

Chemical and odorous atmospheric emissions from the methanisation process: Impact of raw materials and operating conditions

Stéphane Cariou, Jean-François Desprès, Sandrine Bayle, Marion Fages, Mathilde Chaignaud, Axelle Cadiere, Jean-Louis Fanlo

▶ To cite this version:

Stéphane Cariou, Jean-François Desprès, Sandrine Bayle, Marion Fages, Mathilde Chaignaud, et al.. Chemical and odorous atmospheric emissions from the methanisation process: Impact of raw materials and operating conditions. ACE 2019 - Air and Waste Management Association's 112th Annual Conference & Exhibition, Jun 2019, Québec, Canada. hal-02442720

HAL Id: hal-02442720 https://imt-mines-ales.hal.science/hal-02442720

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Chemical and odorous atmospheric emissions from the methanisation process: impact of raw materials and operating conditions

Stéphane Cariou, Marion Fages, Sandrine Bayle, Jean-Louis Fanlo

IMT Mines Alès, Laboratoire Génie de l'Environnement Industriel, 6 av. de Clavières, F-30319 Ales Cedex, France

Jean-Francois Despres, Mathilde Chaignaud

Olentica SAS, 14 boulevard Charles Peguy, 30100 Ales, France **Axelle Cadiere**

Université de Nîmes, CHROME (EA7352), Rue Georges Salan, 30021 Nîmes, France

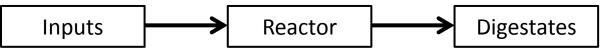
A&WMA 112th Annual Conference & Exhibition Quebec City, QC June 25-28, 2019

INTRODUCTION

Methanisation seems to be a relevant response to the current problems of waste treatment and recovery in France such as fermentable organic waste. The energy recovery of the biogas produced by methanisation is performed either by cogeneration (electricity and heat production) or by direct injection of the purified gas into the natural gas network.

That's why in Europe, the diversification of energy production sources leads to an increase in biogas plants. However, the implementation of a biogas plant may generate many concerns with the neighborhood in term of odor annoyance and health risk. Many studies deal with chemical composition of biogas ¹⁻⁶. They characterized major compounds (CH₄, CO₂, O₂, N₂ and H₂O) and trace compounds as several oxygenated and sulfurous molecules contained in the biogas directly but not the emissions of all related activities of handling inputs and digestates.

To evaluate the nuisance potential (with respect to nearby people), the characterization of on-site odors and VOCs emissions is firstly required. The objective of this work is to characterize the emissions of the most significant sources in terms of odors and VOCs^{7,8}.


Plant description

In this study, chemical and odorous emissions from three biogas units using three different kinds of substrate have been monitored. Table 1 shows the main characteristics by evaluated site type.

Table 1. Characteristics of the investigated sites.

Site	Biogas production (m ³)	Waste		
Farm	691,708	Liquid and solid manure		
Territory	6,052,000	Liquid and solid manure, agri-food wastes		
WWTP	1,559,000	Wastewater sludge		

These three sectors represent about 90% of the digester units currently installed in France. Thus, on the supply chain, the established sampling points are identical for monitoring chemical, biological and odorous emissions.

In this article, we focused on the emissions of some specific activities identified as particularly impacted by punctual actions (mixing, input delivery, etc).

Materials and methods

Gas Sampling

In this study, gas samples were collected in lab-made 40L Nalophan® bags according to the methodology defined in European standard EN 13725. Olfactometric and chemical analyses were conducted on the same sample to minimize time dependency of VOCs emissions.

Olfactometric analyses

Odor concentration are measured according to EN 13725 standard using an ODILE olfactometer (ODOTECH Inc, Canada) and a six panelists jury.

VOCs analyses

Different analyses were conducted on each sample to obtain a more precise characterization of VOCs emissions. Analyses were performed to evaluate the total VOCs concentration using a photoionization detector (ppb RAE, RAE Systems, USA). The concentrations of sulfurous compounds were measured with a GC-FPD (Chromatotec, France). Then, identification and quantification of VOCs were obtained utilizing a TD-GC-MS analysis (Turbomatrix, Perkin Elmer (USA) coupled to a Thermo Scientific GC-MS (USA)).

RESULTS

At each site, measurements were carried out with and without specific actions potentially affecting odor emissions. A brief presentation of the results is presented in the following paragraphs.

Farm

In the farm, only the mixing of liquid digestate tank generated an increase of odor emissions as shown in table 2.

Table 2. Characterization of emissions in the liquid digestate tank.

Activity	Liquid digestate tank		
	Without mixing	With mixing	
Odor concentration (OU _E /m ³)	2,195	5,656	
Total VOCs concentration (ppb isobutene eq.)	2,500	1,900	

The odor concentration was doubled during agitation of the digestate tank while introducing the liquid digestate from the reactor located approximately 2m- above the liquid digestate tank. Nevertheless this increase did not result in a similar increase in the total VOCs concentration. Considering the VOCs identified in both samples, a modification of the composition is noted by the emergence of sulfurous compounds and a decrease in alkane and aromatic compounds. This shift of composition could explain the decrease in total VOCs concentration measured by PID because aromatics have a response factor higher than sulfurous compounds.

Territory plant

In this biogas plant, two activities have been identified as potentially contributions to the emission variations over time: solid manure storage (old or fresh) and the input preparation with or without a recent delivery of agri-food wastes. Results are summarized in table 3.

Table 3. Characterization of odorous emissions sources in the territory plant.

Activity	Solid manure arrival		Input preparation	
	Old	Fresh	Without recent delivery	With recent delivery
Odor concentration (OU _E /m ³)	706	7,741	3,706	18,867
Total VOCs concentration (ppb isobutene eq.)	8,700	23,000	640	20,500

As seen in table 3, a significant increase in odor concentration (ten-fold) was observed when fresh solid manure is delivered to the plant. Total VOCs concentration emitted from fresh solid manure are also higher (factor 2.5) than those measured from old solid manure sample. For the old solid manure sample, we identified a large amount of terpenes (15.5 mg/m³ toluene equivalent), ketones (5.6 mg/m³ toluene equivalent) and alcohols (3 mg/m³ toluene equivalent). Arrival of fresh solid manure resulted in a compositional change of emissions, with an increase in ketones to 8.7 mg/m³ toluene equivalent and additional detection of sulfurous compound (especially H_2S (65 $\mu g/m^3$) and methanethiol (1,281 $\mu g/m^3$). Odors from these sulfurous compounds are commonly recognized as unpleasant with odor detection thresholds of 0.6 $\mu g/m^3$ and 0.1 $\mu g/m^3$ respectively9.

The same pattern is measured with the delivery of agri-food wastes in preparation tank. Odorous emissions and total VOCs concentrations increased to $18,867~\mathrm{UO_E/m^3}$ and $20,500~\mathrm{ppb}$ isobutene equivalent respectively. This result appears to be due to alcohol emissions, mainly ethanol (104.9 mg/m³ toluene equivalent) and esters (31.5 mg/m³ toluene equivalent).

WWTP

In the waste water treatment plant, two specific activities generated noted modifications of odorous concentrations (the presence of sludge in the preparation room and the loading of solid digestates in trucks). Table 4 presents a summary of the measured concentrations.

Table 4. Characterization of odorous emissions sources in the waste water treatment plant.

Activity	Input preparation area		Solid digestate disposal	
	Without sludge	With sludge	No truck loading	Truck loading
Odor concentration (OU _E /m ³)	30	1,446	174	7,908
Total VOCs concentration (ppb isobutene eq.)	450	690	200	6,000

In the input preparation area, the arrival of sludge resulted in an increased odor concentration to 1,446 ${\rm OU_E/m^3}$ which, in turn, resulted in a rise of total VOCs concentration especially hydrogen sulfide (48 ${\rm \mu g/m^3}$) and methanethiol (118 ${\rm \mu g/m^3}$). Due to the low odor detection threshold of these compounds (0.6 ${\rm \mu g/m^3}$ and 0.1 ${\rm \mu g/m^3}$ respectively⁹), they play a key role in odor intensity and persistency.

Truck loadings with solid digestate lead to an odor concentration of 7,908 OU_E/m^3 . This level can be explained by the sulfurous compounds emissions (H_2S , $104 \,\mu\text{g/m}^3$; methanethiol 1,747 $\mu\text{g/m}^3$; dimethylsulfide, 3,307 $\mu\text{g/m}^3$; dimethyldisulfide, 123 $\mu\text{g/m}^3$). The odor detection threshold for dimethylsulfide and dimethyldisulfide are evaluated in literature at 7.5 and 8.4 $\mu\text{g/m}^3$, respectively. The presence of these compounds is a reasonable explanation for the increased odor concentration measured relative to the occurrence of the specific activities on site.

SUMMARY

This study highlights the impact of some potentially important and specific activities (truck loading and unloading, preparation of the inputs) that contribute to the emission of VOCs and, therefore, odor emissions in the environment of biogas generation plant. For an overview of the odorous impact on the environment based on site type, it is, therefore, important to consider all these factors, some of which may result in brief but significant odor annoyance. The ability to control these emissions is very important to gain acceptance of these plants by surrounding neighborhoods.

ACKNOWLEDGEMENTS

This work was supported by the French Agency for Environmental and Energy Management (ADEME; grant agreement 1506C0053)

REFERENCES

- 1. Papadias, D.; Ahmed, S. Biogas Impurities and Cleanup for Fuel Cells. *Argonne National Lab Biogas and Fuel Cells Workshop* **2012**.
- 2. Papurello, D.; Soukoulis, C.; Schuhfried, E.; Cappellin, L.; Gasperi, F.; Silvestri, S.; Santarelli, M.; Biasioli, F. Monitoring of Volatile Compound Emissions during Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry. *Bioresource Technology* **2012**, *126*, 254–265. https://doi.org/10.1016/j.biortech.2012.09.033.
- 3. Kymäläinen, M.; Lähde, K.; Arnold, M.; Kurola, J. M.; Romantschuk, M.; Kautola, H. Biogasification of Biowaste and Sewage Sludge Measurement of Biogas Quality. *Journal of Environmental Management* **2012**, *95* (SUPPL.), S122–S127. https://doi.org/10.1016/j.jenvman.2011.01.003.
- 4. de Arespacochaga, N.; Valderrama, C.; Mesa, C.; Bouchy, L.; Cortina, J. L. Biogas Deep Clean-up Based on Adsorption Technologies for Solid Oxide Fuel Cell Applications. *Chemical Engineering Journal* **2014**, *255* (2014), 593–603. https://doi.org/10.1016/j.cej.2014.06.072.
- 5. Peu, P.; Picard, S.; Diara, A.; Girault, R.; Béline, F.; Bridoux, G.; Dabert, P. Prediction of Hydrogen Sulphide Production during Anaerobic Digestion of Organic Substrates. *Bioresource Technology* **2012**, *121*, 419–424. https://doi.org/10.1016/j.biortech.2012.06.112.
- 6. Rasi, S.; Veijanen, A.; Rintala, J. Trace Compounds of Biogas from Different Biogas Production Plants. *Energy* **2007**, *32* (8), 1375–1380. https://doi.org/10.1016/j.energy.2006.10.018.

- 7. Bayle, S.; Cadiere, A.; Cariou, S.; Despres, J.-F.; Fages, M.; Roig, B.; Sellier, A.; Fanlo, J.-L.; Chaignaud, M. Odour Measurements at Different Methanisation Sites. *Chemical Engineering Transactions* **2018**, *68*, 79–84. https://doi.org/10.3303/CET1868014.
- 8. Bayle, S.; Cariou, S.; Despres, J.-F.; Chaignaud, M.; Cadiere, A.; Martinez, C.; Roig, B.; Fanlo, J.-L. Biological and Chemical Atmospheric Emissions of the Biogas Industry. *Chemical Engineering Transactions* **2016**, *54*. https://doi.org/10.3303/CET1654050.
- 9. Nagata, Y. Measurement of Odor Threshold by Triangle Odor Bag Method. *Ministry of the Environment Government of Japan* **2003**, 118–127. https://doi.org/10.1016/S0378-1097(01)00437-2.