with a bullet marking the end of the sorting, i.e., filling of
the container. Note that each simulation has different duration
because of the rate of positive sorting, i.e., the higher the
rejected fragment rate, the longer the duration. To better
compare the results of the approaches, we used the same set
seed simulations for the three procedures. The average on all
simulation for Bely;nq1(Aq) and for the final positive sorting
rate are presented in TABLE III.

1) Naive procedure: This procedure has the advantage to
quickly fill the container (see TABLE III). Yet as we can
observe in Fig. 4 this procedure does not guarantee that (11)
will be respected. In fact we could verify (11), by requiring
much more exigency concerning each fragment f; added in
the container, however doing so would not be feasible for
industrial sorting where container capacity W is large.

1.0
0.8

0.6

Bel(A,)

0.2 o

0.0

I I I I I
0 50 100 150 200

sorting progress

Fig. 4. Naive procedure

2) Cautious procedure: As mentioned in subsection III-C,
this procedure imposes that for all step of the container filling,
k, Beli(A,) > n. The drawback of this procedure is that it
only focuses on the current container’s composition without
anticipating the future. Hence, in favourable situation, i.e.,
Bely(Ag) is much higher than 7, some bad fragments could be
added to the container without much harm. However, doing so
successively and too often would decrease the composition’s
quality up to an unacceptable mix. Also, as we can see in
Fig. 5, for some simulations the device sorting takes a very
long time to fill the container (arrows are added to Fig. 5
to represent sorting simulations that end after more than 220
iterations).

1.0 4
0.8

n0.6

Bel(A,)

0.2

0.0

I I I I I
0 50 100 150 200

sorting progress

Fig. 5. Cautious procedure

3) Flexible procedure: In the flexible procedure we can
have Bely(A,) < 71 during the sorting, but as we can see in



(6), the restriction on impurities are always fulfilled in the end
of the sorting. Moreover the rate of positive sorting at the end
of the sorting is better than for the cautious procedure (see
TABLE III). This is due to the fragments selection which is
more suitable for the twofold objective, i.e., respecting (11)
and minimizing the rejected fragments, in this procedure.

N 0.6

Bel(A,)

0.2

0.0

1 1 1 1 1
0 50 100 150 200

sorting progress

Fig. 6. Flexible procedure

4) Computational complexity: Let us denote [ the number
of iterations carried out until the filling of the container.
Obviously, I > final, with equality when no fragment were
rejected. In the case of the naive procedure, A, is compared
only to two intervals for each fragment f to determine
Bel(Ay|f). Indeed, in this illustration we considered that
m(.|f) has only two focal elements. Thus, the complexity is
linear in this case, i.e., computational complexity is O(l).

Concerning the approaches that take into account the up-
dated evidence about the container composition, as in the
cautious and flexible procedures, the number of focal elements
associated to my = my_1 & m(|fr) grows exponentially
related to the number of fragments f; in the deposit. Indeed,
if F, denotes the set of focal elements of m(.|f;), we have
at most

focal elements for my. In this illustration we considered that
| Fi| = 2, for all fragments f;,. Thus, m; has at the most 2%
focal elements.

In the cautious procedure, it is necessary to determine
Bely(A,) for all the ! fragments, including those rejected.

l
The cost of these operations is lower than Y 27. Thus the
j=1

cautious procedure has an exponential complexity O(2!).

The flexible procedure is more costly than the cautious
one and its complexity is also exponential. Indeed, two focal
elements for each mass mP?** and mPe"*2 should be taken
into account at each step. Thus 2**2 total focal elements are
considered and the computational complexity is O(2!).

To reduce the number of focal elements, one may use
approximation, for instance considering that ”very close” focal
elements as the same. For example, intervals Z* = [, u!] and

7I? = [I?,u?] may be seen as “very close” if the Euclidean
distance between all intervals bounds of Z' and Z? is below
a small positive real value e:

n

DI =122+ (u} —u?)?] < e

=1

On the other hand, one may consider that focal elements to
which a very small mass is assigned could be removed and
their masses can be transferred to the whole set as ignorance.

IV. CONCLUSION

This paper proposes tools to represent and make inference
on the unit simplex in the framework of belief functions.
This work focuses on summing proportions represented first
by intervals then by mass function. In the case of mass
functions, the paper proposed an easy way to make inference
in order to obtain belief function and plausibility function of
some specific events. This work is illustrated on the plastic
sorting problem where the issue is to control the propor-
tions of some plastic types in the sorting container. Three
sorting procedures are proposed to deal with the problem
of impurities constraints that the sorting container should
respect. The flexible procedure is the most interesting one.
As perspectives for this work, one should investigate more
deeply the computation complexity to ensure the integration
of the flexible procedures to a real-time sorting machine taking
into account the industrial constraints. Also, we can extend this
work to more general focal elements than convex ones.
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