
HAL Id: hal-02462501
https://imt-mines-ales.hal.science/hal-02462501

Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge Extraction (KnoX) in Deep Learning:
Application to the Gardon de Mialet Flash Floods

Modelling
Bob E. Saint Fleur, Guillaume Artigue, Anne Johannet, Séverin Pistre

To cite this version:
Bob E. Saint Fleur, Guillaume Artigue, Anne Johannet, Séverin Pistre. Knowledge Extraction (KnoX)
in Deep Learning: Application to the Gardon de Mialet Flash Floods Modelling. ITISE 2019 -
International Conference on Time Series and Forecasting, Sep 2019, Granada, Spain. �hal-02462501�

https://imt-mines-ales.hal.science/hal-02462501
https://hal.archives-ouvertes.fr


Knowledge Extraction (KnoX) in Deep Learning: 

Application to the Gardon de Mialet Flash Floods 

Modelling  

Bob E. Saint Fleur 1,2, Guillaume Artigue 1, Anne Johannet 1, Severin Pistre 2 

1 IMT Mines Alès, Laboratoire de Génie et de l’Environnement Industriel (LGEI), Alès, France 
2 Hydrosciences, Univ Montpellier, CNRS, IRD, 34090 Montpellier, France 

 

Corresponding author Guillaume ARTIGUE (guillaume.artigue@mines-ales.fr) 

Abstract. Flash floods frequently hit Southern France and cause heavy damages 

and fatalities. To better protect persons and goods, official flood forecasting ser-

vices in France need accurate information and efficient models to optimize their 

decision and policy. Since heavy rainfalls that cause such floods are very hetero-

geneous, it becomes a serious challenge for forecasters. Such phenomena are typ-

ically nonlinear and more complex than classical floods events. That problem 

leads to consider complementary alternatives to enhance the management of such 

situations. For decades, artificial neural networks have been very efficient to 

model nonlinear phenomena, particularly rainfall-discharge relations in various 

types of basins. They are applied in this study with two main goals: first model-

ling flash floods on the Gardon de Mialet basin; second, extract internal infor-

mation from the model by using the Knowledge eXtraction method to provide 

new ways to improve models. The first analysis shows that the kind of nonlinear 

predictor influences strongly the representation of information: e.g. the main in-

fluent variable (rainfall) is more important in the recurrent and static models than 

in the feed-forward one. For understanding flash floods genesis, recurrent and 

static models appear thus as better candidates, even if their results are better. 

1 Introduction 

In the Mediterranean regions, flash floods due to heavy rainfalls frequently occur 

and cause numerous fatalities and costly damages. During the last few years, the south 

of France has been particularly exposed to these catastrophic situations. In such cases, 

damages can reach more than one billion euros, and, in only one event, there can be 

more than 20 fatalities [1]. Facing these issues, authorities need reliable forecasts for 

early warning purposes. Unfortunately, both the short-term rainfall forecasts and the 

processes leading to the discharge response remain poorly known at the space and time 

scales required. It is thus difficult to provide forecasts using the traditional coupling 

between a meteorological model and a physically based hydrological model. 

Artificial Neural Networks therefore appear as an alternative paradigm as they are 

able to provide forecasts of an output (discharge) without making any other hypothesis 

Proceedings ITISE-2019. Granada, 25th-27th September 2019 178



on the system than the causality between rainfall and discharge. ANN have been applied 

in a wide variety of domains as they are essentially based on data and training [2]. They 

appear as particularly suitable for identifying the generating processes in hydrological 

time series because of their ability to model nonlinear dynamic systems [3,4]. However, 

due to their statistical origin, it is difficult to associate meaning to their internal param-

eters and they are rightly considered as black-box models. For this reason and to en-

hance the understanding of the behavior of the model, several works have been done to 

bring more transparency in the operating mode and introduced concepts of gray-box 

and transparent-box models [5,6]. In hydrology, several works have been conducted to 

make neural networks models more physically meaningful [6, 7, 8].  

To be considered as gray-box (or transparent-box), ANN internal information or data 

must be accessible. In this paper, it will not be discussed deep learning itself, but an 

intermediate method to analyze the meaningful of internal information about neuronal 

models in hydrology operating on deep models. That method is termed Knowledge eX-

traction (KnoX), it has been proposed by [7]. It was proved efficient on a fictitious 

basin, before being applied, by simulation, to estimate contributions and response times 

of various parts of a karst aquifer: the Lez aquifer (Southern France). It was later used 

by [8] for better apprehend the contributions of surface or underground processes in 

generation of floods on the Lavallette basin (Southern France).  

Several studies were performed on the Mialet basin: first [4] showed that flash flood 

discharge can be forecasted by a multilayer perceptron with reasonable quality up to 

two-hours lead time; second, [9] showed that the initial value of the neural network 

parameters in flash floods forecasting has a major impact on the result. The purpose of 

this work is thus to better understand how the main variables influence the basin’s out-

flow, regarding the model scheme used, in order to diminish the sensitivity of the model 

to the initialization of its parameters.  

In the next sections, we will briefly present neural networks, their operating princi-

ples in hydrology, the deep multilayer perceptron used, as well as a reminder about the 

KnoX method and the models designed. The focus is set on a discussion about the be-

havior of the variable’s weights according to the model type used, by applying the 

KnoX method to extract that information. 

2 Materials and methods 

2.1 Study area: location and general description 

The Gardon de Mialet basin covers 220 sq.km in southern France. It is part of the Cé-

vennes range which is known as a preferential location for the well-known meteorolog-

ical phenomenon named cevenols episodes (Fig. 1). These episodes consist in short 

duration (less than 2 days) very heavy rainfall events. The elevation of Mialet basin 

ranges from 150 m.a.s.l. to 1170 m.a.s.l. and its mean slope is about 33 %. As for the 

most of basins of the Cévennes, these characteristics lead to limited infiltration or un-

derground flow and thus to a high drainage density. Its response time is relatively short: 

between 2-4 hours [4]. The area is dominated by a metamorphic formation essentially 

with 95 % of mica-schist and gneiss, which lead to a poorly porous and impermeable 
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rocky sub-soil. The land use is almost homogeneous while covered by natural vegeta-

tion (chestnut trees, conifers, mixed forest and bush) for 92 %. The rest is shared be-

tween rocks and urban areas. 

Typically, in Mediterranean regions, 

heavy rainfalls sometimes exceed 500 mm in 

only 24 h, to be compared to the 600 mm that 

fall on Paris annually. They are mainly pro-

duced by convective events, triggered either 

by relief, by a wind convergence, or by both. 

For example, in September 2002, the Gard 

(France) department has registered 687 mm 

of rainfall in 24h with 137 mm in only one 

hour at Anduze (a few km distant from Mi-

alet).  

Fig. 1.The study area (by Artigue, 2012) 

2.2 Database 

2.2.1. Presentation.  

The database used in this study is essentially compounded with hourly observations 

from 1992 to 2002 and 5 minutes time step observations from 2002 to 2008 on three 

rain gauges and one hydrometric station at the outlet at Mialet (Fig. 1). From upstream 

to downstream, these stations are: BDC (Barre des Cévennes), SRDT (Saint-Roman de 

Tousque) and Mialet which coincide with the discharge station. They are all managed 

by the local Flood Forecasting Service (SPC Grand Delta). 58 events were extracted at 

30 min time-step (based on rainfall events having at least 100 mm accumulation in 48 

h on any of the rain gauges). Data description is synthetized in Tables 1 & 2. 

Table 1. Data description 

 
Rainfall (mm) Discharge  

BDC SRDT Mialet (m3s-1) (m3s-1km-2) 

Maximum (30 min) 33.3 41.8 62.0 819.3 3.72 

Median (30 min) 0.3 0.3 0.2 29.3 0.13 

Moy 1.0 1.3 1.2 43.4 0.20 

Min 0 0 0 2.13 0.010 

Table 2. Test event description 

Event Date Duration 

Maximum of 

discharge  

(m3s-1) 

Mean dis-

charge (m
3s-

1) 

Cumula-

tive rain-

fall (mm) 

Intensity 
(mm.h-1) 

13 Sept. 00 26 h 454,2 70 230 40 

2.3 Artificial Neural network  

2.3.1. General presentation.  

A neural network is a combination of parametrized functions called neurons that 

calculate their parameters thanks to a database using a training process [10]. The most 
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popular model is the multilayer perceptron (MLP), which generally contains one or 

more hidden layers of nonlinear neurons and one output linear neuron. Each hidden 

neuron computes a non-linear function of a weighted sum of the input variables, then 

the output neuron computes the linear combination of the outputs of the hidden ones.  

 

Fig. 2. Multilayer perceptron with a single hidden layer 

The MLP is very popular due to its two main properties: universal approximation 

and parsimony. The first one states the capability to successfully approximate any dif-

ferentiable function with an arbitrary level of accuracy [11]. The latter states how the 

multilayer perceptron needs fewer parameters to successfully fit a non-linear function, 

compared to others statistic model that linearly depend on their parameters [12]. The 

more general model of neuron calculates it output y as following: 

𝑦 = 𝑓(∑ 𝑐𝑗
𝑛
𝑗=1 . 𝑥𝑗) = 𝑓(𝑥1, … , 𝑥𝑛;  𝑐1, … , 𝑐𝑛),  (1) 

with 𝑥𝑗 , the input variable j; 𝑐𝑗, the parameter linking the variable 𝑥𝑗 to the neuron; 𝑓(. ), 

the activation function (usually a sigmoid). The dynamic properties of the identified 

process can be considered thanks to three kinds of models [13]. 

 Static model 

The static model is a digital filter with a finite impulse response. It calculates the fol-

lowing equation:  

𝑦̂(𝑘) = 𝜑( 𝐱(𝑘), … , 𝐱(𝑘 − 𝑛𝑟 + 1), 𝐂)  (2) 

with 𝑦̂(𝑘), the estimated output at the discrete time k; 𝜑rn, the non-linear function im-

plemented by the model; 𝐱 is the input vector; n, the sliding time-windows size defining 

the length of the necessary exogenous data; C, the vector of the parameters. This model 

is known for having more parameters than the following models. 

 Recurrent model 

The recurrent model allows identification of dynamical processes (Infinite Impulse Re-

sponse), it is implemented following the equation (3). 

𝑦̂(𝑘) = 𝜑( 𝐲̂ (𝑘 − 1), … , 𝐲̂ (𝑘 − 𝑟);  𝐱(𝑘), 𝐱(𝑘 − 1) … , 𝐱(𝑘 − 𝑛𝑟 + 1);  𝐂) (3) 

With 𝑟, the order of the recurrent model; nr, the depth of the sliding time-window used 

to consider the input variables. Ones must distinguish the recurrent variable (y) from 

the exogenous variables (x). This model can deliver forecasts for an undetermined fore-

casting horizon providing the availability of the exogenous variables. 
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 Feed-forward model 

In the feed-forward model, the recurrent input is substituted by the measurements of 

the process output at previous times step. This model is non recurrent; but it can identify 

dynamical processes. This model is the most used and generally provides the best re-

sults. Nevertheless, we have observed that it generally has difficulties to model the dy-

namics of the process (cited in Artigue et al 2012). It calculates: 

𝑦̂ (𝑘) = 𝜑(𝐲 (𝑘 − 1), … , 𝐲(𝑘 − 𝑟);  𝐱(𝑘), 𝐱(𝑘 − 1) … , 𝐱(𝑘 − 𝑛𝑟 + 1);  𝐂) (4) 

with 𝑦(. ), the observed value of the modelled variable at the discrete time k.  

These three categories of models will be compared in this study. 

2.3.2. Training 

As data-driven models, neural networks design is based on a database. Training con-

sists in calculating the set of parameters of the model in order to minimize the least 

square cost function on the training set [10]. Because the model is non linear, this 

minimization is iteratively calculated. 

Nevertheless, as the goal of the model is to be able to generalize the trained behavior 

to any set of data never seen, the quality of the model must be validated on another set, 

independent from the training set that is called “test set”. The bias-variance dilemma 

[14] shows an important limitation: the training error is not representative of the test 

error, and the difference increases with the complexity of the model (i.e. the number of 

free parameters of the model). The bias-variance dilemma may be avoided using regu-

larization methods. 

2.3.2. Regularization methods 

Early stopping 

Early stopping was presented by [15] as a regularization method. It consists in stop-

ping the training before the full convergence. To this end a supplementary subset, called 

stop set, is defined those goal is to evaluate the ability of generalization of the model 

during the training. This subset is independent from the training set. Training is stopped 

when the error on the stop set begins to increase. The stop set is used to stop the training, 

the performances of this set are thus overestimated compared to those of the test set. 

Nevertheless, this set is usually (improperly) called “validation set” in the literature.  

Cross validation 

Proposed by [16], cross validation allows to select a model having the lower vari-

ance. To this end the training set is divided in K subset and the error is calculated on 

the remaining (K-1) subsets in the training set. After K trainings, the cross-validation 

score is calculated, for example by the mean of the previously obtained errors. Based 

on the cross validation score it is possible to select the model that has the lowest vari-

ance, minimizing by this way the bias on the training set and the variance on validation 

sets. This method allows to select input variables, the order (r), and the number of hid-

den neurons. 
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Ensemble model 

Darras et al. [9] showed that, surprisingly, cross validation was not able to success-

fully select the best initialization of parameters. In order to diminish the sensitivity of 

the output to the parameter’s initialization, they propose to create an ensemble model 

of M members [17] and to calculate the output of the ensemble, at each time step, by 

the median of the M members. 

2.3.3 Design of the model 

In this study, regularization methods are applied by: (i) dividing the dataset in three 

subsets (training, stop and test sets), (ii) using cross correlation to select the architecture 

of the model in the following succession: inputs (nr) except for rain gauges, order (r), 

number of hidden neurons (h), and (iii) using 20 members in the ensemble.  

Three kinds of sliding window widths are tried based on the rainfall-runoff cross-

correlogram.  

2.3.4. Performance criteria 

Several criteria are used to assess the performance of a model. The determination 

coefficient R2 [18]; the Synchronous percentage of the peak discharge (SPPD) and the 

Peak delay as two peak assessment criteria [4]. They are briefly detailed below: 

 R2 criterion 

𝑅2 = 1 − 
∑ (𝑦𝑘− 𝑦̂𝑘 )2𝑛

𝑘=1

∑ (𝑦𝑘−𝑦𝑜̅̅ ̅̅  )2𝑛
𝑘=1 

,  (5) 

with the same notations as previously. 

The nearest than 1 the Nash-Sutcliff efficiency is, the best the results are. Neverthe-

less, this criterion can reach good values even if the model proposes bad forecasts. 

 Peak analysis 

The quality of the flood prediction is analyzed regarding the quality of the peak using 

two criteria defined by [4]. 

Synchronous percentage of the peak discharge: SPPD 

The synchronous percentage of the peak discharge: SPPD [4] is a relevant criterion 

to assess flash flood modeling performance of a model on the peak discharge. It shows 

the simulation quality at the peak discharge through the ratio between the observed and 

simulated discharges at the observed peak discharge moment (𝑘𝑜
𝑚𝑎𝑥). 

𝑆𝑃𝑃𝐷 = 100
𝑦̂𝑘𝑜

𝑚𝑎𝑥

𝑦𝑘𝑜
𝑚𝑎𝑥,  (6) 

Peak delay (PD) 

The peak delay [4] indicates the duration between the maximum of simulated peak 

and measured peak. When the estimated peak is in advance, the peak delay is negative. 

𝑃𝐷 = 𝑘𝑠
𝑚𝑎𝑥 − 𝑘𝑜

𝑚𝑎𝑥
,  (7) 
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with 𝑘.
𝑚𝑎𝑥

 the instant of the peak of discharge (simulated or observed). 

2.5. Extracting information: KnoX method 

 

 

Fig. 3. Application of the KnoX method on the deep multilayer perceptron  

𝑃𝐴(𝑗) =
|𝐶𝑖𝑗|

𝑀

∑ |𝐶𝑖𝑗|
𝑀𝑛𝐴

𝑖=1

∑ (
|𝐶ℎ𝑖|𝑀

∑ |𝐶ℎ𝑖|𝑀 +∑ |𝐶ℎ𝑑|𝑀 +𝑏ℎ
𝑛𝑑
𝑑=1

𝑛𝑖
𝑖=1

) (
|𝐶𝑜ℎ|𝑀

∑ |𝐶𝑜ℎ|𝑀 +𝑐𝑜
𝐻
ℎ=1

) 𝐻
ℎ=1 , (8) 

and: 𝑃𝐴 =  ∑ (𝑃𝐴(𝑗))
𝑛𝐴
𝑗=1   (9) 

The KnoX method [8, 19] allows to calculate a simplified contribution of each input 

to the model output. This method is described for the general deep model (2 hidden 

layers) shown in Fig. 3. The principle of the method is that a contribution of an indi-

vidual input variable can be quantified after training, by the product of the parameters 

linking this input to the output. The considered parameters are (i) “normalized” by the 

sum of the parameters linked to the same targeted neuron, and (ii) regularized by cal-

culating the median of absolute values of their values for 20 different random initiali-

zations. This regularized value is noted as |𝐶𝑖𝑗| 
𝑀

for the parameter Cij linking the neu-

ron (or input) j to the neuron i.  

Regarding the model shown in Fig. 3, the contribution (PA) of the input A (group of 

several delayed inputs) is the sum of the contributions of each individual delayed input 

of the group A. The equation calculating the contribution for just one element of the 
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input A is provided in eq. (8). It is not possible to explain more comprehensively the 

method in the short present paper, so we suggest to the reader to refer to [8]. 

3 Results 

Starting from previous works of [4] we chose the following exogenous variables: (i) 

Barre des Cevennes rain gauge, Saint-Roman de Tousque rain rauge and Mialet rain 

gauge, each one with a sliding window length {k, … k-nr+1}, (ii) the sum of the mean 

rain (over the three gauges) fallen from the beginning of the event. Of course, a bias 

input is used; several values were tried in order to evaluate the sensitivity of the KnoX 

method to its value.  

3.1. Window widths selection thanks to correlation analysis 

Widths of the rainfall windows applied to the model are selected thanks to cross 

correlation. Initially proposed by [20] Jenkins and Watts (1968), [1] generalizes the 

application of cross correlation in hydrology. The used equation in this study is pre-

sented in eq. (9).  

𝐶𝑥𝑦(𝑘) =  
𝐶𝑜𝑣 (𝑥𝑖,𝑦𝑖+𝑘)

𝜎𝑥 𝜎𝑦
=

1

𝑛
∑ (𝑥𝑖− 𝑥̅)(𝑦𝑖+𝑘− 𝑦̅)𝑛−𝑘

𝑖=1

𝜎𝑥 𝜎𝑦
   , (9) 

With 𝑘 = 0, 1, … ;. where 𝑚 is the truncation which is recommended to be m=n/3 

(Mangin 1984). [20]) indicated that 2 hydrological variables can be considered as sta-

tistically independent if their cross-correlation is superior to 0.2. We thus select three 

possible lengths for the sliding windows of rain gauges inputs: (i) the number of time 

step between 𝐶𝑥𝑦 =0 and 𝐶𝑥𝑦 =0.2, that defines the memory effect; (ii) the window 

between 𝐶𝑥𝑦 =0.2 (positive slope) and 𝐶𝑥𝑦 =0.2 (negative slope) and (iii) all the m 

positive values of 𝐶𝑥𝑦. Based on [20] the correlations between gauges as well as re-

sponse times are indicated in Table 3. 

Table 3. Correlation analysis of the data 

Rain gauge Mialet (h) SRDT (h) BDC (h) 

Average response-time  2 3 4.5 

Response-time range  1 – 3.5 2.5 – 4.5 4 – 5.5 

Rainfall-discharge average cross-correlation  0.40 0.455 0.44 

Rain gauge cross-correlation 
Mialet -- 0.58 0.45 

SRDT -- -- 0.61 

3.2. Model selection  

A partial cross-validation score was operated on a subset of 17 most intense events 

in the database [3]. The number of hidden neurons was increased from 1 to 10. The best 
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model was chosen according to the highest cross-validation score 𝑆𝑣 estimated as fol-

lowing:  

𝑆𝑣 =
1

𝐾
 √∑ |𝐸𝑖|2𝐾

𝑖=1 ,   (9) 

Where Ei is the validation error of the subset i used in partial cross validation. 

The output values are the result of the median of the outputs of an ensemble of 20 

members differing only by their initialization before training. 

Three bias values are considered (0.01; 0.1; 1), three depths of sliding windows (see 

section 3.1) and three kinds of models (see section 2.3), 27 different models have been 

designed following the procedure indicated in section 2.3.3. The best one in each kind 

of models has been chosen, regarding the test event, in order to have efficient models 

to analyze. Architectures presented in Table 4 were thus selected. 

Table 4. Selected models 

Input variables Static Recurrent Feed-Forward 

Rain-gauge window width (nr) (BDC/SRDT/Mialet) 32/32/23 27/28/20  32/32/23 

Rain cumul window width  3 3 3 

Order (r) x 3 3 

Number of hidden nonlinear neurons 2 10 5 

Bias value 1 0.01 1 

3.3 Results 

Obtained test set hydrographs are shown in the Fig 4 and their performances de-

scribed in Table 5. It appears in  

Fig. 4 and Table 5 that the best results are provided by the feed-forward model. This is 

usual because the feedforward model uses the previous observations of the modelled 

variable in input. The recurrent model is usually not as efficient but exhibits better dy-

namics, which is also frequently observed [4]. The static model presents an acceptable 

performance, being able to generate 63% of the peak discharge. 

Table 5. The models performances on the test set  

Model  R² SPPD % PD (0.5h) 

Static 0.83 63,3 1 

Recurrent. 0.89 78.5 0 

Feed-Forward 0.99 99.3 1 

After having verified that the models are convenient, it is possible to apply the KnoX 

method. The extracted contributions are presented in Table 5.  

Regarding the rainfalls, one can note that in general, SRDT is the station with the 

highest contribution. The contributions do not change significantly for Mialet through 

all the models. BDC and Mialet are probably affected by their location close to the 

border of the basin whereas SRDT is close to the middle of the basin.  

Regarding the balance between the state variables and the rainfalls, it appears that 

when the previous observed discharge is used as an input variable, it brings almost 50 
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% of the contribution to the output. This observation means that the model does not pay 

enough attention to rain inputs and this could be the reason of the sensitivity to param-

eters initialization. Beside this, it also appears that the state variables in the static model 

have lesser contribution than they do in the other two models. In general, from the static 

model to the feed-forward one, the total contributions of the state variables are respec-

tively 45%, 61 % and 65 %, where the biggest parts are imputed to the previous ob-

served discharge (feed-forward). These observations are fully consistent and the results 

seem highly interpretable. 

 
Fig. 4. Hydrographs for the test set. Min_sim and Max_sim correspond to the minimum and 

maximum values of the ensemble model. Q is the median of the 20 members of the ensemble. 

Table 6. Contributions (PA) for the variables, from each model, expressed in %. 

Name of variable Static Recurrent Feed-forward 

BDC 13 % 12 % 5 % 

SRDT 31 % 17 % 22 % 

Mialet 11 % 11 % 9 % 

Cumulated rainfall 31 % 20 % 12 % 

Previous Q. obs -- -- 45 % 
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Previous Q. calc -- 25 % -- 

bias 14 % 16 % 8 % 

4 Interpretation 

These results show how the kind of model can modify the contribution of explana-

tory variables on an observed phenomenon. Thus, some kind of models must be pre-

ferred when it comes to represent physical relations. It is also shown that the mean 

cumulative rainfall used here as a state variable plays a great role in models where the 

previous discharge is not used as input. This state variable seems to have a great interest 

in hydrologic modelling. The value of the bias, surprisingly, seems to have a role. It is 

usually interpreted as the base flow. Nevertheless, its behavior is consistent: it shows 

more involvement when the previous observed discharges are not used as input; then 

by complementarity with the humidity information, it guides the models to acceptably 

approximate the real discharge information. 

5 Conclusion 

Prediction of flash flood events is a very challenging task in the Cévennes range. It was 

previously realized using neural networks but sometimes appeared difficult to under-

stand because of the specific behaviors of the models. In order to be able to improve 

these models, the present work takes steps to better understand the processes involved 

in such events. To this end, the KnoX method, developed to extract information from a 

neural network model was applied to the Gardon de Mialet Basin. The obtained results 

show that by using relevant variables properly combined on whatever the network used 

here, efficient model can be built out. Besides, the KnoX method allows to see how the 

variables are handled by the model to approximate the phenomenon. There has been 

evidence that the variables do not express themselves in the same way through the dif-

ferent models used. As it is understandable, sometimes, the choice for a model is com-

manded by the situations in presence. The information extracted from the network can 

probably be used to compare to some physical meaningful characteristics of watershed 

or events, such as the Thiessen polygons, the response time, the cross correlation etc. It 

provided also some guidelines to deal with the sensitivity of the model to the parame-

ter’s initialization. 
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