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EDGE DETECTION EVALUATION: A NEW NORMALIZED FIGURE OF MERIT

Baptiste Magnier

LGI2P, IMT Mines Alès, 6. avenue de Clavière, 30319 Alès, France

ABSTRACT
Figure of merit represents an expression characterizing the
performance of an algorithm. In edge detection assessment,
it corresponds to a supervised evaluation by quantifying dif-
ferences between a reference edge map and a candidate, com-
puted by a performance measure/criterion. This paper intro-
duces a new normalized supervised edge detection evaluation
measure which provides an overall evaluation of the quality
of a contour map, by taking into account the amount of false
positives, false negatives and degrees of shifting. Finally,
an objective assessment performed by varying the hysteresis
thresholds on contours of real images shows that the new mea-
sure outperforms six other compared normalized methods, in
term of evaluation and visualization of the detected contours.

Index Terms— Edge detection, objective evaluation.

1. INTRODUCTION

Edge detection is a fundamental process and is widely used
in image analysis and computer vision applications. Hence,
an edge extractor needs to perform efficiently despite differ-
ent perturbations in the data which might be created by the
image acquisition. Consequently, a large number of edge de-
tection algorithms have been developed and many methods
continue to be proposed proposed [1, 2]. So, edge detec-
tors have to be carefully tested and assessed in order to study
the influence of the input parameters. However, most contour
extraction methods suffer from the lack of effective, reliable
and automated edge quality evaluation measurement/metric
[3]. Moreover, an objective evaluation of the segmentation
remains vital for many applications: medical, aerial, satellite,
tracking an so on. This study focusses on supervised edge de-
tection evaluations with respect to the binary representation
of the boundaries. A supervised evaluation process estimates
scores between a ground truth and a candidate edge map (both
binary images). These scores could be evaluated by counting
the number of erroneous pixels, but also through the spatial
distances of misplaced or undetected contours. Therefore, a
lot of works have been put into developping efficient met-
rics. Even though some of these metrics are widely studied in
the literature, they are seldom applied objectively and few of
them are normalized.

This paper seeks to propose a new supervised edge detec-
tion evaluation which would allow us to compare several edge

detectors by filtering in an objective way by varying the hys-
teresis thresholds of the thin gradient image. The proposed
measure computes a normalized score in function of weights
of both false positive and false negative points. Rather, by
varying the parameters of the hysteresis thresholds, the ideal
edge map can be objectively determined and appears visually
as the best edge maps in quality when compared to other edge
detection assessments. The next section presents a review of
the most relevant normalized metrics present in the literature.

2. ON EXISTING NORMALIZED MEASURES

Various supervised methods have been proposed in the litera-
ture to assess edge detectors [8, 9, 10, 11]. The normalization
remains valuable to compare a set of algorithms more easily.
The most frequently normalized measures of dissimilarity are
described here. Each measure computes a score of quality;
the closer to 1 the score of the evaluation is, the more the seg-
mentation is qualified as suitable. On the contrary, a score
close to 0 corresponds to a poor edge detection.

Let Gt be the reference contour map corresponding to
ground truth and Dc the detected contour map of an origi-
nal image I . Comparing pixel per pixel Gt and Dc, a basic
evaluation is composed of statistics:
• True Positive points (TPs), common points of Gt and
Dc: TP = |Gt ∩Dc|,
• False Positive points (FPs), spurious detected edges of
Dc: FP = |¬Gt ∩Dc|,
• False Negative points (FNs), missing boundary points

of Dc: FN = |Gt ∩ ¬Dc|,
• True Negative points (TNs), common non-edge points:
TN = |¬Gt ∩ ¬Dc|,

where | · | denotes the cardinality of a set. Several edge detec-
tion evaluations involving only statistics have been developed,
see [9, 10, 11]. Among them, the Performance measure Pm
simultaneously considers the three entities TP , FP and FN
[12, 13] and is currently used in segmentation:

Pm (Gt, Dc) =
TP

|Gt ∪Dc|
=

TP

TP + FP + FN
(1)

Other statistical measures are similar to Pm [14, 15, 16] or
worse in objective evaluation, see [17, 18], so Pm is the ba-
sis for the comparison in this paper. Also, statistical measures
such as ROC [3] or PR [16] curves evaluate the comparison of
two edge images, pixel per pixel, but do not detect when the



Table 1. List of normalized dissimilarity measures involving distances, generally: κ = 0.1 or 1/9.
Error measure name Formulation Parameters

Pratt’s FoM [4] FoM (Gt, Dc) =
1

max (|Gt| , |Dc|)
·
∑
p∈Dc

1

1 + κ · d2Gt(p)
κ ∈ ]0; 1]

FoM revisited [5] F (Gt, Dc) =
1

|Gt|+β·FP ·
∑
p∈Gt

1

1 + κ · d2Dc(p)
κ ∈ ]0; 1] and
β ∈ R+

Combination of FoM
and statistics [6] d4 (Gt, Dc) = 1− 1

2 ·

√
(TP −max (|Gt| , |Dc|))2 + FN2 + FP 2

(max (|Gt| , |Dc|))2
+ (1− FoM (Gt, Dc))

2 κ ∈ ]0; 1]

Edge map quality
measure [7] Dp (Gt, Dc) = 1− 1/2

|I|−|Gt| ·
∑
p∈FP

(
1− 1

1 + κ·d2Gt(p)

)
− 1/2
|Gt| ·

∑
p∈FN

(
1− 1

1 + κ·d2TP(p)

)
κ ∈ ]0; 1]

edge is correctly identified with a small displacement, which
tends to severely penalize a (even slightly) misplaced contour
(cf. Fig.1). Consequently, some evaluations resulting from
the confusion matrix recommend incorporating spatial toler-
ance as the Performance value Pv in [19]. Despite Pv being
normalized, the same measurement is obtained for two differ-
ent shapes (see [20]). Note that the approach presented in [21]
gives interesting results; unfortunately, it is not normalized.

As a result, a reference-based edge map quality mea-
sure requires that a displaced edge should be penalized
not just according to FPs and/or FNs but also according
to the distance from the position where it should be located
[8, 10, 11, 20, 22]. A review of normalized edge evaluation
measures involving the distances of errors is presented in
this paragraph. Thus, for a pixel p belonging to a contour in
an image, dE(p) represents the minimal Euclidian distance
between p and another edge E in a compared image. Ta-
ble 1 reviews the most relevant normalized criteria/measures
involving distances. Alternative dissimilarity measures, in-
spired from the Hausdorff distance [23], but non-normalized,
have been proposed in the literature, see [8, 9, 10, 18, 17, 11].
In [11], a normalization for the measure of distances is pro-
posed, but it is not really practical for real images. In edge
detection evaluation, a widely used similarity measure refers
to FoM [4]. The parameter κ plays the role of scale parame-
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FoM(Gt, C1) = 0.8 FoM(Gt, C2) = 0.8
FoMe(Gt, C1) = 0.2 FoMe(Gt, C2) = 0.2
F (Gt, C1)=0.38 F (Gt, C2) = 0.26
d4(Gt, C1)= 0.15 d4(Gt, C2) = 0.15
Dp((Gt, C1)= 0.48 Dp(Gt, C2) = 0.46
N κFP=0.1
κFN=0.4

(Gt, C1) = 0.81 N κFP=0.1
κFN=0.4

(Gt, C2) = 0.64
N κFP=0.1
κFN=0.2

(Gt, C1) = 0.87 N κFP=0.1
κFN=0.2

(Gt, C2) = 0.70

Fig. 1. Different Dc: FPs and number of FNs are the same
for C1 and for C2 (FN = 48, FP = 52), but the distances of
FNs and the shapes of the two Dc are different.

ter, the more κ is close to 1, the more FoM tackles FPs [11].
Nonetheless, the distance of the FNs is not recorded and are
strongly penalized as statistic measures (see [20] and Fig.1):

FoM(Gt, Dc) = 1
max(|Gt|,|Dc|) ·

(
TP +

∑
p∈FP

1
1+κ·d2

Gt
(p)

)
.

Thereby, different shapes have the same interpretation, as
in Fig.1. Further, if FP = 0: FoM (Gt, Dc) = TP/|Gt|.
Lastly, for FP>0, FoM penalizes the over-detection much
less than it does under-detection [11]. Several evaluation
measures are derived from FoM : FoMe, F , d4 and Dp.
Firstly, FoMe represents a modified version FoM by count-
ing only FPs, corresponding to an over-segmentation eval-
uation: FoMe (Gt, Dc) = 1

max(e−FP ,FP)
·
∑
p∈FP

1
1+κ·d2

Gt
(p)

,

with κ∈]0; 1]. Consequently, FoMe does not penalize FNs,
without FPs, a contour image is considered to be correctly
segmented (cf. black curve in Fig.2 middle). Otherwise,
contrary to FoM , the F measure computes the distances
of FNs but not of FPs. Thus, FPs are strongly penalized,
as in Fig.1 with the low score of 0.38. Furthermore, differ-
ent Gt leads to the same score for the same Dc: in Fig.1,
F (C1, Gt)=F (C2, Gt)=0.42. On the other hand, d4 mea-
surement depends particularly on TP , FP , FN and ≈1/4
on FoM , but d4 penalizes FNs like the FoM measure (cf.
Fig.1). Otherwise, the right term of the dissimilarity measure
Dp [7] computes the distances of the FNs between the closest
correctly detected edge pixel, i.e., TPs (FNs are huge tackled
when TPs are far from FPs, or whenGt∩Dc = ∅ as in Fig.1).
Finally, Dp is more sensitive to FNs than FPs because of the
huge coefficient 1

|I|−|Gt| for the left term (detailed in [20]).
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Fig. 2. Evolution of normalized measures in function of addi-
tion of FPs or FNs, or, edge displacement. On the left, Pm, F
and N overlap. In the middle, Pm, FoM and N overlap. On
the right, FoM and FoMe overlap. Here κFP=κFN=κ=0.1.



3. A NEW NORMALIZED MEASURE

Three curves in Fig.2 illustrate the motivations and the draw-
backs of the measures presented above as a function of the
number of FPs, FNs or of the boundary displacements. For
the first curves, FPs are added to Dc until they recover com-
pletely the image. Concerning the second curve, FNs are cre-
ated until Dc disappears completely. The third curve dis-
plays the measurement scores as a function of the transla-
tion of the desired edges. The curve must start from 1 and
converge monotonously toward 0. Nevertheless, FoM is not
monotonous for FPs addition and does not penalize severely
boundary displacements, contrary to Pm and d4 which are
sensitive to displacement. Also, Dp obtains a score not lower
than 0.5 because it corresponds to a measure which separates
under- and over-segmentation; (the score becomes close to 0
only with addition of both FPs and FNs). Finally, F does not
penalize displacements enough whereas d4 obtains a score of
0.25 for 100% of FPs in the Dc image and FoMe considers
only FPs distances. These curves illustrate that a dissimilar-
ity measure must take into account both FP and FN distances
(dGt(p) and dDc(p) respectively) for an objective assessment.

The main motivation is that there exists no normalized
measure which considers both FPs and FNs distances capa-
ble of obtaining a desired evolution like in Fig.2. Secondly,
as demonstrated in [20], the evaluation of FPs and FNs dis-
tances must not be symmetrical, because a symmetrical as-
sessment could alter the visibility of desired objects in an ob-
jective evaluation [18]: some measures compute a strong mis-
take for a single FP point at a sufficiently high distance (as
Hausdorff distance [8, 20]), whereas numerous desired con-
tours are missing, but unfortunately are not penalized enough
(see next section). Therefore, inspired by the Relative Dis-
tance Error in [32] and demonstrations in [20], for FN>0 or
FP>0, the new edge detection evaluation formula becomes:

N (Gt, Dc) =
1

FP + FN
·

[
FP

|Dc|
·
∑
p∈Dc

1

1 + κFP · d2Gt(p)

+
FN

|Gt|
·
∑
p∈Gt

1

1 + κFN · d2Dc(p)

]
,

(2)

where (κFP , κFN )∈]0, 1]2 represent two scale parameters
and the coefficient 1

FP+FN
normalizes the N function. If

FP=FN=0, then N=1. Therefore, to become as fair as
possible, FPs and FNs distances are penalized in function of
the relationship between FPs and |Dc| and between FNs and
|Gt| respectively, ensuring an equal distribution of mistakes,
without symmetry of penalties. However, when κFP<κFN ,
N penalizes the FNs more, compared to the FPs (see Fig.1
and 4). Results presented below show the importance of the
weights given for FNs because the desired objects are not
always completely visible by using ill-suited evaluation mea-
sures. Eventually, N has a normalized desired behavior for
strong mistakes: FPs, FNs addition and boundary displace-
ment (Fig.2), becoming very close to 0 for a large number of
FPs and displacement. Note that the Matlab code is available.

4. EXPERIMENTS: OBJECTIVE EVALUATION

The aim of the experiments is to obtain the best edge map in a
supervised way. In the experiments, 9 edge detection methods
based on filtering gradient computation are compared: Sobel
[24], Shen [25], Bourennane [26], Deriche [27], Canny [28],
Steerable filter of order 1 (SF1) [29], of order 5 (SF5) [30],
Anisotropic Gaussian Kernels (AGK) [31], and Half Gaussian
Kernels (H-K) [32]. The parameters of the filters are chosen to
keep the same spatial support for the derivative information
[32]. Finally, after a non-maximum suppression, a hystere-
sis threshold is applied on thin edges to obtain a binary edge
map [28]. Theoretically, to be objectively compared, the ideal
edge map for a measure must correspond to a Dc at which
the evaluation obtains the maximum score [33, 9, 11, 17, 20].
These scores of the different measures are recorded by vary-
ing the thresholds of the normalized thin edges computed by
an edge detector and plotted as a function of the PSNR, as pre-
sented in Fig.3 (top). Hence, a plotted curve must decrease
monotonously with the noise level (white Gaussian noise).

As demonstrated in [34, 17], the significance of the ground
truth map choice influences the dissimilarity evaluations but
is not discussed here. Among all the edge detectors, box
[24] and exponential [25, 26] filters do not delocalize contour
points [35] whereas they are sensitive to noise (i.e., addition
of FPs). The Deriche [27] and Gaussian filters [28] are less
sensitive to noise, but suffer from rounding corners and junc-
tions (see [35]) as the oriented filters SF1 [29], SF5 [30] and
AGK [31], but the more the 2D filter is elongated, the more
the segmentation remains robust against noise. At last, as a
compromise, H-K correctly detects contour points that have
corners and is robust against noise [32]. Consequently, the
scores of the evaluation measures for the first 3 filters must
be lower than the three last ones. Furthermore, as SF5, AGK
and H-K are less sensitive to noise than other filters, the ideal
segmented image for these 3 algorithms should be visually
closer to Gt (Fig.3(j)). The presented segmentations corre-
spond to the original image for a PSNR=14dB. Concerning
the Pm, F and d4 measures, the curves are confused, it is
not easy to notice which edge detector is better. For the seg-
mented images, Canny and AGK give almost the same score
for Pm but the contours of AGK are straighter and less noisy.
For F and d4, the scores of the Canny or Deriche filter are
either better than or similar to H-K whereas the segmenta-
tion remains clearly better for H-K. Also, the curves of FoM
are not monotonous, segmented images are too noisy and the
Shen segmentation where objects are not visually distinctive
is considered better than H-K. Otherwise, the Dp scores are
monotonous, but the worse segmentation corresponds to the
more robust filter against noise, whereas the segmentations
are heavily corrupted by FPs. On the other hand, values of N
evolve monotonously, respecting the orders of the filters: box,
exponentials at the bottom, Deriche and Gaussians in the mid-
dle and robust against noise on top. The presented segmen-
tations are consistent with the scores, and the main structures
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Fig. 3. Comparison of best maps and maximum scores for different evaluation measures, with κ=0.1, κFN=0.2 and κFP=0.1.

are visible, without being submerged by undesirable points.
Otherwise, Fig. 4 illustrates when κFP>κFN , extracted edges
create filaments. However, when κFP<<κFN , the edge map
contains a lot of undesirable isolated points (FPs). Note that
curves of the scores have the same gait with a constant gap.
Generally, results on dozens of noisy images at different noise
levels are similar for all the dissimilarity measures.
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5. CONCLUSION
For a computer vision application, edge detection evaluation
remains an element in the choice of an edge detector. This pa-
per describes a supervised evaluationN of the quality of a de-
sired contour. Theoretically, N ranges the shifting and defor-
mation error between a desired contour and a ground truth as
a function of FPs and FNs distances. Experimental results are
presented in an objective way. Finally, when κFN>κFP (pa-
rameters of N penalizing FPs and FNs), the maximum score
of the new dissimilarity measure corresponds to the best edge
quality map evaluation, which, visually, is similarly closer to
the ground truth (i.e., containing the main structures), com-
pared to the other methods. Moreover, N is normalized and
ranged scores between 0 and 1 are reliable and consistent with
both the noise level and the edge detector quality. For this pur-
pose, future works concern the objective assessment of image
restoration methods through edge detection evaluation.
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Existing Normalized Measures 
The normalization remains valuable to compare a set of algorithms more easily. The 

most frequently normalized measures of dissimilarity are described here. Each measure 

computes a score of quality; the closer to 1 the score of the evaluation is, the more 

the segmentation is qualified as suitable. On the contrary, a score close to 0 

corresponds to a poor edge detection. 
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