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Comparison between Digital Fresnel Holography and Digital
Image-Plane Holography: The Role of the Imaging Aperture

M. Karray & P. Slangen & P. Picart

Abstract Optical techniques are now broadly used in the
field of experimental mechanics. The main advantages are
they are non intrusive and no contact. Moreover optical
techniques lead to full spatial resolution displacement maps
enabling the computing of mechanical value also in high
spatial resolution. For mesoscopic measurements, digital
image correlation can be used. Digital holographic interfer-
ometry is well suited for quantitative measurement of very
small displacement maps on the microscopic scale. This
paper presents a detailed analysis so as to compare
digital Fresnel holography and digital image-plane holog-
raphy. The analysis is based on both theoretical and

experimental analysis. Particularly, a theoretical analysis
of the influence of the aperture and lens in the case of
image-plane holography is proposed. Optimal filtering
and image recovering conditions are thus established.
Experimental results show the appropriateness of the
theoretical analysis.

Keywords Digital holography . Phase measurement .
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Introduction

Digital holography was experimentally established in the
90’s [1, 2]. Lately, many fascinating possibilities have
been demonstrated: focusing can be chosen freely [3], a
single hologram can provide amplitude-contrast and
phase-contrast microscopic imaging [4], image aberra-
tions can be compensated [5], properties of materials
can be investigated [6], digital color holography [7, 8]
and time-averaging are also possible [9]. Theory and
reconstruction algorithms for digital holography have
been described by several authors [10–14]. The process-
ing of digital holograms is generally based on the
discrete Fresnel transform [11], which is applied on a single
digital hologram [1] or after a pre-processing based on phase
shifting [2, 15].

Digital holography exhibits various architectures such as
Fresnel holography (DFH), Fourier holography, Lens-less
Fourier holography and image-plane holography (DIPH)
[11]. Particularly, holographic techniques give a fruitful
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contribution to the analysis of mechanical structures under
strain, by providing whole field information on displace-
ment [8, 11, 13, 16].

The methods of DFH and DIPH find their interest in
contact-less metrology with applications in mechanical
strain, vibrations, displacement field or surface shape meas-
urements. There are some strong similarities between both
methods, especially concerning data processing. However,
some figures of merit explaining the advantages and the
drawbacks of the methods have not been discussed in liter-
ature. Compared to Fourier and Fresnel holography, the
image-plane configuration shows some particularities that
are detailed in this paper: the role of the aperture diaphragm
of the imaging system. This paper proposes an analysis of
the influence of the aperture on the basis of four criteria:
filtering and numerical processing, spatial resolution and decor-
relation noise. “Theoretical Basics” presents the basic funda-
mentals. “Figures of Merit” describes the figures of merit.
Experimental results are summarized in “Experimental Results”.
“Conclusion” draws some conclusions about the study.

As discussed in the previous section, processing of digital
holograms can be based on phase-shifting [2], requiring at
least three recordings to efficiently process the data [15].
Note that a huge amount of literature describing phase
shifting arrangements and processing aspects is available,
and will be not discussed here. This paper focuses on the
case where off-axis digital holograms are recorded [1, 11,
14]. This choice is justified as follows: recording a single
hologram per instant is a powerful tool to study dynamic
events and to carry out high speed acquisition. Examples
demonstrating the potentiality of such an approach can be
found in [17] for the DFH method and [18, 19] for the DIPH
one. As we aim at comparing objectively both methods, the
same constraints must be applied. Indeed, the experimental
optimization of such methods can be performed according
to several degrees of freedom. The amplitude of the refer-
ence wave can particularly be increased, compared to that of
the object beam, in order to get more flexibility in the
Shannon conditions when recording, especially as concerns
the non-overlapping of the three diffraction orders [20, 21].
Here, we consider that the reference waves of both methods
are plane waves and are experimentally adjusted to have the
same amplitude. Focus is on the information carried by the
object wave when the object is illuminated under the same
conditions. The spatial frequencies of the reference beam are
fixed and for DIPH, a lens is added to form the image
onto the sensor area. This lens is associated to an iris
diaphragm, whose role is to limit the aperture of the
beam passing through the imaging system. In 1997 [20], G.
Pedrini presented the first comparative study between DFH
and DIPH and he pointed out that DIPH is a particular case of

DFH because the digital reconstructed hologram leads to the
simulation of the complex amplitude in the space. G.
Pedrini [20] discussed qualitatively on the object recon-
structions and the spatial resolutions of both methods.
The approach proposed here aims at taking into account
both theoretical and experimental aspects to achieve an
objective comparison.

Note that the DIPH configuration also corresponds to
a particular set-up of the speckle interferometry method
discussed in the paper of P. Jacquot [22]. However, to
avoid any confusion, the goal of the paper is not to
establish a generalized comparison between digital hologra-
phy and speckle interferometry. Indeed, speckle interfer-
ometry systems are overabundant and consist of at least
three principal families: the in-line reference, the double
illumination and the shearing configurations [22]. In the
in-line reference family, that appears to have some sim-
ilarity with DIPH, several variants may be considered
including for example the choice of a speckle or a
smooth reference beam, and a strict or relaxed in-line align-
ment with the object beam, each presenting advantages and
drawbacks of their own.

Theoretical Basics

This section presents the theoretical background of both
DFH and DIPH methods by considering the recording/pro-
cessing of a unique digitally recorded hologram. As a gen-
eral rule, let us consider an extended object, sized
ΔAx×ΔAy, illuminated by a coherent monochromatic wave
with wavelength l and a set of reference coordinates attached
to the object (X,Y,z) and to the recording plane (x,y,z). In the
paper, we consider a recording sensor M×N pixels with
pitches px0py. To differentiate both methods, the digital holo-
gram will be called a “Fresnelgram” for the Fresnel configu-
ration whereas it will be called an “imagegram” for the image-
plane one.

Digital Fresnel Holography: Recording and Reconstruction

In the case of digital Fresnel holography, the object
diffracts a wave to the recording plane, localized at
distance d0. Figure 1 illustrates the experimental setup and
notations.

The object surface generates a wave front that will be
noted according to equation (1):

A X ; Yð Þ ¼ A0 X ;Yð Þ exp iy0 X ;Yð Þ½ �: ð1Þ



Amplitude A0 describes the object reflectivity and phase
y0 describes its surface or shape i ¼ ffiffiffiffiffiffiffi�1

p� �
. Phase y0 is

random and uniformly distributed over the range]−π,+π].

When taking into account the diffraction theory under the
Fresnel approximations [23], the object wave diffracted at
distance d0 is expressed by the following relation:

O x; y; d0ð Þ ¼ � iexp 2ipd0=lð Þ
ld0

exp ip
ld0

x2 þ y2ð Þ
� �

� R R
A X ; Yð Þexp ip

ld0
X 2 þ Y 2ð Þ

� �
exp � 2ip

ld0
xX þ yYð Þ

� �
dXdY :

ð2Þ

Note that since the object is rough, the diffracted field at
distance d0 is a speckle field which has a random and
uniform phase over the range]−π,+π]. In the 2D Fourier
space, the object wave occupies a spatial frequency band-
width equal to (Δu×Δv)0(ΔAx/ld0×ΔAy/ld0). In the
recording plane, the object wave is mixed with a plane refer-
ence wave written as:

R X ; Yð Þ ¼ ar exp 2ip u0X þ v0Yð Þð Þ; ð3Þ
with ar the modulus and (u0,v0) the carrier spatial frequencies.
When (u0,v0)≠(0,0) we get “off-axis digital holography”
while when (u0,v0)0(0,0), we get “in-line digital holography”.
As pointed out, we consider here the case of “off-axis digital
holography”. The total intensity received by the recording
sensor is the Fresnelgram, written as:

H ¼ Oj j2 þ Rj j2 þ OR� þ O�R: ð4Þ

The Shannon theorem applied to off-axis DFH, resulting
in the spatial separation of the three diffraction orders
appearing in equation (4), leads to the optimal recording
distance [14]. It is given for a circular object shape with
diameter ΔA0ΔAx0ΔAy:

d0 ¼
2þ 3

ffiffiffi
2

p� �
px

2l
ΔA: ð5Þ

Ideally, the spatial frequencies of the reference wave
must be adjusted to (u0,v0)0(±(1/2−1/(2+3√2))/px,±(1/2−

1/(2+3√2))/py) for the circular object [14]. Practically, the
spatial frequencies can be adjusted following this method:
the reference beam is perpendicular to the recording plane
but the object is laterally shifted by quantities:

ΔX ¼ ld0
px

1
2 � 1

2þ3
ffiffi
2

p
� �

ΔY ¼ ld0
py

1
2 � 1

2þ3
ffiffi
2

p
� �

8><
>: : ð6Þ

The reconstructions of the amplitude and the phase of the
encoded object are based on the numerical simulation of
light diffraction on the numerical aperture included in the
digital hologram. For a reconstruction distance equal to
dr0−d0, the reconstructed field Ar is given by the discrete
version of equation (2) (known as S-FFT algorithm, or also
DFT: discrete Fresnel transform) [1, 11, 14]. If the recon-
structed plane is computedwith (K,L)≥(M,N) data points, then
the sampling pitches in the reconstructed plane are equal to
Δη0ld0/Lpx and Δξ0ld0/Kpy [11, 14]. The reconstructed
field is given by the following relation, the unnecessary fac-
tors and phase terms being removed,

Ar nΔη;mΔxð Þ ¼
Xk¼K�1

k¼0

Xl¼L�1

l¼0

H lpx; kpy
� �

exp � ip
ld0

l2p2x þ k2p2y

� �� �

exp 2ip
ln

L
þ km

K

	 
� �
; ð7Þ

where l, k, n, m are indices corresponding to discrete versions
of respectively X, Y, x, y. The +1 order is then localized at

Fig. 1 Optical setup for DFH



spatial coordinates (ld0u0,ld0v0). Due to Shannon conditions,
the minimum distance that can be put in the algorithm is given
by d0≥max{Npx

2/l,Mpy
2/l}. The computation leads to

complex-valued results, from which the amplitude image
(modulus) and the phase image (argument) can be extracted.
The discrete Fresnel transform is adapted to a large range of
object sizes and shapes.

The second possibility to reconstruct the object from
the Fresnelgram is based on the convolution formulae
of diffraction. An exhaustive description was provided
by Kreis in 1997 [11] and adjustable magnification was
described in [12, 24–26]. The reconstructed field is obtained
by this convolution equation ( � means convolution), at
distance dr:

Ar x; y; drð Þ ¼ w x; yð ÞH x; yð Þf g � h x; y; drð Þ: ð8Þ
where h(x,y,dr) is the kernel associated to diffraction along
distance dr, w(x,y)0exp(iπ(x

2+y2)/λRc) is a numerical spher-
ical wave front having a curvature radius Rc. The reconstruc-
tion parameters are linked by the magnification of the
reconstructed image, γ, such that dr0−γd0, Rc0γd0/(γ
−1). The magnification can be chosen according to γ0
min{Lpx/ΔAx,Kpy/ΔAy}, meaning that the reconstructed ob-
ject will fully lie in the reconstructed horizon sized Lpx×Kpy
[12]. The convolution kernel can be the impulse re-
sponse of the free space propagation. Such a kernel leads
to a transfer function, which is the Fourier transform of the
impulse response. The mathematical expression of the kernel
is given by Goodman [23] and must be adapted to off-axis
holography [24]:

h x; y; drð Þ ¼ idr
l

exp 2ip=l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2r þ x2 þ y2

p� �
d2r þ x2 þ y2

� exp �2ip u0xþ v0yð Þð Þ; ð9Þ
The angular spectrum transfer function can also be used

as the transfer function of the reconstruction process. In this
case the mathematical expression has to be adapted [12] and
given by:

G u; v; drð Þ ¼
exp 2ipdr=l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 u� u0ð Þ2 � l2 v� v0ð Þ2

q� �

if u� u0j j � Lpx=2ldr and v� v0j j � Kpy=2ldr

0 elsewhere

8>>><
>>>: ;

ð10Þ
The reader may look at references [12, 24, 25] for further

details regarding the reconstruction process. The practical
computation of such an equation can be performed accord-
ing to the properties of the Fourier transform, thus leading to
double Fourier transform algorithm (D-FFT):

Ar ¼ FT�1 FT wH½ � � FT h½ �½ �; ð11Þ

which includes three FFT’s, if using the impulse response,
while only two FFT’s, when using the angular spectrum
transfer function:

Ar ¼ FT�1 FT wH½ � � G½ �; ð12Þ

In the D-FFT algorithms the reconstructed object is sam-
pled by a number of data points that can be chosen freely
with (K,L)≥(M,N), whereas with the S-FFT algorithm, the
number of useful data points sampling the reconstructed
object is given by the ratio (ΔAx/Δη;ΔAy/Δξ).

Digital Image-Plane Holography: Recording
and Reconstruction

In the case of DIPH, an imaging lens is associated to a
variable aperture close to the lens. In the method proposed
in [20, 27], the aperture is placed at the front focal plane of
the lens. In this study, we consider the case of commercial
lenses for which the aperture is not localized at the focal
plane. The aperture has a diameter ϕD and is placed at
distance dD from the detector. Figure 2 illustrates the exper-
imental setup. The lens is at position p from the object and
the image is at position p' from lens. In this case, the object
is imaged nearly at the plane of the recording sensor. Let us
note A’(x,y) the complex field projected onto this plane. In
order to optimize the recording, the image of the object must
fully lie in the recording plane, so the transverse magnifica-
tion realized by the lens must be set at |γ|0min(Npx/ΔAx;
Mpy/ΔAy), meaning the projected object is fully occupy-
ing the horizon of the sensor. In DIPH, the magnifica-
tion is imposed by the lens whereas in DFH, it can be
chosen freely by numerical adjustment of the curvature
radius Rc. In the image-plane configuration, the object
wave occupies a spatial frequency bandwidth equal to
(Δu×Δv)0(ΔAx/lp×ΔAy/lp)0(|γ|ΔAx/lp'× |γ|ΔAy/lp').
Now, the imagegram is written:

H ¼ A0j j2 þ Rj j2 þ A0R� þ A0�R: ð13Þ

However, the reconstruction distance dr must be at least
dr>max(Npx

2/l,Mpy
2/l) in order to fulfill the sampling con-

dition of the quadratic phase in the discrete Fresnel trans-
form (equation (7)). This means that, a priori, the
imagegram can not be computed by the S-FFT method,
whereas it is possible to use it for the Fresnelgram. So, the
reconstruction is performed according to the D-FFT strategy
with the angular spectrum transfer function (equation (12)),
in which dr00 when the object is rigorously projected in the
recording plane. Now, the transfer function of the convolu-
tion kernel tends to a uniform-bandwidth limited function



[20, 27–30]. In the Fourier plane, the filtering function can
thus be written:

G0 u; vð Þ ¼ 1 if u� u0j j � ΔAx=2lp and v� v0j j � ΔAy=2lp
0 elsewhere


;

ð14Þ
and the object wave is reconstructed according to:

A0
r ¼ FT�1 FT H½ � � G0½ �; ð15Þ

Equation (15) is a convolution formula similar to equa-
tion (8), but now the impulse response is a two-dimensional
sinc function. Note that the transfer function can also be non
uniform by choosing an adequate window function (3D
Hanning, 2D Tuckey, etc.) in order to reduce the truncation
effects.

Influence of the Aperture Diaphragm

This aspect does not clearly appear in literature but it must
be pointed out that the imagegram is also the Fresnelgram
of the aperture of the imaging system. This means that the
DIPH method must be optimized according to the same
rules as those for DFH. So, for the Fresnelgram of the
aperture, we must apply the same rule as described in
equation (5). This means we have:

dD ¼ 2þ 3
ffiffiffi
2

p� �
px

2l
ϕD; ð16Þ

Hence the numerical aperture of the imaging lens must be
set to:

sin a0 ffi ϕD

2dD
¼ l

2þ 3
ffiffiffi
2

p� �
px

; ð17Þ

If equation (17) is not fulfilled, the three diffraction
orders of the Fresnelgram of the aperture overlap. Thus
the useful +1 order of the imagegram (equation (13)) is
corrupted by the zero order of the Fresnelgram of the
aperture. Note that the numerical aperture of the imaging
system only depends on the wavelength and the pixel pitch.
It does not depend on the object size, since the optimization
of the setup is related to the aperture diameter. In the case of
DFH, the useful numerical aperture of the beam is defined
according to that of the sensor-to-object beam (Fig. 1). It is
equal to sinα’≅ΔA/d00l/(2+3√2)px thus giving the same
result as in equation (17), e.g. about 0.6 deg for a pitch of
8 μm and at 532 nm wavelength. From this standpoint, the
optimization of the optical setup follows the same rules for
both methods and does not depend on the object size. This
has consequences on the spatial resolution of both methods.

The next section discusses some figures of merit so as to
objectively compare both methods.

Figures of Merit

Introduction

This section proposes a theoretical analysis of the influence
of the aperture and lens in the case of DIPH. Compared to

Fig. 2 Optical setup for DIPH
and notations



DFH, this element is a critical point that influences
several aspects of the reconstruction process: filtering
algorithms, spatial resolution and decorrelation noise.
A remark concerning the photometric efficiency is also
discussed. Moreover, the conditions for optimal filtering
and image recovering are established. In order to study
the influence of speckle decorrelation, the optical phase
from the object reconstruction must be computed.
Decorrelation appears when a phase change occurs at
the surface of the object. In this paper, we applied a
mechanical load to the object with a good reproducibil-
ity. By varying the amount of load, different phase
changes with different speckle decorrelations are gener-
ated. A method based on a low-pass filtering is used to
objectively compare the sensitivity of both methods to
decorrelation. Equations given for an objective compar-
ison are explained in the sense of the optimal recording,
according to the Shannon conditions.

Filtering and Algorithms

From “Theoretical Basics”, we can denote the algorithms
have strong similarities. Table 1 gives an overview of the
properties of the various reconstruction methods. The sim-
plest reconstruction method is the discrete Fresnel transform
used in DFH. The highest complexity is obtained for the
convolution method with adjustable magnification but the
object can be reconstructed with the same number of data
points as the recording sensor [12]. Computation time is
given for a PC Pentium 4CPU 2.99 GHz with 2Go RAM
equipped with MATLAB 5.3. Note that the computation
load is not represented only by the number of FFT calcu-
lations, but the latter mainly contributes.

Spatial Resolution

In DFH, the spatial resolution in the reconstructed field is
[11, 14]:

ρx ¼ ld0
Npx

ρy ¼ ld0
Mpy : ð18Þ

The interpretation is rather simple: that is the width of the
digital diffraction pattern of a rectangular digital aperture
with size (Npx×Mpy) and uniform transmittance. It depends
on the sensor size, wavelength and recording distance.
When reconstructing the object by the convolution
method with adjustable magnification, the spatial reso-
lution becomes ργx0 |γ|ρx and ργy0 |γ|ρy in the recon-
structed horizon, which has a size related to |γ| [25].
From equations (5) and (18), the equivalent resolution
of a Fresnelgram reconstructed in the sensor plane with
D-FFT is simply:

ρgx ¼
2þ3

ffiffi
2

pð Þpx
2 � gΔAx

Npx
ρgy ¼

2þ3
ffiffi
2

pð Þpy
2 � gΔAy

Mpy
ð19Þ

When the adjustable magnification is set so that the
reconstructed object fully lies in the horizon of the sensor
(recording horizon), then γΔAx≅Npx (similar relation holds
for y direction), leading to:

ρgx ffi
2þ3

ffiffi
2

pð Þpx
2 ρgy ffi

2þ3
ffiffi
2

pð Þpy
2

: ð20Þ

In the case of DIPH, the spatial resolution is influenced
by the imaging lens. The impulse response of the full
process is related to the impulse response of the imaging
lens. Consequently, the spatial resolution is given by the
speckle size in the recording plane [31]. The speckle size is

Table 1 Attributes of the reconstruction methods

Reconstruction DFH DIPH

Discrete Fresnel transform Convolution with
magnification

Convolution with binary
filtering

Number of FFT operations 1 2 or 3 2

Number of data points for FFT
operations

free, (K,L)≥(M,N) free, (K,L)≥(M,N) free, (K,L)≥(M,N)

Number of data points for the
reconstructed object

imposed, ΔAxLpx/λd0×ΔAyKpy/λd0 free, ≥M×N M×N

Filtering NO YES YES

Filtering function – quadratic phase binary

Needs for an additional quadratic
phase term

NO YES, for adjustable magnification NO

Sampling pitches of the reconstructed
object

(λd0/Lpx,λd0/Kpy) (px,py) (px,py)

Computation time 2.703 s for (K,L)0(1024,1360) 7.25 s for (K,L)0(1024,1360) 3.203 s for (K,L)0(1024,1360)

Complexity ** ***** ***



related to the diffraction spot of the aperture of the imaging
lens, and is obtained from equation (17):

ρ0x ¼ ρ0y ¼ ldD
ϕD

¼ 2þ 3
ffiffiffi
2

p� �
px

2
: ð21Þ

Equations (20) and (21) show that, under Shannon con-
ditions, the spatial resolutions are equivalent for both meth-
ods. Numerical comparisons of the spatial resolutions are
given in “Spatial Resolution”.

Influence of Speckle Decorrelation

A limitation of both methods is given by the speckle decor-
relation which occurs when the object is deformed. This
decorrelation adds a high spatial frequency noise to the
useful signal. Because of this influence, the raw phase maps
are not directly suitable for visualization or comparison with
some theoretical results. Furthermore, the raw phase map
must be unwrapped with a robust noise immune algorithm.
Smoothing methods based on sin-cos filtering may be also
used [32], resulting in an increase of the signal-to-noise ratio
of the phase map. Speckle correlation has been theoretically
studied by many authors [32–35]. For studying speckle
phase decorrelation, the second-order statistical description
is of interest. Especially, the phase decorrelation occurs
when comparing two optical phases extracted from record-
ings. The phase is a random data having the properties of a
speckle phase. The reason is that it is closely related to the
object surface, which is most often a rough surface. So,
description of the correlation property is related to the
second-order probability density function of the phase [37,
p. 406]. The analytical calculation of the joint probability
density function of the phase y1 and y2 of two speckle
patterns is a difficult one and will not be detailed in this
paper. The reader is invited to look at references [37, p. 406]
and [38, p. 163]. We note ε0y1−y2 the noise induced by
the speckle decorrelation between two object fields
reconstructed after two different states of the object
and Δφ the phase change due to the object loading. Then
y20y1+ε+Δφ, Δφ being considered as a deterministic
variable. The probability density function of ε depends
on the modulus of the complex coherence factor |μ|
between the two speckle fields. With β0 |μ|cos(ε), the
second-order probability density of the phase noise ε is
given by :

p "ð Þ ¼ 1� μj j
2p

1� b2
� ��3=2

bsin�1b þ pb
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q	 

:

ð22Þ
The signification of equation (22) is the description of the

probability for measuring the phase noise ε in the phase
difference between two reconstructions for any loading of

the object (mechanic, pneumatic, thermal, acoustic, etc.).
Note that in [34], M. Lehmann discussed about the speckle
decorrelation in case of resolved and unresolved speckles
and by considering smooth-reference-wave and speckle-
reference-wave interferometers. In [34], probability density
of the decorrelation induced phase error is derived by taking
into account the total number of speckles per pixel, which
depends on the ratio between the speckle displacement in
the image plane and the pixel size of the sensor. Although
equation (22) is derived without taking into account a pos-
sible spatial integration due to the pixel surface (resolved or
unresolved speckle), it simply depends on a correlation
factor |μ|. The plots of equation (22) and of equations given
in [34] exhibit the same profiles. It follows that equation
(22) can be used as a pertinent indicator so as to compare the
decorrelation sensitivity of different experimental methods,
the correlation factor |μ| being a quality marker extracted
from experimental data.

The measurement of equation (22) can be performed
according to [39]. The subtraction of the low-pass filtered
phase difference from the raw phase difference leads to an
estimation of the standard deviation of the noise included in
the raw data. If hf (l,k) is the n×n convolution kernel used
for the low-pass filtering, then the standard deviation of the
measured noise σΔ is related to the real noise standard
deviation σε by equation (23):

σΔ ¼ σ"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2hf 0; 0ð Þ þ

Xk¼þn

k¼�n

Xl¼þn

l¼�n

hf l; kð Þ�� ��2
vuut : ð23Þ

Equations (22) and (23) are used to analyze the experi-
mental results in “Speckle Decorrelation”.

Remark about the Photometric Efficiency

This subsection discusses about the photometric efficiency
of DFH and DIPH. The object is considered to be circular,
illuminated by a laser (power P0), and as a lambertian
diffuser with albedo Rd. We consider τ the transmission
coefficient of the beam splitter cube in front of the sensor.
Then, taking into account that d0 must be fixed by equation
(5) and that the object surface is SO, the illumination IDFH
given onto the sensor area for the setup of Fig. 1 is given by
equation (24):

IDFH ¼ tRdl2P0

2þ 3
ffiffiffi
2

p� �2
p2xSO

; ð24Þ

In the case where the object image is projected in the
sensor area by the lens, the illumination becomes:

IDIPH ¼ tRdTLP0

SO
sin2a0; ð25Þ



where TL is the transmission factor of the imaging lens.
Equation (17), equations (24) and (25) lead to the ratio:

IDFH
IDIPH

¼ 1

TL
> 1; ð26Þ

So, the photometric efficiency is slightly in favor of DFH.
This result is also independent from the object size, showing
that there is no specific advantage for DIPH for large objects
compared to DFH. Practically, in the DFH method and from
equation (5), a large object must be placed far from the
recording area and this could be a limiting aspect. However,
it is possible to virtually reduce the object size by using a set of
divergent lenses that produces a virtual image smaller and
closer from the sensor [40, 41]. This case leads to IDFH/
IDIPH01. But, in terms of photometric efficiency, there is no
significant difference betweenDFH andDIPH (equation (26)).

Experimental Results

Experimental Parameters

The holographic set-up is based on a Mach Zehnder config-
uration (not detailed) in which the sensor has 8 bits digiti-
zation with M×N01024×1360 pixels sized 4.65 μm×
4.65 μm. The laser is a continuous HeNe (l0632.8 nm,
P0030 mW) and the object is a mechanical structure sized
ΔAx×ΔAy040×35 mm2. The object is localized at d00
1030 mm from the sensor area and is illuminated with a
circular spot 40 mm in diameter. In the case of DIPH, there
is an imaging lens associated to a variable aperture close to
the lens. The magnification is such that the image of the
object entirely covers the sensor area. The spatial frequen-
cies are adjusted according to equation (6). So as to compare
both methods, the digital hologram is reconstructed using
the discrete Fresnel transform with (K,L)0(2048,2048) and
with the convolution method so that (K,L)0(M,N)0
(1024,1360) (reconstruction horizon equal to the recording
horizon). In the latter case, we get a reconstructed object

having the same horizon as the one from DIPH (see Table 1).
The magnification for the D-FFT method is almost the same
as the physical one obtained with the lens for DIPH, that is
|γ|≈0.146 (theoretical value). The lens has a focal length of
150 mm and the aperture is placed at 145 mm from the
sensor. Equation (16) implies that the optimal diameter in
the Shannon sense is ϕD06.32 mm, sinα’00.021, lead-
ing to a f# equal to 23.8. Since the aperture is an iris
diaphragm, the diameter is changed with four values
ϕD0{3.56;5.5;7.41;9.94}mm. Unfortunately, it was not
possible to adjust the diaphragm to its optimal diameter. The
amplitude of the reference and object beams are adjusted at the
same level for both methods. In order to investigate decorre-
lation, we applied a mechanical loading to the object with an
almost good reproducibility. This acceptable reproducibility
can be appreciated on experimental results, although the
mechanical loadings are not exactly identical. However,
this reproducibility is quite sufficient so as to compare
the experimental results. For each experimental configuration,
we have recorded 5 states of the object corresponding to 4
mechanical loadings. Raw phase maps are filtered by a
moving-average filter sized 5×5 pixels. The moving-average
filter used to study the decorrelation noise according to the
method described in [39] is sized n×n07×7 pixels, leading to
σε0σΔ/0.989.

Object Reconstructions

Figure 3 shows the object reconstructed with the three
algorithms of Table 1. The exposure time is set to 573 ms.
Figure 3(a) shows the full reconstructed field exhibiting the
three diffraction orders. The useful part of the field of view
corresponding to the reconstructed object is sampled by
511×511 pixels with pitches Δη0Δξ068.44 μm. Recon-
structions of Fig. 3(b), c are sampled by M×N01024×1360
pixel with pitches px0py04.65 μm.

The image amplitude obtained in Fig. 3(b) is quite similar
to that of Fig. 3(c), excepted the small object size difference
that can be observed and which is due to the transverse
magnification that is not exactly 0.146 for DIPH. Fig. 4

Fig. 3 Object reconstructions, (a) DFH: discrete Fresnel transform, (b) DFH: convolution with adjustable magnification, (c) DIPH



shows phase changes obtained for DFH and DIPH for,
approximately, the same loading. Fig. 4(a) and (c) show
the raw phase map and the filtered one for DFH. Fig. 4(b)
and (d) show the raw phase map and the filtered one for
DIPH with ϕD05.5 mm. Figure 4 exhibits the very good
agreement between both methods and gives appreciation of
the acceptable reproducibility of mechanical loading. In-
deed, DIPH exhibits only few fringes more than DFH.

Influence of Aperture

As pointed out, the imagegram is also the Fresnelgram of
the aperture. So the aperture can be reconstructed from the
Fresnelgram by computing the discrete Fresnel transform
with dr0−dD0−145mm. When ϕD>6.3 mm, the diameter
does not respect the Shannon conditions, thus the overlap-
ping of the diffraction orders of the aperture occurs. This
means that the useful spectral part of the object, also local-
ized at spatial frequencies (u0,v0) is overlapped by the con-
tribution of the zero-order of the aperture. Consequently, the
phase changes between two mechanical loadings are cor-
rupted and the fringe visibility decreases. Figure 5(a, c, e, g)
show the reconstructed field with the discrete Fresnel trans-
form and with focus on the iris diaphragm for respectively
ϕD0{3.56;5.5;7.41;9.94}mm. The image of the aperture can
be seen in the bottom left-hand corner of each sub-image.
The overlapping can be clearly observed for ϕD≥7.41 mm.
Figure 5(b, d, f, h) show the phase changes obtained with
the four different aperture diameters. The fringe visibility

obviously decreases for ϕD≥7.41 mm, the right part of the
figure being first affected. Figure 5(h) exhibits the strong
visibility decrease obtained for ϕD09.94 mm.

This experimental analysis clearly exhibits that the DIPH
method is valid only if the numerical aperture of the imaging
system is small, typically with a f# greater than 20.

Spatial Resolution

From “Spatial Resolution” and experimental parameters, the
theoretical spatial resolutions are ργx015.03 μm and ργy0
19.85 μm for DFH and ρ'x0ρ'y015.51 μm for DIPH. These
values are close together, which means that the spatial
resolutions are the same when fulfilling the Shannon con-
ditions. Experimental measurements are performed as fol-
lows: a square zone with 101×101 pixels is extracted from
reconstructed objects and includes sufficient speckle grains.
Then the autocorrelation function is computed by FFT algo-
rithms and after normalization x-profiles are extracted.

Figure 6(a, b, c, d, e) show the square zones and auto-
correlation functions for respectively DFH and DIPH with
ϕD03.56 mm, ϕD05.5 mm, ϕD07.41 mm and ϕD0

9.94 mm; x-profiles of the autocorrelation functions
obtained for DFH and indicates the various diameters of
the aperture in case of DIPH are also presented. Figure 6
shows that spatial resolutions are comparable for all cases. It
is slightly better for ϕD07.41 mm since the autocorrelation
is narrower, but for ϕD09.94 mm, the resolution is degraded
since the curve is wider than the theoretical speckle size

Fig. 4 Phase differences, (a)
DFH: raw with convolution, (b)
DFH: filtered, (c) DIPH: raw, (d)
DIPH: filtered



(9.23 μm). So, it appears that the increase of the aperture
does not enhance the resolution as the curve for ϕD0

9.94 mm is wider than for ϕD03.56 mm. The reason is that
the overlapping of the aperture in the Fresnelgram contributes
to degrade the spatial resolution when the aperture diaphragm
has a diameter exceeding a certain value. So there is no gain to
increase the diameter of the aperture diaphragm.

Speckle Decorrelation

As discussed previously, the influence of the speckle decor-
relation is estimated for the measurement of mechanical
deformations. Therefore, we have applied almost the same
mechanical loading in both experimental configurations and
then estimated the probability density of the noise maps. We

applied four mechanical loadings increased in constant
steps. Fitting the curve according to equation (22) results
in an objective comparison of the decorrelation degrees, and
this gives keys to compare the decorrelation sensitivity of
the methods. Figure 7 shows the probability density func-
tion of speckle decorrelation for both DFH and DIPH and
for two states of deformations (1) and (2). State (1) corre-
sponds to the deformation between the 3rd and the 1st
recording and state (2) corresponds to the deformation
between the 5th and the 1st recording. The estimated value of
|μ| and the noise standard deviation σε are indicated for each
curve. Table 2 presents the experimental values of |μ| and σε
for both methods, depending on the diameter of the aperture,
and for the two states of loading. Figure 7 shows that the
speckle decorrelation is strongly influenced by the aperture

Fig. 6 [COLOR ONLINE].
Speckle grains and autocorrela-
tion functions for (a) DFH and
DIPH, (b) ϕD03.56 mm, (c)
ϕD05.5 mm, (d) ϕD07.41 mm
(e) ϕD09.94 mm; left: x profiles
of autocorrelation functions.

Fig. 5 Holographic reconstructions of the aperture (a) ϕD03.56 mm, (c) ϕD05.5 mm, (e) ϕD07.41 mm, (g) ϕD09.94 mm and phase differences
obtained with SI (b) ϕD03.56 mm, (d) ϕD05.5 mm, (f) ϕD07.41 mm, (g) ϕD09.94 mm



size. It shows that the speckle decorrelation increases with the
increase of the aperture diaphragm (ϕD09.94 mm), and seems
to be “saturated” since there is no significant difference
between the two states of loadings, whereas it is not the case
for ϕD03.56 mm (see Table 2). Consequently, DFH is less
sensitive to decorrelation than DIPH, if the numerical aperture

is greater than l= 2þ 3
ffiffiffi
2

p� �
px (equation (17) not fulfilled).

This statement that DIPH is more sensitive to decorrelation at
larger apertures disagrees with the well known results of
Lehmann [34–36], who demonstrated that the speckle decor-
relation decreases with the increase of the diameter aperture
diameter. This contradiction is due to the influence of the 0
order of the Fresnelgram of the aperture that induces more
phase fluctuations than the one produced by the pure speckle
decorrelation induced by the mechanical loading. In the case

of sin a0 < l= 2þ 3
ffiffiffi
2

p� �
px , DIPH is less sensitive than

DFH. When the Shannon conditions are fulfilled, sin a0 ¼ l=

2þ 3
ffiffiffi
2

p� �
px , both methods have the same sensitivity to

speckle decorrelation. This can be appreciated in Fig. 7 with
ϕD05.5 mm for which both DFH and DIPH curves are quasi
superposed (see also Table 2). For ϕD06.3 mm (Shannon
conditions for the aperture) the curves may be expected to be
perfectly superposed.

Conclusion

This paper exposes some figures of merit so as to compare
digital Fresnel holography (DFH) and digital image-plane
holography (DIPH). Because of the simplicity of the Fresnel
transform, digital Fresnel holography is quite more adapted
to simple and automated image processing. The role of the
aperture diaphragm in the digital image-plane holography
configuration is highlighted. It is shown that the aperture
diaphragm must fulfill the Shannon condition of its own
Fresnelgram. In DIPH, if the sampling conditions are not
fulfilled, the reconstructed object and phase is corrupted by
a noise due to the overlapping of the diffraction order of the
aperture. So, the spatial resolutions of DFH and DIPH are
almost the same. The sensitivity to speckle decorrelation is
increased with the increase of the aperture. This result is
amazing considering previous studies on speckle decorrela-
tion, but it can be explained by the primordial influence of
the aperture diaphragm as zero-order overlapping induces a
strong decrease of the signal-to-noise ratio, both in the
object amplitude and phase. As shown in the paper, both

Fig. 7 [COLOR ONLINE].
Sensitivity to decorrelation, (1)
deformation between the 3rd
and the 1st recording, (2)
between the 5th and the 1st
recording, —— experimental
data, o fitting with equation
(22)

Table 2 Measurement of speckle decorrelation

Method Load (1) Load (2)

|μ| σε((rad) |μ| σε (rad)

DFH 0.942 0.645 0.908 0.770

DIPH: ϕD03.56 mm 0.961 0.582 0.945 0.660

DIPH: ϕD05.5 mm 0.950 0.584 0.914 0.731

DIPH: ϕD07.41 mm 0.833 0.929 0.852 0.878

DIPH: ϕD09.94 mm 0.793 1.027 0.766 1.061



methods lead to good displacement maps. The main advan-
tage for DFH is simple computing while as DIPH uses the
lens to image the object it is then possible to shorten the
object arm.
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