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Abstract. The survival of a supermarket chain is heavily dependent on
its capacity to maintain the loyalty of its customers. Proposing adequate
products to customers is the issue of the store’s assortment. With tens
thousands of products on shelves, designing the ideal assortment is the-
oretically a thorny combinatorial optimization problem. The approach
we propose includes prior knowledge on the hierarchical organization
of products by family to formalize the ideal assortment problem into
a knapsack problem. The main difficulty of the optimization problem
remains the estimation of the expected benefits associated to changes
in the product range of products’ families. This estimate is based on
the accounting results of similar stores. The definition of the similarity
between two stores is then crucial. It is based on the prior knowledge on
the hierarchical organization of products that allows approximate reason-
ing to compare any two stores and constitutes the major contribution of
this paper.

Keywords: Optimal assortment in mass distribution · Semantic
similarity measures · Knapsack problem

1 Introduction

Competition in large retailers is becoming increasingly intense; therefore, in 
order to satisfy fluctuating demand and customers’ increasing expectations, deal 
with the competition and remain or become market leaders, retailers must focus 
on searching for sustainable advantages. The survival of a supermarket chain 
is heavily dependent on its capacity to maintain the loyalty of its customers 
[11,12]. Proposing adequate products to its customers is the issue of the store’s 
assortment, i.e., products offered for sale on shelves [10,13]. Moreover, retail-
ers are faced to manage high stores’ networks. This way, they use a common 
assortment shared in the stores’ network to allow an easier management [14].
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Therefore, stores share a common and centralised assortment [18] with some
tolerated exceptions to take into account specific characteristics of stores in the
network [16]. To improve their global performance, retailers aim to increase their
knowledge on stores’ specific characteristics in the network to suggest the optimal
assortment for each store, e.g., they try to identify the products that perform
remarkably in some stores of the network to recommend them to other simi-
lar stores. However, the definition of similar stores is not so obvious: it can be
related to the localisation of stores, their assortments on shelves, their revenues,
their format, e.g., Hypermarket, Supermarket. . . [11]. This concept of similarity
plays a central role in this contribution.

In this article we address the question of the ideal assortment in supermar-
kets. To better understand the complexity of the task, it must be remembered
that some hypermarkets offer up to 100,000 products [16]. Defining the ideal
assortment in a department store consists in selecting this set of products. More
formally, this thorny problem corresponds to an insoluble combinatorial opti-
mization problem. In practice, decisions are made locally by a category man-
ager, while the problem of the ideal assortment should correspond to a global
decision at the store level. To tackle this question, retailers have prior knowledge
available [17]. Indeed, department store are organized into categories, e.g., food,
household products, textiles, etc. These categories are themselves divided
into families or units of need (e.g. textiles category is derived into woman, man
and child sections and so on). This hierarchical organization of products makes
it possible to reason about families of products, structure the decision and thus
avoid combinatorial explosion. Most of the time, a hypermarket cannot choose
a single product to increase its offer. Indeed, this additional item necessarily
belongs to a level of assortment or product line, generally in adequacy with the
size or the location of the store: choosing a product requires to take all products
associated to the same level of assortment [16,18]. For example, if a store offers
a soda section, it can be satisfied with a minimum offer, e.g., Coca-Cola 1.5L;
but it can also claim a product range more consistent: for example, it would like
to offer Lipton 2L, nevertheless, increase cannot be realized product by prod-
uct, but by subset of products and the final offer should be Coca-Cola 1.5L +
Lipton 2L + Orangina 1.5L + Schweppes 1.5L.

The proposed approach includes prior knowledge on the hierarchical orga-
nization of products by family and constraints on levels of assortment for each
family. It proposes to calculate the ideal assortment from the overall point of
view of store’ managers. The ideal assortment thus appears as a combinatorial
optimization problem that can be solved thanks to approximate reasoning based
on the products’ hierarchy of abstraction. The main difficulty of the optimiza-
tion problem remains the estimation of the expected benefits associated to any
increase of the product range in a given family. This estimate is based on the
accounting results of similar stores. The definition of the similarity between two
stores is then crucial. It is based on the prior knowledge on the hierarchical
organization of products that allows approximate reasoning and constitutes the
major contribution of this paper.



2 Modelling the Ideal Assortment as a Combinatorial
Optimization Problem

Let Ω be the department store.
Fi is the ith family of products, i.e. a set of products that are related to a same

use category or consumption unit (e.g., soft-drinks, household electrical
products, etc.).

Recursively, any family Fi is a specialization of a super family: e.g.,
Coca-cola ∈ FSoda ⊂ FSoftDrinks ⊂ FDrinks.

Products can thus be organized within a taxonomic partial order defining
an abstraction hierarchy (Fig. 1). Products are the most specific classes of this
partial order, the leaves of the taxonomy.

Let us distinguish the particular case of families of products, i.e. the families
the lower in the hierarchy, the less abstracted ones because their descendants
are concrete products (direct parents of products). For each of these families of
products Fi, a product range or level of assortment s(Fi) is defined: for each
family of products, the department store may choose the wideness of s(Fi) in a
finite set of opportunities imposed by the direction of the stores’ network. For-
mally, for each family, a hierarchy of subsets of products ski(Fi) = 1..n in the
sense of the inclusion relationship (i.e. ski(Fi) ⊂ ski+1(Fi)) is defined and the
department store can only choose among the subsets ski(Fi) as product range
for Fi (e.g. imagine the minimal product range of the Soda family would be
Coca-Cola 1.5L, the second one Coca-Cola 1.5L + Lipton 2L + Orangina
1.5L + Schweppes 1.5L, and so on). Thus, s(Fi) can only be a subset of prod-
ucts that belongs to this finite set of product ranges ski(Fi) = 1..n defined a
priori by retailer. The size of s(Fi) is then the level ki of assortment such that
s(Fi) = ski(Fi). In practice, ki is a natural number that may vary from 1 to
9. ki = 1 when the product range for the family of products Fi is minimal and
ki = 9 when it is maximal.

Therefore, we can write: Ω �
n⋃

i=1

ski(Fi). An expected turnover p(ski(Fi))

and a storage cost c(ski(Fi)) can be associated to each ski(Fi). c(ski(Fi)) repre-
sents the storage cost the department store allocates for the family Fi.

For any super family in the hierarchical organization of products, its expected
turnover and its storage capacity are simply computed recursively as the sum of
the expected turnovers and storage capacities of the product it covers.

Designing the assortment of a department store then consists in choosing
the rank ki for each family of products (see Fig. 1). Obviously, the higher

p(Ω) �
n⋃

i=1

p(ski(Fi)), the better the assortment of Ω. Nevertheless, without

further constraints, p(Ω) should be necessarily maximal when ki = 9 ∀ i = 1..n.

In practice,
n∑

i=1

c(ski(Fi)) is generally far below
n∑

i=1

c(s9(Fi)) for obvious storage

or cost constraints C. Let us consider I a subset of families. It can be necessary
to model constraints related to this super family. For example:
c(sks.drinks(Fs.drinks)) + c(skbeers(Fbeers)) + c(skwaters(Fwaters)) ≤ CI=Beverages



Fig. 1. Products organization and department store assortment as the union of families’
product ranges

means that the storage capacity (or the cash flow) related to Beverages (super-
family FI) is limited to CI . A lower cI bound can also be introduced: in our
example, cI represents the minimal level of investment for the superfamily fam-
ily Drinks. For any superfamily, such local constraints can be added to the
optimization problem.
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Arg max
ki,i=1..n

n∑

i=1

p(ski(Fi))

Under:
n∑

i=1

c(ski(Fi)) ≤ C − global constraint

For some I in 2{1..n}, cI ≤
|I|∑

i=1

c(ski(Fi)) ≤ CI − global constraint

This combinatorial optimization problem is known as the knapsack problem
with mono dimensional constraints and bounded natural number variables.

3 Estimate of the Expected Turnover in the Knapsack
Problem

Let consider that one of the assortments to be assessed in the optimization prob-
lem includes the increase of the product range of the product family Fi: ski(Fi)
is upgraded as ski+1(Fi). The storage cost (or purchase price) c(ski+1(Fi)) can



be easily completed by the store because it is a basic notion in the retail seg-
ment. It is thus easy to inform this point in the optimization problem. On the
other hand, it is thornier to estimate p(ski+1(Fi)) that is however essential to
assess the expected performance of the new product range. When the level of
assortment of the store is ki, it is easy to fill in its turnover p(ski(Fi)) in the
knapsack problem but p(ski+1(Fi)) cannot directly assessed.

We have to design an estimator of p(ski+1(Fi)). It can only be estimated from
other reference measurements encountered in other similar stores. The basic idea
is that the more similar these “reference” stores are to the store of concern,
the more reliable the estimation. The most difficult problem is to define what
“reference” means. Intuitively, the “reference” stores are departments that are
“close” to the department store of concern and offer ski+1(Fi) to their customers.
p(skΩ

i+1(Fi)) can then be computed for example as the weighted mean or the max
of the p(skΩ’

i+1(Fi)) values, where Ω’ are the reference stores neighbours of Ω. For
sake of simplicity, the neighborhood is restricted to the nearest reference store
in our experiments. The next issue is now to define what “close to” means.

This concept of distance between any two department store is the crucial
issue. Roughly speaking, Ω should be similar to Ω’ when the turnovers of Ω
and Ω’ are distributed in the same way over the hierarchical organization of
products. It implies they have approximately the same types of customers.

Intuitively, the distance between any two stores should be based on a classical
metrics space where the n dimensions would correspond to all the products
that are proposed by the department store of a given chain; the value of each
coordinate would be the turnover of the product for example, and would be null if
the department store does not propose this product. Because some hypermarkets
offer up to 100,000 products, the clustering process on such a metrics space
would be based on a sparse matrix and then suffer from the space dimension.
Furthermore, such a distance would not capture the hierarchical organization of
products in the concept of similarity. Indeed, let’s go back to the hierarchical
organization of products in families. We can note that a fruits and vegetables
specialist department store is obviously closer to a large grocery store than to a
hardware store because the first two are food superstores whereas the last one is a
speciality store: the first two propose the same super family FFood. This intuitive
similarity cannot be assessed with classical distances. The hierarchical products
organization in families of products and super families is prior knowledge to be
considered when assessing how similar two departments stores are. It is necessary
to introduce more appropriate measures that take advantage of this organization
to assess the similarity of any two departments store. This notion of similarity
measures is detailed in Sect. 4.

In previous sections, we have introduced the levels of assortment ski(Fi), k =
1..n for any product family Fi. Note that the increase from ski(Fi) to ski+1(Fi)
must generate an improved turnover for the product family Fi to be worth-
while. By contrast, it requires a higher storage cost c(ski+1(Fi)) than c(ski(Fi)).
Therefore, the storage cost of at least one product family Fj,j �=i must be reduced
to keep the overall storage cost of the department store constant. Then, the



reduced turnover p(skj−1(Fj)) of the family Fj has yet to be estimated to com-
plete the optimization problem. However, this estimation can easily be pro-
cessed. Indeed, because skj−1(Fj) ⊂ skj (Fj), p(skj−1(Fj)) can simply be deduced
from p(skj (Fj)): it is the sum of the turnovers of all products that belong to
skj (Fj) ∩ skj−1(Fj). There is clearly an assumption behind this estimation: the
disappearance of a product will not change drastically the turnover of other prod-
ucts of the same family. At this stage, for any store Ω, ∀ (k1, k2, . . . , kn) ∈ [1..9]n,
we can estimate any p(ski+1(Fi)) as the corresponding turnover of the closest
reference store to Ω.

Because designing the assortment of a department store consists in choosing
the rank ki for each family of products, we could now naively enumerate and
evaluate any potential assortment in [1..9]n to select the best one that will be
the solution of the optimization problem.

4 Taxonomy and Abstraction Reasoning

The similarity measure that meets our expectations relies on the taxonomical
structure that organises products and product families in the department store
since Ω should be similar to Ω’ when the turnovers of Ω and Ω’ are distributed
in the same way over the hierarchical organization of products. Generally, in
the literature, the elements of the taxonomical structure are named concepts (or
classes). A taxonomical structure defines a partial order of the key concepts of
a domain by generalizing and specializing relationships between concepts (e.g.
Soft drinks generalizes Soda that in turn generalizes Coca or Schweppes). Tax-
onomies give access to consensual abstraction of concepts with hierarchical rela-
tionships, e.g. Vegetables defines a class or concept that includes beans, leeks,
carrots and so on, that are more specific concepts. Taxonomies are central
components of a large variety of applications that rely on computer-processable
domain expert knowledge, e.g. medical information and clinical decision support
systems [1]. They are largely used in Artificial Intelligence systems, Information
Retrieval, Computational Linguistics. . . [2].

In our study, using products taxonomy allows synthetizing and comparing the
sales of department store through abstraction reasoning. In retail world, prod-
uct taxonomy can be achieved by different means. Retailers or other experts can
build this commodity structure. Most approaches usually introduce the Stock
Keeping Unit (SKU) per item [3] or product categories (e.g. Meat, Vegetables,
Drinks, etc.). Some researchers adopt the cross-category level indicated by
domain experts and/or marketers [4].

More formally, we consider a concept taxonomy T = (�,C) where (C) stands
for the set of concepts (i.e. class of products in our case) and (�) the partial
ordering. We denote A(c) = {x ∈ C/c � x} and D(c) = {x ∈ C/x � c}
respectively the ancestors and descendants of the concept c ∈ C. The root is
the unique concept without ancestors (except itself) (A(root) = {root}) and a
concept without descendant (except itself) is denoted a leaf (in our case a leaf
is a product) and D(leaf) = {leaf}. We also denote leaves-c the set of leaves



(i.e. products in our study) that are included in the concept (or class) c, i.e.,
leaves-c= D(c) ∩ leaves.

4.1 Informativeness Based on Taxonomy

An important aspect of taxonomies is that they give the opportunity to anal-
yse intrinsic and contextual properties of concepts. Indeed, by analysing their
topologies and additional information about concept usage, several authors have
proposed models, which take advantage of taxonomies in order to estimate the
Information Content (IC) of concepts [5]. IC models are designed to mimic
human, generally consensual and intuitive, appreciation of concept informative-
ness. As an example, most people will agree that the concept Cucumber is more
informative than the concept Vegetables in the sense that knowing the fact
that a customer buys Cucumber is more informative than knowing that he buys
Vegetables. Indeed, various taxonomy-driven analyses, such as computing the
similarity of concepts, extensively depend on accurate IC computational mod-
els. Initially, Semantic Similarity Measure (SSM) were designed in an “ad-hoc”
manner for few specific domains [6]. Research have been done in order to get a
theoretical unifying framework of SSMs and to be able to compare them [1,7].

More formally, we denote I the set of instances, and I∗(c) ⊆ I the instances
that are explicitly associated to the concept c. We consider that no annotation
associated to an instance can be inferred, i.e., ∀ c, c’ ∈ C, with c � c’, I∗(c) ∩
I∗(c’) = ∅. We denote I(c) = I the instances that are associated to the concept
c considering the transitivity of the taxonomic relationship and concept partial
ordering �, e.g. I(Vegetables) ⊆ I(Food). We therefore obtain ∀ c ∈ C, |I(c)| =∑

x∈ D(c)

|I∗(x)|.
In our approach, we use sales receipt to count the instances of concept: obvi-

ously, only products appear on sales receipt, and then only instances of products
can occur in practice. The information is only carried by the leaves of the tax-
onomy (products in our case), ∀c /∈ leaves, |I∗(c)| = 0.

Due to the transitivity of the taxonomic relationship the instances of a con-
cept c ∈ C are also instances of any concept subsuming c, i.e., Vegetables
� Food ⇒ I(Vegetables) ⊆ (Food). This central notion is generally used to
discuss the specificity of a concept, i.e. how restrictive a concept is with regard
to I. The more restrictive a concept, the more specific it is considered to be.
In the literature, the specificity of a concept is also regarded as the Information
Content (IC). In this paper we will refer to the notion of IC defined through
a function IC : C −→ IR+. In accordance to knowledge modelling constraints,
any IC function must monotonically decrease from the leaves to the root of the
taxonomy such as c � c’ ⇒ IC(c) ≥ IC(c’).

In this paper, extrinsic evidence has been used to estimate concept infor-
mativeness (i.e. that can be found outside the taxonomy). This is an extrinsic
approach, based on Shannon’s Information Theory and proposes to assess the
informativeness of a concept by analysing a collection of items. Originally defined
by Resnik [5], the IC of a concept c is defined to be inversely proportional to



pro(c), the probability that c occurs in a collection. Considering that evidence of
concept usage can be obtained by studying a collection of items (here, products)
associated to concepts, the probability that an instance of I belongs to I(c) can
be defined such as pro : 2c → [0, 1] with pro(c) = |I(c)|/|I|. The informativeness
of a concept is next assessed by defining: IC(c) = −log(pro(c)).

We will then use extrinsic IC in our proposal to capture concept usage in
our specific application context. Let us note T the taxonomy of products, F the
set of families (or classes). The leaves of T are the products (e.g., Coca-cola
1.5L). Classes that directly subsume leaves are product families (e.g. Soda) with
which assortment levels are associated ((k1, k2, . . . , kn) ∈ [1..9]n); other classes
are super family of products (e.g., Soft-drinks). Let us derive these notions in
our modeling. The above “collection of items” corresponds to the products that
a network of department store within a same chain sails. ∀x ∈ leaves(T ), pΩ(x)
(i.e. x is a product) is the turnover related to the product x in the store Ω. We
define the probability mass pro as:
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∀x ∈ leaves(T ), |I∗(x)| � |I(x)| =
∑

Ω

pΩ(x) then

pro(x) =
∑

Ω pΩ(x)
∑

x

∑
Ω pΩ(x)

and IC(x) = −log(pro(x))

∀ f /∈ leaves, |I∗(f)| = 0, |I(f)| =
∑

x∈leaves-f

|I(x)|,

pro(f) =

∑
x∈leaves-f

∑
Ω pΩ(x)

∑
x

∑
Ω pΩ(x)

and IC(f) = −log(pro(f))

4.2 Similarity Measures Based on Taxonomy

After the informativeness of a concept is computed, we can now explain how
to compute the similarity of any two concepts using concepts’ informativeness.
We recall some famous Semantic Similarity Measure (SSM) based on the infor-
mativeness of concepts and usually used in Information Retrieval. One common
SSM is based on the Most Informative Common Ancestor (MICA) also named
the Nearest Common Ancestor (NCA). For example, in Fig. 1, the MICA of
Coca-cola 1.5L and Schweppes 1.5L is Soda while the MICA of Soda and
Water is Drinks (the root in Fig. 1). Resnik [5] is the first to implicitly define
the MICA: this is the concept that subsumes two concepts c1 and c2 that has
the higher IC (i.e., the most specific ancestor):

simResnik(c1, c2) = IC(MICA(c1, c2))

Such SSMs allow comparing any two concepts. However, as stores are associated
to subsets of concepts, we still have to introduce group similarities to compare
sub-sets of concepts. Indirect SSMs have been proposed [8,9]. The Best Match
Average (BMA) [8] is a composite average between two sets of concepts, here A



and B:

simBMA(A,B) =
1

2|B|
∑

c∈B

simm(c,A) +
1

2|A|
∑

c∈A

simm(c,B)

where simm(c,X) = max
c’∈X

sim(c, c’) and sim(c, c’) is any IC-based pairwise SSM.

It is thus the average of all maximum similarities of concepts in A regarding B
and vice-versa. This is the most common group similarity. See [8,9] for a complete
review.

Pairwise and groupwise SSMs allow comparing any two subsets of concepts
(products in our case) when a taxonomical structure defines a partial order of
the key concepts of a domain. In our study, they allow to capture the idea that
two stores Ω and Ω’ are similar when their turnovers are distributed in the same
way over the hierarchical organization of products.

5 Illustration and Experiments

This section aims to illustrate the modelling and the data processing chain
described in the preceding sections. It is illustrated how designing the ideal
assortment in retail thanks to reasoning on an abstraction hierarchy of prod-
ucts, semantic similarity measures and knapsack formalization. The required
parameters and variables for this modelling are:

1. A taxonomy of products shared in the store network.
2. A product range (or level of assortment ski(Fi)) defined for all families Fi of

products.
3. A storage cost associated to each product range for each family: for each

family, a hierarchy of subsets of products ski(Fi), ki = 1..n is defined, and
the higher ki, the higher the corresponding cost c(ski(Fi)).

4. For each store, a turnover p(ski(Fi)) is associated to each product range of
each family ski(Fi).

5. Storage capacity thresholds are introduced to manage storage constraints (see
local constraints in Sect. 2).

Figure 2 illustrates the required data. The example in Fig. 2 takes into
account three stores (M1, M2 and M3):

1. We only consider two products’ families denoted F for Fruits and V for
Vegetables. There are two product ranges for the Fruits family (i.e., kF is
1 or 2) and three for the Vegetables family (i.e., kV is 1, 2 or 3). We have
S1(F ) ⊂ S2(F ) and S1(V ) ⊂ S2(V ) ⊂ S3(V ).

2. Each product range has its own storage cost: c(S1(F )) = 346; c(S2(F )) =
1191; c(S1(V )) = 204; c(S2(V )) = 866; c(S3(V )) = 2400.

3. From the given product range associated with each store, in this example
(kF , kV ), their turnover can be computed that is p(SkF (F )) + p(SkV (V )).

4. Each store has the following storage capacity: SCM1 = 1670;SCM2 =
2700;SCM3 = 5540 which implies that c(SkF (F )) + c(SkV (V )) ≤ SCM
for each store with given values of a couple of variables (kF , kV ).



Fig. 2. Required parameters and variables for the knapsack model

Any change in SkF (F ) or SkV (V ) entails turnovers variations. The optimal
assortment problem consists in identifying the best couple of values for kF and
kV . This result is achieved by solving the knapsack problem formalized in this
paper. The main difficulty is the assessment of the turnovers when kF and kV

are changed into kF + j and kV + j’. An estimation of these turnovers has to be
computed in order to evaluate the performance of the candidate values kF + j
and kV +j’ in the knapsack problem. As explained above this estimation is based
on the turnovers of similar stores that propose kF + j and kV + j’ for families
Fruits and Vegetables. To this end, we apply semantic similarity measures on
the product taxonomy to compute a similarity matrix between stores (cf. Sect. 4).
The unknown turnovers are then assessed from those of the most similar stores.
The stores’ similarity matrix is based on semantic similarity measures (in this
experiment, the Resnik’s measure for the semantic similarity measure and the
BMA for the groupwise measure using the semantic library tools1). Note that,
this step allows defining similarities between stores and can be used to define
semantic clusters of stores [19]. Once the matrix is defined, it is used to estimate
the turnovers of increased candidate product ranges (kF + j and kV + j’) esti-
mated as the corresponding turnovers of the nearest stores that propose kF + j
and kV + j’ for F and V . An example of estimation of product range turnovers
is proposed in Fig. 3.

1 https://www.semantic-measures-library.org/sml/index.php?.

https://www.semantic-measures-library.org/sml/index.php?


Fig. 3. Estimation of the turnovers of increased product ranges

The last step consists in exploiting the previous estimation in the knapsack
problem. As explained above, the knapsack problem aims identifying the ideal

product range for each family in order to find: Arg max
ki,i=1..n

n∑

i=1

p(ski(Fi)) while

respecting (at least) the overall storage cost constraint
n∑

i=1

c(ski(Fi)) ≤ C defined

in Sect. 2. This step involves assessing any combination of ski(Fi) for all cate-
gories of products Fi. Constraints regarding the storage costs c(ski(Fi)) can be
applied on any category of products which allow reducing complexity of the
knapsack problem thanks to local reduction of possible solutions (see local con-
straints in Sect. 2). An illustration on how local constraints reduce the set of
solutions is available in the Fig. 4.

For example in Fig. 4, the highest level of assortment for vegetables s3(V ) is
greater than the total storage capacity of stores M1 and M2. This information
allows eliminating the upgrade s3(V ) for the Vegetables family in stores M1
and M2. Finally, in this example three upgrades can be envisaged:

1. Store M1 can improve its Fruits assortment from S1(F ) to S2(F ):

c(S2(F )) + c(S1(V )) ≤ SCM1

2. Store M1 can improve its Vegetables assortment from S1(V ) to S2(V ):

c(S1(F )) + c(S2(V )) ≤ SCM1

3. Store M2 can improve its Fruits assortment from S1(F ) to S2(F ):

c(S2(F )) + c(S2(V )) ≤ SCM2

Then, store M3 owns already all products, so no upgrade is feasible. Due to
its storage capacity, store M2 can only improve its Fruits assortment. Store



Fig. 4. Example of local constraints

M1 is available to improve either its Fruits or its Vegetables assortments.
The Fig. 3 provides the turnovers’ estimations for any feasible product range
upgrade. The optimal upgrades can now be deduced from it. Therefore, store
M1 should upgrade its Vegetables assortment from S1(V ) to S2(V ) to improve
its turnover. This trivial example allows highlighting how knapsack problem can
be simplified thanks to local restrictions and taxonomical reasoning.

This example was a mere illustration. The naive optimization of the assort-
ment would consist in trying all possible subsets of products without considering
constraints (from stores or from range products ). In other words, it requires to
try all possible combinations of products whatever their category. In our exam-
ple, without taxonomy, we should basically reason on the set of products: apple,
grapefruit, cherry, carrot, eggplant and onion. With only 6 products, we
have 63 possibilities [2n − 1] which have to be tried for each store. In our toy
example, reasoning on the taxonomy of products and managing storage cost con-
straints significantly reduce the research space. We have shown in other articles
referring to the biomedical field the interest of semantic similarities when the
dimensions of space are organized by a domain taxonomy [15].

To ensure that this process is scalable with a real dataset from retail, we have
built three benchmarks based on the Google Taxonomy2 that we report in this
paper. Experiments have been processed on 1 CPU from an Intel Core I7-2620M
2.7GHz 8Go RAM. We exploited the CPLEX library (IBM CPLEX 1.25) and
each benchmark requires less than one second. These benchmarks simply allow

2 https://www.google.com/basepages/producttype/taxonomy.fr-FR.txt.

https://www.google.com/basepages/producttype/taxonomy.fr-FR.txt


us to claim that our complete data processing to compute the ideal assortment
of stores of a network can be achieved even for significantly large problems as
referred in Table 1. Semantic interpretations of our work are yet to be done and
require the intervention of domain experts and evaluations over large periods of
time. This assessment is outside the scope of this article and will be carried out
as part of the commercial activity of TRF Retail.

Table 1. Benchmarks’ details

Benchmark 1 Benchmark 2 Benchmark 3

Number of stores 15 30 50

Number of levels of range product 4 16 20

Number of families of products 12 80 200

Number of variables 180 2 400 10 000

6 Conclusion

The aim of the paper is to propose a methodology allowing improvement of
retailers’ assortments. Indeed, the ultimate goal consists in proposing adequate
products to stores depending on their specific constraints. To achieve this goal
semantic approaches are used not only to improve knowledge on stores but also
to make the estimations of the consequences of assortment changes more reli-
able. As a matter of fact, the proposed approach includes prior knowledge from
the taxonomy of products used to formalize the ideal assortment problem into a
knapsack problem. The estimation of the expected benefits associated to changes
in the product range of products’ families is based on results of similar stores.
Those similarities are identified by means of semantic similarity measures we pre-
viously studied in the field of biomedical information retrieval. The use of seman-
tic approaches brings more appropriate results to retailers because it includes
part of their knowledge on the organization of products sold.

The management of the products’ taxonomy notably reduces the search space
for the knapsack problem. It also allows defining an appropriate similarity matrix
between the stores of a network that takes into account the way the turnovers
of the stores are distributed. It implies they have approximately the same types
of customers. The definition of this similarity is crucial for the estimation of
turnovers required in the knapsack problem. This process should be computed
repetitively to allow continuous improvement which is a key factor in retail
sector. Actually, we are working on the integration of more sophisticated con-
straints in our optimization problem in order to capture more complex behaviors
of retailers.
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