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Abstract—This paper presents a new shock filter for image
restoration and enhancement by incorporating diffusion infor-
mation coming for an hourglass filter. Shock filter represents an
important family in the field of non-linear Partial Differential
Equations (PDEs) models for image restoration and enhance-
ment. Commonly, the smoothed second order derivative of the
image assists this type of method in the deblurring mechanism
via of non-linear PDEs models. The advantage of the proposed
approach is to insert information issued of a non-linear tensor,
i.e., the hourglass filter, in a shock filter process. Technically, the
non-linear spatial averaging is more precise to enhance images
and sharpen contours efficiently simultaneously. The method is
compared to 5 other PDE techniques, presenting its interest,
robustness and reliability, as, for example, without creating a
grainy effect around deblurred edges by visualizing isophote lines.

Index Terms—PDE, shock filter, Hourglass tensor

I. INTRODUCTION: IMAGE DEBLURRING AND PDE

Regularly, digital images are corrupted by blurring due
to a movement, focalization problem, unclean optic, image
compression or pixel interpolations (up-sampling, rotations...).
The common and oldest technique suitable in image deblurring
remains the combination of the difference between an original
image I0 and ∆I: a blurred version of this same image. Usu-
ally, ∆I corresponds to a blur process equivalent to the heat
equation or a convolution of I0 with an isotropic Gaussian.
This original theory proposed by Gabor is proportional to
using the Laplacian operator [9]. Thus, the simplest manner
to remove blur in an image is represented by the equation:

∂I

∂t
= I0 − ε ·∆I, (1)

where t represents the time or the observation scale and
ε<1 is a little scalar to control the deblurring effect. This
process is equivalent to the inverse heat equation. However,
this technique is not stable because the procedure blows up
after several iterations and generates an unusable image [9].
To improve eq. 1, rather than applying a global operator on the
whole the image, the main idea is to iterate local operators at
level of each pixel. Non-linear Partial Differential Equations
(PDEs) may achieve this task [9] [2], practicing anisotropic
diffusions of pixel information. Indeed, PDEs belong to one
of the most important part of mathematical analysis and are
closely related to the physical world. Rather, non-linear PDEs-
based diffusion process overcome the undesirable effects of

linear smoothing filtering such as smoothing meaningful edges
of the image. In this context, images are considered as evolving
functions of time and a regularized image It can be seen as a
version of I0 at a special scale. Besides, the shock filter theory
is based on PDE framework.

The aim of this paper is to incorporate an hourglass filter
for an efficient image deblurring process via PDE.

II. SHOCK FILTERS: RELATED WORKS

This section presents the main PDEs for image deblurring.
In order to regularize images by controlling the diffusion, the
pioneer work of Perona and Malik on anisotropic diffusion has
been one of the most influential papers in the area [14]. Thus,
the proposed model is described by the following equation:

∂I

∂t
(x, y, t) = div (g (|∇I|) · |∇I|) , (2)

where |∇I| represents the modulus of the gradient with mask
of type [-1 1] and g a decreasing function satisfying g(0) = 1
and g(+∞) = 0; there exists several g functions [2], this
function may be:

g (|∇I|) = e−( |∇I|K )
2

, (3)

with K∈R+
∗ a constant that can be assimilated to a gradient

threshold or a diffusion barrier, slowing down the diffusion
process near edges, i.e., where |∇I| is large. Moreover, by
developing eq. 2, it is well known that the diffusion moves
backward when |∇I|>K, creating time-reverse equation (a
deblurring effect) called a shock filter allowing edge enhance-
ment, an example is available in Fig. 5(m).

A. Original Shock Filter

In the PDE framework, the seminal contribution developed
by Osher and Rudin [13] is equivalent to eq. 1, hence, the 2D
formulation is:

∂I

∂t
= −sign(∆I) · |∇I|. (4)

The sign function enable to deblur edges, tuned by the gradient
magnitude |∇I|. The Fig. 1(b)-(c) illustrates this deblurring
effect and the edge enhancement. Nevertheless, this PDE
produces a dilation/erosion for each pixel, creating a high
sensitivity to noise. A number of improvements have been
proposed, in particular by convolving I0 with a Gaussian.



B. Shock Filter involving Gaussian

In order to be more robust to noise, the Gaussian func-
tion Gσ may be convolved with Iηη , the second directional
derivative of the image in the gradient direction, where σ
represents the standard deviation of the Gaussian. Coupling
diffusion along ξ, the edge direction (Iξξ term [9], [2]) and
shock filter, the scheme of Alvarez and Mazorra (AM) is [3]:

∂I

∂t
= Cξ · Iξξ − sign(Gσ ∗ Iηη) · |∇I|, (5)

with Gσ(x, y) = 1
2πσ2 · e−

x2+y2

2σ2 . Also, |∇I| represents the
modulus of the gradient with a 3×3 mask (as Sobel masks),
Cξ denotes a control function of the diffusivity, as in eq. 3,
Iξξ denotes the second derivative in the orthogonal direction
of η, i.e., the edge direction. It corresponds to a pure diffusion
in the contour directions, called the curvature equation and is
defined by:

Iξξ =
Ixx · I2y − 2 · Ix · Iy · Ixy + Iyy · I2x

I2x + I2y
(6)

Also, Iηη is computed such that:

Iηη =
Ixx · I2x + 2 · Ix · Iy · Ixy + Iyy · I2y

I2x + I2y
. (7)

Actually, Iξξ and Iηη are obtained using the partial derivatives
of the image I , with respect to x and y:

• Ix =
∂I

∂x
, the image derivative along the x axis,

• Iy =
∂I

∂y
, the image derivative along the y axis,

• Ixx =
∂2I

∂x2
, the 2nd image derivative along the x axis,

• Iyy =
∂2I

∂y2
, the 2nd image derivative along the y axis,

• Ixy =
∂2I

∂x∂y
, the crossing derivative of I .

Note that the Laplacian can be rewritten in the intrincic
coordinates (ξ, η) as ∆I = Iξξ + Iηη .

Some evolutions of the approach in eq. 5 have been pro-
posed, as in [10], where an isotropic diffusion (∆I) is applied
concerning small gradients. A PDE technique proposed in [7]
weights the diffusion and shock terms in accordance with
threshold values of the gradient magnitude. On the other hand,
in [4] a combination of non-linear curvature diffusion and
shock filter is developed. The gradient modulus of f(s) =

1
1+s2/k applied on the gradient magnitude favors or inhibits
the shock filter.

The main problem of the based-Gaussian models is the cre-
ation of homogeneous blobs in flat noisy regions, as illustrated
in Fig. 5(d). Moreover, after a certain number of iterations a
corner smoothing could be created, as illustrated in Figs. 1(d)
and 2(d). Thus, in Figs. 1(d), edges are enhanced whereas
corners of the geometric shapes are over-smoothed.

(a) Original image (b) Osher and Rudin [13]
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(c) Signal in (a) vs. signal in (b) (d) AM [3], σ = 1

Fig. 1. Illustration of edge improvement using shock filters after 20 iterations.
The green line in (a) is tied to the blue curve in (c) and the red curve in (c)
represents the same line of pixels in (b) after edge sharpening.

C. Complex Shock Filter

A different solution proposed by Gilboa et al. [8] is to
change the sign function (cf. eq. 4) in order to take into
account both the 2nd order direction of the second derivative
and its magnitude. Denoting Im(I), the imaginary part of
I , by using 2

π arctan(a · Im( Iθ )), a ∈ R+ represents the
parameter controlling the steepness of the slope of the 2nd
order derivative near 0. When θ ∈ R+

∗ tends to 0, Im( Iθ ) may
be considered as the smoothed 2nd order derivative of I . The
complex shock filter is described by the following equation:

∂I

∂t
= − 2

π
arctan(a · Im(

I

θ
)) · |∇I|+ Λ · Iηη + Λ̃ · Iξξ, (8)

where Λ is a complex diffusion term regularizing the noise
and indicating inflection points. Λ̃ is a real scalar parameter
which corresponds to the amount of diffusion in level-set
direction. The real constant a controls the sharpness of the
slope of the edge detector near 0. Using eq. 8, the regions
close to contours where the 2nd order derivative has a higher
magnitude, i.e., inflection points will not have equal weights.
This translates into a higher deblurring speed near edges and
contours than in the flat regions of the image. Despite the
originality of complex shock filter and its evolutions, the
main drawback of these techniques concerns noisy images.
Namely, the deblurring process creates images looking grainy
at level of the edges (cf. Fig. 2(e)). In [15], the complex shock
method has been improved to limit and correct distortions of
edges by incorporating structure tensor and then to diffuse the
pixel information along edges (the structure tensor -or gradient
tensor- is detailed in next section).

D. Structure Tensor based Approaches Shock Filter

The Coherence Enhancing Shock Filter (CESF) has been
developed by Weickert [19] with the shock filter theory via



structure tensor based approach. Thus, the corresponding PDE:

∂I

∂t
= −sign((Gσ ∗ I)ω+ω+

) · |∇I| (9)

allows shock filtering along the direction of the eigenvector ω+

corresponding to the largest eigenvalue of the structure tensor:
Jρ(∇I). The parameter ρ represents the standard deviation of
the Gaussian of the tensor (details in next section, eq. 11).

Tschumperlé and Deriche proposed a different form of the
diffusion shock filter, coupling especially for enhancement of
color images [17]. This model can be generalized to gray level
images using the structure tensor:

∂I

∂t
= ε · (I0 − I) + cω− · Iω−ω− + cω+

· Iω+ω+

−(1− g(N )) · sign((Gσ ∗ I)ω+ω+
) · |∇I|

(10)

(a) Original image (b) Noisy image (c) PM [14]

(d) AM [3] (e) Complex [8] (f) CESF [19]
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Fig. 2. Enhancement of a synthetic blurred and noisy image with ρ = 2.

where ε∈R+
∗ , cω+/− represent two decreasing functions:

cω−(N )= 1√
1+N 2

and cω+
(N )= 1

1+N 2 , with N=
√
λ+ + λ−

a gradient norm. The shock is controlled by g(N ) (cf. eq.
3), where λ+ and λ− denote the two eigenvalues tied to the
eigenvectors ω+ and ω− respectively, related to the tensor Jρ.

These tensorial techniques behave like a contrast enhancing
shock filter, they enhance well strip structures, however they
may create artificial lines (cf. Fig. 2(f)) or may engender
an undesirable grainy effect around edges when dealing with
highly noisy images, see Fig. 2(g). On another hand, the main
idea in [12] is to insert information issued of oriented half
Gaussian kernels in a shock filter process. Notwithstanding a
long-term and large scientific effort for PDE-based methods,
a satisfactory solution has not been found yet.

III. THE ORIENTED HOURGLASS TENSOR

A. Gradient Tensor

Coming from the first image derivatives, this selection is
given by involving a 2×2 symmetrical structure tensor. The
derivation of a scalar image I is called the image gradient and
is noted by ∇I = (Ix, Iy) t in which Ix and Iy represent the
image derivatives in x and y directions respectively (usually
calculated by means of Gaussian derivative filters with a stan-
dard deviation of σ∈R+). Particularly, involving a smoothing
Gaussian kernel Gρ of standard deviation ρ, the first-order
gradient tensor -or structure tensor- Jρ is given by:

Jρ(∇I)=Gρ ∗ ∇I · ∇I t=
1

2πρ2
· e−

x2+y2

2ρ2 ·
(
I2x IxIy
IxIy I2y

)
.

(11)
The scale of the neighborhood information is given by Gρ
and the eigenvector ω+ of Jρ associated with the largest
eigenvalue λ+ is tied to the gradient orientation, as illustrated
in Fig. 3(b). When Jρ possesses two positive eigenvalues,
then the pixel is considered having at least two distinguished
orientations, therefore a corner or a junction [5]; the smallest
eigenvalue λ− may indicate the cornerness measure, as in
Fig. 3(c). Consequently, these eigenvalues and eigenvectors
are utilized during a PDE process like eq. 9 and 10. However,
due to the linear integration caused by the average of Jρ, the
use of this linear filter leads to an undesirable blurring of
structure information. As an example, two close or parallel
edges will be merged into a single response, losing the narrow
region between them, see Fig. 3(c) for the trace operator
Tr(Jρ(∇I)) = Gρ∗I2x+Gρ∗I2y . Hence, the proposed solution
in [11] is to distribute the structure information along the edge
using oriented hourglass kernels rather than ellipses [17].

B. Hourglass Tensor

Considering the edge and gradient directions denoted re-
spectively ξ and η, the structure information is dispensed along
ξ in order to compute a precise diffusion flow. Consequently,
the hourglass filter is built such that the angular part which is
perpendicular to the edge orientation ξ becomes zero. Thus,



(a) Original image (b) λ+ (c) λ− (d) Trace of Jρ (e) µ+ (f) µ− (g) Trace of Hρ,γ,ξ

Fig. 3. Eigenvalues and Trace concerning isotropic and Hourglass structure tensors respectively, with σ = 1 and ρ = 2. For (e)-(g), γ = 0.2.

considering n = (cos(ξ), sin(ξ))t and X the pixel coordinates
(x, y) the formula is given by:

hρ,γ,ξ(X) =

 e
−X·Xt

2ρ2
− 1

2γ2

(
n⊥·X

t

n·Xt

)2

, if nt ·X 6= 0
0, elsewhere.

(12)
The γ parameter controls the opening of the angular part, see
Fig. 8(a)-(c). Afterward, the filter is normalized such that the
sum of all its coefficients is equal to one. Concretely, inspired
by the steerable filters [6], at each pixel, the hourglass kernel is
rotated in the edge direction ξ, according to n, as represented
in Fig. 4. Then, by convolution the hourglass filter hρ,γ,ξ is
applied in a similar way to the structure tensor:

Hρ,γ,ξ(∇I) = hρ,γ,ξ ∗ ∇I · ∇I t =

(
H11 H12

H21 H22

)
. (13)

Thereafter, as for the structure tensor, the highest and lowest
eigenvalues respectively denoted µ+ and µ− are computed: µ+ = 1

2

(
H11 +H22 +

√
(H11 −H22)2 + 4 · H2

12

)
µ− = 1

2

(
H11 +H22 −

√
(H11 −H22)2 + 4 · H2

12

)
.

(14)
The eigenvalues µ+/− are tied to the gradient and corners.
Figs. 3(e)-(g) illustrate the improvement for the computation of
the eigenvalues and the trace of the tensor using the hourglass
filter. Indeed, close edges are now detected and corners better
localized. Information coming from the hourglass tensor can
be incorporated in a PDE scheme, where eigenvalues tune the
diffusion process in function of the tied eigenvectors. The main
purpose of the new regularization PDE flow is to enhance an
image without creating a grainy effect around edges.

Hourglass filters steered 
in the edge orientations

(a) Edge and gradient orientations (b) Hourglass kernels

Fig. 4. Hourglass kernels are rotated according to the local edge orientations.

IV. A SHOCK FILTER PROCESS TUNED BY THE ORIENTED
HOURGLASS TENSOR

In Fig. 2, several results involving classical methods and
structure tensors are presented. Figs. 2(f) and (g) illustrate that
thin objects (the vertical line on the top left) is prolonged or
merged with the white object on the right. The motivation
to use the hourglass filter is to be able to enhance this
type of narrow object. Thus, denoting W+ = (α+ , β+)t

and W− = (α− , β−)t, the two eigenvectors tied to µ+ and
µ− respectively, the proposed scheme smooths the image
in the two orthogonal directions W

+
and W− , i.e., usually

corresponding to the gradient and contour directions respec-
tively. Consequently, IW−W− ensures an edge preservation
whereas IW

+
W

+
helps to create homogeneous regions. They

are computed with the second derivatives of the image Ixx (in
x direction), Iyy (in y direction) and Ixy (crossing derivative):{

IW
+
W

+
= α2

+
· Ixx + 2 · α

+
· β

+
· Ixy + β2

+
· Iyy

IW−W− = α2
−
· Ixx − 2 · α− · β− · Ixy + β2

−
· Iyy.

(15)

Now the use of the ”sign” function enables a couple equa-
tion taking into account the regularization and shock process
for image denoising and edge sharpening. The weighting
function in eq. 3 is added in order to adapt the intensity of
the shock filter, allowing to enhance edges while preserving
homogeneous regions. Thus, the proposed regularization PDE
flow is given by:

∂I

∂t
= CW

+
· IW

+
W

+
+ CW− · IW−W−

+ (g(A)− 1) · sign(IW
+
W

+
) · |∇I|

(16)

with:
• A = µ+ + µ−,

• CW
+

(A) = 1
1+A ,

• CW− (A) = 1√
1+A .

The gradient norm A is chosen because it detects as well
edges as corners, as shown in Fig. 3(e)-(f). Further, to ensure
performance of the coupled diffusion and shock process, CW

+

and CW− , with CW
+

(A) < CW− (A) are two decreasing
functions. Indeed, if the diffusion along W

+
is too important,

edges will be blurred, which is contrary to the desirable effect.



(a) Original image (b) Noisy and blurred image (c) PM [14] (d) AM [3] (e) Complex [8]
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Fig. 5. Restoration of a real blurred and noisy image, image of size 411×384. The tensor parameter ρ = 3 is the same for the tensorial methods.

V. EVALUATION AND EXPERIMENTAL RESULTS

Several results of the proposed PDE are presented in this
section. These results are compared to the different approaches
described above. For the evaluation in Figs. 2 and 5, as far as
the evaluation process is concerned, the Structural Similarity
Index Measure (SSIM) [18] is reported and plotted as a
function of the number of iterations for each method. To shed
light on the effectiveness of the proposed shock filter, two
tested images are noised by white Gaussian noise (σ = 10)
and blurred using a convolution with a Gaussian (σ = 1), cf.
Figs. 2 and 5. Then they are independently treated by Perona-
Malik (PM) [14] , Alvarez-Mazorra (AM) [3] , Complex
[8] , Weickert [19] and Tschumperlé et al. [17] methods.
The parameter for methods involving Gaussians is σ=1; for
complex shock filters, θ=0.001, a=2 and λ̂=λ=0.1. Finally,
the presented experimental results and images resulting the
different methods are tied to the best SSIM score.

The first result is presented in Fig. 2. As stated above, the
considered image is composed of geometrical features and
close objects that need to be deblurred and enhanced. The new
approach outperforms classical shock filter methods in term
of SSIM values (with default parameters). Visually, objects
are separated (even narrow regions) and the majority of edges
are straight, with desired homogeneous regions, contrary to
other results. For the second experiment concerning a real
image in Fig. 5, SSIM scores of the proposed technique remain
above other scores. Results are also compared with the well-
known bilateral filter (sharp edge-preserving filter), where the
standard deviation of the spatial Gaussian smoothing for this
filter is the same than the tensor parameter (σ=ρ=3). As the
enlargements (enlarg.) show in Fig. 5(k)-(s), AM and complex
methods create homogeneous blobs in flat noisy regions, CESF

is disturbed by the level of noise, creates stripes, whereas PM,
bilateral and Tschumperlé et al. approaches blur the textures.
On the contrary, the proposed technique is able to improve the
textures of the bricks and of the bushes as the majority of the
main structures. Moreover, the new regularization PDE flow
along the eigenvectors enables an image enhancement without
creating a grainy effect around edges.

Fig. 6 illustrates enhancements of a real image using two
different tensors (linear and non-linear). In this way, the
regularizing flow using linear spatial averaging (Jρ in eq. 11)

(a) Image 176×221 (b) Isotropic tensor [17] (c) Hourglas tensor

(d) Isophote of (a) (e) Isophote of (b) (f) Isophote of (c)

Fig. 6. Enhancement of a real image (Elaine) and comparison of isophote
lines on 16 levels. Results obtained after 30 iterations with ρ = 3 for both.



(a) Image 176×221 (b) Isotropic tensor [17] (c) Hourglas tensor

(d) Isophote of (a) (e) Isophote of (b) (f) Isophote of (c)
Fig. 7. Enhancement of a real image (Paulina) and comparison of isophote
lines on 32 levels. Results obtained after 20 iterations with ρ = 3 for both.

and non-linear (Hρ,γ,ξ in eq. 13)) are compared together by
visualizing isophote (lines of constant pixel intensities on 16
levels). Choosing the same parameters for both models, this
showcases the grainy effect around edges which are visible in
Fig. 6(e) for the linear method. On the contrary, contours are
enhanced by using the hourglass filter; they are straighter, as
for the texture of hairs (Fig. 6(f)). Inside flat regions, isophote
lines are less winding than the image restoration using linear
tensor, showing the efficiency of the proposed regularization
PDE flow. In the same manner, plotted isophotes on 32 levels
is Fig. 7 are more regular with the hourglass filter-based shock
filter model. Eventually, results presented in Fig. 9 showcase
small objects and the stripes created by a brush for a painting.

VI. CONCLUSION AND DISCUSSION

A new hourglass filter-based shock filter model has been
introduced in this paper. The hourglass tensor allows to
integrate narrow objects having close edges and then detect
their contours in order to improve the deblurring effect via a
PDE approach. Contrary to existing shock filters, it avoids a
grainy effect at level of deblurred contours whereas flat regions
are regularized without create undesirable blobs areas.

Concerning the γ parameter in eq. 12 controlling the open-
ing of the angular part (see Fig. 8(a)-(c) with ρ = 4), when γ is
too large, the diffusion flow along W− using σ = 1 leads to a
leakage of pixel information, especially at the level of corners
and close objects. As stated in [11], the γ parameter should
be as small as possible to obtain pronounced orientedness.
Regarding the proposed regularization PDE flow, the remark
is the same for the enhancement of narrow and close objects.

Future works may concern the extension of the hourglass
tensor to handle 3D images or in the 4D ray space [1].
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(a) Picture of van Gogh paint (b) 50 iterations (c) 150 iterations
Fig. 9. Exemple of the regularizing flow, σ=0.7, ρ=3 and γ=0.2.


