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EVALUATION OF HALF GAUSSIAN FILTER ROTATION FOR EDGE DETECTION
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2 XLIM, UMR CNRS 7252, Univ. de Poitiers, 11 Bd. Marie et Pierre Curie, 86073 Poitiers, France

ABSTRACT
In image processing, contours can be extracted by linear con-
volution of the image with first-order derivative filters. The
oriented half Gaussian filters are directed in all desired direc-
tions to analyze the images. Thus, they are useful for detect-
ing contours or extracting precise orientations. The process
of filter orientation requires the application of a rotation tech-
nique in a two-dimensional discrete domain of different sci-
entific strategies: interpolation (which can modify image in-
formation) or discrete geometry (without modification of the
image values). In this paper, different methods of discrete
rotating the half Gaussian filter are compared and evaluated
to detect contours in synthetic and real images. Results are
qualitatively and quantitatively compared, validating which
rotation technique is most beneficial for edge detection.

Index Terms— Oriented filters, rotation, interpolations.

1. INTRODUCTION AND MOTIVATION
Easy to use, Gaussian half-filters are reliable for image anal-
ysis. These narrow filters, directed in all desired directions
around each pixel, are useful for detecting the contours or
extracting precisely the orientations, even for very noisy im-
ages. The oriented half-filters [1, 2] were inspired by the well-
known and popular steerable filters [3] using full 2D Gaussian
(isotropic) where the calculation of the norm of the gradient
corresponds at the energy in the direction of the maximum re-
sponse of the filter. Thus, Freeman and Adelson have shown
that the first derivative of the directional Gaussian Gσ,θ of θ
can be generated by a linear combination of the direct rotation
of the derivatives of the basic isotropic Gaussian with respect
to x and y axis:

Gσ,θ(x, y) = cos(θ) · ∂Gσ
∂x

(x, y) + sin(θ) · ∂Gσ
∂y

(x, y), (1)

where (x, y) represent the coordinates of the pixel and σ is
the standard deviation of the Gaussian. Half-filters allow to
estimate contour information in several directions up to 360◦,
unlike full Gaussians that are symmetrical and only get infor-
mation up to 180◦ [4].

Several contours can cross a single pixel, for example a
pixel positioned at a corner where there are several directions,
as illustrated in Fig. 1 (e) points 1 to 3. These directions can
be estimated using half-filters; they are useful and effective
for restoring images via PDE [4], corner detection [5] or de-
scriptors [6]. As a result, the filter must be narrow to maintain

the most robust precision possible. However, since the filter
is discrete and in 2D, the rotation technique of the filter can
alter the quality of the filter, which could influence the de-
tected contours; especially when the filter has a support of a
few pixels. In this work, we propose to study different fam-
ilies of rotations and to examine how they influence, impact
or degrade the filter when it is oriented. Therefore, different
rotation methods are described in the following sections and
evaluated according to the quality of the contours obtained.

2. DERIVATIVE HALF GAUSSIAN KERNELS

Gaussian kernels are regularly used for their effectiveness in
edge detection [7]. Nevertheless, weaknesses can be observed
in the presence of blur or noise and at the level of the cor-
ners and small objects in the image. Edge detection tech-
niques using elongated Gaussians are effective for correctly
detecting large linear structures [8], but the small elements in
the image are considered as noise and their contours are not
extracted. Consequently, the accuracy of the detected con-
tour points greatly decreases at the corner levels and the non-
rectilinear object portions [2]. To bypass this undesirable ef-
fect, an anisotropic edge detection method was developed in
[1] and analyzed in more detail in [2]. Indeed, the proposed
technique is able to detect corners and intersecting contours
due to two elongated filters and directed in two different di-
rections. The main idea is to cut the anisotropic Gaussian
kernel using a Heaviside function and oriented this filter in all
directions around the considered pixel, from 0 to 360◦. A half
kernel (HK) can be built by combining a semi Gaussian (i.e.
a truncated Gaussian) on the one hand and its first derivative
on the other hand. They are defined as follows:

• a semi/truncated Gaussian for the smoothing:

G(s) = H(s) · e
s2

2·µ2 , with µ ∈ R∗+ and s ∈ R,
where H represents the Heaviside function,

• a first derivative of a Gaussian (derivative of G) :

G1(s) = s · e
s2

2·σ2 , with σ ∈ R∗+ and s ∈ R.

For signal and image processing, s represents an integer.
Fig. 1(d) shows an example of HK, constructed with the two
functions, respectively, G1 at the horizontal and G at the ver-
tical. In order to create an anisotropic (elongated) filter and
smooth majoritarily in the edge direction to robustly capture



3/4 1/2?

OO
1/4

1/4 1/4 1/4

(a) Circular support (b) HK support

Derivation 
filter: 

 parameter 

Filter rotation:  
from 0 to 360  

½
 sm

oo
th

in
g 

fil
te

r 
 p

ar
am

et
er

 

(c) Full Gaussian (d) HK filter,HKθ=0◦ (e) Selection of points

  0.5
  1

90270

180

0
Point 1

  0.5
  1

90270

180

0
Point 2

  0.5
  1

90270

180

0
Point 3

  0.5
  1

90270

180

0
Point 4

(f) Energy computed with the theHKθ in all directions for selected points in (e)

Fig. 1. Representation of filter supports concerning edges and
corners and selection of points before applying the HKθ.

edges [4, 2], the support of the smoothing half-filter must be
greater than the support of the filter containing the derivative,
that is to say µ > σ. Then, to obtain a rotated version of the
filter called HKθ, the HK filter is directed in several direc-
tions θ from 0 to 360◦. The convolution of the image I with
HKθ (i.e. I ∗HKθ) allows to compute a derivative informa-
tion at each desired direction (as shown in Fig. 1 (e)-(f)).

In order to better understand this edge extraction tech-
nique [2], the HK filter support at a straight contour is equiv-
alent to 1/2 on both sides of the edge, as shown in Fig. 1 (b).
On the contrary, for a corner point with an angle of 90◦, the
support of the half-filter remains 1/2 on both sides of the edge,
whereas it is around 1/4 and 3/4 concerning complete filters
(e.g. isotropic Gaussian, see Fig. 1 (a)). Finally, HK corre-
sponds to the derivation of an oriented filter; consequently, its
responses are either positive or negative. Therefore, for each
pixel of coordinates (x, y), the gradient |∇I| is the maximum
value minus the minimum value of I ∗ HKθ among all the
directions θ:

|∇I|(x, y) = max
θ∈[0,360◦[

I ∗HKθ(x, y)− min
θ∈[0,360◦[

I ∗HKθ(x, y)

θ1(x, y) = argmax
θ∈[0,360◦[

(I ∗HKθ(x, y))

θ2(x, y) = argmin
θ∈[0,360◦[

(I ∗HKθ(x, y))

η(x, y) = θ1+θ2
2

(2)
Thus, for each pixel, θ1 and θ2 are computed, they corre-

spond to the directions of the contours, tied to maximum and
the minimum value of I ∗ HKθ among all the directions θ
for each pixel, as in Fig. 5 for two edge directions at 0◦ and
185◦ respectively. These directions are useful and efficient

(a) Original (b) 45◦ (c) 60◦ (d) 90◦

Fig. 2. Image rotation directly using eq. 3.

for image restoration via PDE [4], corner detection [5] or im-
age descriptor [6]. Finally, to obtain thin edges, as in [7],
the local maxima suppression operation is processed in the η
orientation, corresponding to the bisector between θ1 and θ2.

The edge detection technique using oriented truncated fil-
ters requires to rotate the HK filter in two dimensions1. Nev-
ertheless, the two-dimensional filter is considered as an image
with positive and negative values before applying the convo-
lution of itself with the image (details in [2]). The objective
of this work is to estimate which rotation method of the filter
is the most reliable to extract contours. The following section
presents different rotation methods used in image processing
which will be evaluated within the context of edge detection.

3. IMAGE ROTATION METHODS

3.1. Rotation with image shear

Geometric transformations of a signal or an image are com-
mon operations. Nevertheless, these operations, which are
correctly defined in the continuous domain, do not become
straightforward in the discrete domain such as a digital im-
age. Therefore, the rotation of the images considers a discrete
2D signal (i.e., the image) to provide a second discrete 2D
signal. However, the relationship between the pixels of these
two images is not explicit.

The conventional rotation transformation of angle θ is de-
scribed by the following matrix:(

x′

y′

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
, (3)

where (x, y) represent the coordinates of a pixel of the input
image and (x′, y′) correspond to the coordinates of the pixel
at its new position after rotation.

A rotation transformation is easily implemented using a
matrix multiplication. However, this requires many arith-
metic operations with floating numbers and calculations us-
ing trigonometric functions. After these operations, a certain
number of pixels of the new image are unanswered; these
points correspond to empty pixels or holes (as shown in
Fig. 2, except for rotations concerning angles modulo 90◦).
Therefore, an interpolation process is also applied. In order

1In [1], the rotation of an angle θ is applied to the image, then the rotated
image is filter using HKθ=0◦ and is rotated in reverse with an angle of −θ;
corresponding to two rotations. The study carried by this work concerns the
rotation of the filter, after the image is filtered with the oriented filter HKθ .



to overcome these transformations, which are complicated to
implement and can modify image information, the rotation
matrix can be decomposed into 3 steps. Indeed, the rotation
described in eq. 3 is rewritten as the product of 3 matrices [9]
where each matrix corresponds to a shear transformation:(

x′

y′

)
=

(
1 − tan( θ

2
)

0 1

)(
1 0

sin(θ) 1

)(
1 − tan( θ

2
)

0 1

)(
x
y

)
. (4)

Each shear corresponds to a 1D signal translation, in total,
two horizontal shears and one vertical, as illustrated in Fig.
3. The major benefit of this technique is to preserve high
spatial frequencies. Even though the three-shear rotation de-
composition provides less complex algorithms than the eq. 3,
interpolations or pixel placements are required at each shear
step. Thus, there are two important techniques for rotating
images: interpolations [10, 11, 12] and discrete reversible ro-
tations without loss of pixels [13, 14].

3.2. Rotations using interpolations

Each shear step requires an interpolation model for resam-
pling [10, 11, 12]. There are several interpolation techniques,
three of them are described here, one copies existing pix-
els (Nearest), another uses a local mean (Bilinear) while the
last one averages and enhances the contours in the same way
(Bicubic) using both a smoothing and a derivation.

3.2.1. Nearest Neighbor

Each pixel value in the resampled image is determined by
simply copying the value of the nearest input pixel. This
method preserves the original pixel values. The approxima-
tion is discontinuous and has no regularity; its mathematical
expression is given by:

fN (x) =

{
1, si |x| < 1

0, elsewhere.
(5)

Since this algorithm is the only one that does not insert new
colors in the result, it produces very visible block or stair ef-
fects on the result during the rotation process.

Horizontal 
shear 

Original image 
Vertical 

shear 

Horizontal 
shear 

Rotated image,  30  

Fig. 3. Successive shears and bilinear interpolations.

3.2.2. Bilinear
Often used, this sampling is computed by the linear-weighted
average of the nearest pixel values of the pixel considered
[10]. Indeed, in 1D, this technique can be implemented by
the following triangle function fL:

fL(x) =

{
1− |x|, si |x| < 1

0, elsewhere.
(6)

The bilinear interpolation is easy to compute and minimizes
aliasing effects, but introduces significant blur in the image.

3.2.3. Bicubic
This function is composed of 3rd degree piece polynomials
[15]. The weighting factors for the average of the input pixels
are calculated using a cubic function of the pixel distance:

fBic(x)=


(a+ 2)|x|3 − (a+ 3)|x|2 + 1, if 0 ≤ |x| < 1

a|x|3 − 5a|x|2 + 8a|x| − 4a, if 1 ≤ |x| < 2

0, elsewhere,
(7)

where a = −0.5 is a parameter that produces 3rd order con-
vergence [15]. Bicubic resampling is one of the most used in
image resampling. Indeed, as this interpolation method con-
tains negative coefficients, it makes it possible to reduce both
the aliasing effect and the blur in the result image compared
to the method previously detailed.

There exist other interpolation methods for resampling
images [10, 11, 12, 16]; we were interested in these last three
for their property of copy of pixels (Nearest), averaging (bi-
linear) and enhancement of contours (bicubic) when the half
Gaussian filter must be rotated (Fig. 4).

3.3. Discrete rotation
Since previous transformations behave as low-pass filters, im-
portant image structures can be lost/smoothed by using them,
especially high-frequency information. Instead of interpolat-
ing, the basic idea of discrete rotations is to replace each hori-
zontal and vertical shear transformation with one to one pixel
displacements [13, 14]. The called quasi-shear transformation
Q defined by:

Q(x, y)) =
(
x+ ba·y+cb c

y

)
, (8)

a
b represents the slope of quasi-shear, c is the translation fac-

tor, with a, b, and c integers, such that c>0, where b·c de-
fines the function that returns the integer part of a number
(floor function). The function Q is applied for a horizontal
transformation; during a vertical transformation, it suffices to
invert the coordinates x and y and thus return to the eq. 4.
The advantage of a discrete rotation by translation is that it
simply moves the pixels without modifying their values (il-
lustrated in Fig. 4(e)), and especially, that the inverse rotation
corresponds exactly to the original image (i.e., bijective trans-
formation). The objective of the following study is to evalu-
ate which rotation technique applied to the half-filters is the
most reliable to detect contours. Note that we proposed to use
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Fig. 4. Half Gaussian kernels rotated at 5◦ and 45◦ with the following parameters: σ = 1.53 et µ = 13.11.

discrete rotation as part of the definition of bases of oriented
wavelet packets [17].

Visually, the filters are shown in Fig. 4 for rotations at 5◦

and 45◦. The bilinear and bicubic rotations allow to obtain a
smoothed rotated filter, whereas the copied pixels are clearly
visible with the nearest rotation. Finally, the discrete rotation
brightly marks a shear of the 5◦ filter (filter cut in the middle)
and the displaced pixels are noticeably apparent at 45◦.

4. EVALUATION

Firstly, the Fig. 4 illustrates the difference between the dif-
ferent rotation techniques of the filter, and the Fig. 5 shows
the signal obtained at the level of one pixel using theses rota-
tion methods. Thus, the curves using the bilinear and bicubic
formulas are better smoothed than with the nearest and the
discrete techniques, which create irregular signals.

Various supervised methods have been proposed in the lit-
erature to evaluate edge detectors [18] and HK has been com-
pared to other simple, oriented and anisotropic edge detectors
in [18], [19] and [2]. Hereafter, let Gt be the reference con-
tour map corresponding to the ground truth and Dc the de-
tected contour map of an image I . Comparing pixel by pixel
Gt and Dc, a basic evaluation is composed of statistics:
• True Positive (TP ), commun points of Gt and Dc,
• False Positive (FP ), spurious detected edges of Dc,
• False Negative (FN ), missing boundary points of Dc,
• True Negative (TN ), common non-edge points.

It is clearly proved that poorly located or missing pixels
should be penalized according to the distance from the posi-
tion where they should be localized. Also, as demonstrated
in [18], the evaluation of FP and FN should not be symmet-
rical, because such a penalty could alter the visibility of the
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Fig. 5. Comparison of signals obtained with different rotation
techniques for the same pixel in Paulina image (green cross).

outlines of the desired objects in an objective evaluation (see
[18]): some measures calculate a large error for a single FP
at a sufficiently large distance, while many desired contours
are missing, but unfortunately, they are not penalized enough.
Thus, described in [19], the normalized N edge detection
evaluation measure is, for FN > 0 or FP > 0:

N (Gt, Dc) =
1

FP + FN
·[

FP

|Dc|
·
∑
p∈Dc

1

1 + κFP · d2Gt(p)
+
FN

|Gt|
·
∑
p∈Gt

1

1 + κFN · d2Dc(p)

]
,

(9)
where (κFP , κFN )∈]0, 1]2 represent two scale parameters

[19], | · | denotes the cardinality of a set, and dA(p) is the
minimal Euclidian distance between a pixel p and a set A
[20]. Therefore, the measure N calculates a standardized
dissimilarity score; the closer the evaluation score is to 1,
the more the segmentation is qualified as suitable. On the
contrary, a score close to 0 corresponds to a poor detection of
contours, finally, if FP=FN=0, then N =1.

The objective here is to get the best contour map in a su-
pervised way. The ground truth images are available in Figs.
6(b) and 7(f). The 4 rotation methods described above are ap-
plied to the filters in order to compare the obtained segmen-
tation. For that, the contours are extracted after a suppression
of the local non-maxima (cf eq. 2), then a threshold by hys-
teresis is applied to obtain a binary segmentation [7]. Theo-
retically, to be objectively compared, the ideal contour map
of a measure must be a Dc at which the supervised evaluation
gets the highest score [18, 19]. For this, a double loop for the
hysteresis thresholding is applied in order to obtain the best
segmentation as a function of N (i.e., the best score of N for
a given contour detection). For each better segmentation tied
toN , the false positives (FP) and percentage of true positives
relative to the total number of edge pixels of Gt are also dis-
played (TP/Gt). Also, the last evaluation measure concerns
the gradient angle, η [2]. Once Dc is created, considering
CDc , the set of contour chains in Dc (i.e., at least 2 pixels per
chain), the gradient evaluation is computed as follows:

E(CDc , η) =
1

|CDc |
·
∑
p∈CDc

∑
dk∈W

[
1− |90

◦ − |−→ηp −−→ηdk | |
90◦

]
/ck,

where dk represents a contour pixel belonging to W, a 3×3
window centered on p, −→ηdk the gradient orientation of dk and
ck the number of contour pixels in W, minus the central pixel.
This evaluation linearly ranges from 0 for identical angles of
−→ηp and −→ηdk to 1 for angles that differs. Note that −→ηdk and −→ηp
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Fig. 6. Comparison and evaluation of edge detection using diffrent rotation techniques for the oriented half-Gaussian kernel.
Filter parameters are: σ = 0.7 and µ = 8.81, the angular step is of 5◦. Detected edges are tied to the noisy image of SNR=5dB.

angles belong to [0; 180◦[ and when one direction approxi-
mates 0 and the other direction 180◦, the evaluation of these
two directions remains close to 0. These scores are presented
in Figs. 6 (d-f) and 7 (b-e) according to the SNR of the im-
age, ranging from 9dB for the less noisy up to 3dB for the
most deteriorated. Therefore, the scores ofN should decrease
monotonously with respect to the level of degradation (white
Gaussian noise); the filter rotation technique with the highest
scores is considered the most reliable.

4.1. Synthetic images
The synthetic image presented in Fig. 6(a) is composed of
geometric shapes. They contain step edges, however, an in-
termediate value gray pixel has been added at each contour.
These gray pixels represent an accurate Gt of the original,
visible in Fig. 6(b). Regarding the scores of N displayed in
Fig. 6(d), the curves tied to the nearest and discrete rotation
overlap. Scores of these two rotation techniques are lower
than the bilinear and bicubic methods applied to this synthetic
image. On the contrary, the bilinear and bicubic methods ob-
tain similar scores for the evaluation function N , regardless
of the noise level, just like the number of TPs; however, the
bilinear rotation obtains less FPs. Visually, the contours pre-
sented are those obtained in the image presented in Fig. 6(b),
with SNR=5dB. In this experiment, the used filter is thin, with
few pixels for the derivation support (σ = 0.7 and µ = 8.81),
the contours extracted using the nearest and discrete rotation
are less continuous than the other two techniques. Regard-
ing the nearest rotation, an important contour is missing on
the rectangle at the bottom right. The discrete rotation cre-
ates many FPs, this is explained by the displacement of pixels
during the rotation process of the filter, since this mixes the
coefficients of the filter (see Fig. 4(i)). On the other hand,
the gradient direction evaluation E(CDc , η) indicates that the
bilinear and bicubic methods obtain more regular/smoothed
gradient directions along contours chains.

4.2. Real images
The image presented in Fig. 7(a) is tied to its ground truth
Gt in Fig. 7(f). Reference contours were created using filters
of type [-1 0 1], then missing contours were added manually,
and many unwanted contours were also deleted (detailed in
[20]). In contrast to the synthetic image, the scores of N dis-
played in Fig. 7(b) are to the advantage of the nearest and
the discrete rotation techniques, but not for the number of FP
and TP and concerning E(CDc , η). Indeed, the bilinear and
bicubic rotation method obtains scores of N lower than the
nearest and the discrete rotation. Visually, the presented con-
tours are those obtained in the Fig. 7(b), with SNR=5dB.
The obtained segmentation with the discrete rotation of the
filter is less disturbed by the FP than the other methods, the
objects are better separated than using the other rotation tech-
niques. However, it is notable that FPs are present on either
side of correctly detected contours; this is due to the rotation
of the filter for pixels close to the contours. As the filter co-
efficients are mixed, they can detect false contours according
to their new positions in the rotated filter. In terms of preci-
sion (TP/|Gt|), the bicubic technique is reliable, but creates
too much FPs, contrary to the nearest which does not obtain
enough TP points, but performs for with less of FPs. On the
contrary, the bilinear method obtains better gradient orienta-
tion. Finally, the edge detection presented in Fig. 8 illustrates
that, even for a larger filter, the extracted contours are less
continuous with the discrete technique than with the bilinear
(original image in Fig. 6(a), SNR = 4dB) . This example il-
lustrates that the rotation method does not depend to the filter
parameters.
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Fig. 8. Crop of edge detection, σ=4 and µ=13, SNR=4dB.
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Fig. 7. Comparison and evaluation on a real image. Filter parameters: σ = 1.53 and µ = 10.96 and the angular step is of 5◦.

5. CONCLUSION

This paper compares different rotation techniques of half
Gaussian filters before convoluting them to images. In this
context, the nearest, bilinear, bicubic and discrete filter rota-
tion methods were evaluated. Conventionally, these rotation
methods are used to obtain a rotated image with the same
quality of visual rendering; this study illustrates the interest
of choosing the appropriate rotation method for an oriented
semi-filter used in edge detection. The bilinear and bicubic
methods act as a low-pass filter, interpolating pixels; on the
other hand, the discrete rotation only moves the pixels, creat-
ing no new value. Experimental results show that bicubic and
bilinear rotations are more accurate for detecting step edges
and, usually, they obtain more regular/smoothed gradient di-
rections along contours chains, while the discrete rotation
method is more efficient when the image has ramp edges.
Without interpolation, the latter preserves the same number
and the same coefficient values of the filter, regardless of the
rotation applied, avoiding, especially, a low pass effect. A
deeper investigation should be carried out by studying which
interpolation technique (e.g. Bicubic, or Bilinear) should be
adapted as a function of the edge type (step, ramp, ridge...).
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