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Abstract— The least common ancestor on two vertices, denoted Ilca(x,y), is a well defined operation in a directed acyclic
graph (dag) G. We introduce U, (S), a natural extension of lca(x,y) for any set S of vertices. Given such a set S,, one can
iterate S,,, = U,.«(S,) in order to obtain an increasing set sequence. G being finite, this sequence has always a limit which
defines a closure operator. Two equivalent definitions of this operator are given and their relationships with abstract convexity
are shown. The good properties of this operator permit to conceive an O(n-m) time complexity algorithm to calculate its
closure. This performance is crucial in applications where dags of thousands of vertices are employed. Two examples are given
in the domain of life-science: the first one concerns genes annotations understanding by restricting Gene Ontology, the second
one deals with identifying taxonomic group of environmental DNA sequences.

Keywords—Directed acyclic graph, Least common ancestor, Greatest common descendant, Closure operator, Abstract
Convexity.

INTRODUCTION

In this paper we address the problem of efficiently computing the closure of lca-type operators in directed
acyclic graphs (dag) G = (V,E). Such graphs appear in numerous applications such as: ontologies (se-
mantic representation), phylogeny networks (speciation histories) or inheritance graphs (object program-
ming languages). A least common ancestor of two vertices x and y, denoted lca(x,y), is an ancestor of
both vertices, that has no proper descendant that is also an ancestor of x and y. Now, let S be a set of
vertices of interest of G. On one side, the set V of all vertices contains all lca(x,y) for any couple
x,y € S but, this does not help to focus on relevant parts of G containing S. On the other side, filtering G
to keep only vertices of S gives few insight about the relationships between vertices of S. In order to pre-
serve those relationships, one can consider the least overset S of S, that contains all lca(x, y) for any
x,y € S. For people used to convexity concepts, this sounds like: “... for any two points in S, the segment
relying them lies in S, Actually, we show that it does not just “sounds as” and we define a set S that
really satisfies this property. First we define the operator:

Uica (S) = Ux,yES lca(x, :V)-

Then, we show that the closure of this operator, denoted by S verifies the four axioms of convex hull (see
[1]):

(Ul) ©=0.ScS;

(U.2)  (monotonicity) S; € S,,S, € S,;

(U.3) (idempotence) (E) = §;

(U.4) (finiteness) if x € S, then there is a finite set F € S such that x € Uy, (F).

The sets S that are equal to their closure (S = S) are called convex and form a convex space verifying the
following properties (this is a classical result of convexity theory):

(C.1) @,V are convex;
(C.2) if A, B are convex, then A N B is convex;
(C.3) if A;, are convex and A; € A;,, fori = 1,2, ... then U;5; 4; is convex;

Thus, U, (S) and its closure have nice mathematical structures that are exploited in our greedy algorithm
to reach a low time complexity of order O(n - m). Starting with a set S, of vertices and the topological
order of V, the algorithm decides once for all if a new vertex v is in the U;., — closure of S, or not. It is



easy to define and calculate similarly the Uycq — closure (Greatest Common Descendant). One has just
to reverse all the edges of G and apply the U, results and algorithm.

Of course, the operator lca(x,y) is not new and there are several good algorithms to calculate it. To the
best of our knowledge, all the efficient approaches to calculate lca(x,y) pass through the computation of
shortest paths. The main result of [2] is that, for any couple of vertices x,y, a representative lca can be
computed with time complexity O(|V|®) with w = 2.688 (see [2, 3]). We stressed the word ‘representa-
tive’ because a couple of vertices can have more than one lca and, as shown further, one of the main
characteristics of our algorithm is that it identifies all of them. Yet, the construction of [2] is interesting
on its own, since it transforms the Ica searching to a shortest path problem. An improved version of the
“one representative lca” algorithm is given with w = 2.575 (see [4]). This optimization relies on a novel
reduction of all-pairs Ica problem to the problem of finding maximum witnesses for Boolean matrix
product. As the domain is active, actually [5] have given an algorithm that calculates all lca(x,y) for all
pairs of vertices with a mean time complexity O(|V|3loglog(|V]|)) and worst time complexity
0(|V|3'3399).

Remind that we need the Uy, — closure of a set S (denoted by S) and a straightforward way to use the
above subroutines would have a complexity of at least O (|V[3-339?) for computation time and O(|V|?) for
memory space (in order to store pre-computed Ilca). Our algorithm doesn’t need to calculate lca(x,y) for

any couple of vertices x, y. It constructs S by using the closure and convexity axioms above, in particular
(U.2), (U.3) and (C.2), (C.3). This solution has lower time — O(|S||E|) — and space — O(|S||V|) — com-
plexity. The advantage of this solution is even more relevant in practice, since for most real cases
|S] « |V| and for most dag |E| < |V?|.

The paper is organized as follows: section 2 gives the definitions and properties of U, — closure; sec-
tion 3 gives the algorithm to efficiently compute this closure and its proof of correctness; applications of
our results are provided in section 4; concluding remarks are given in section 5.

2 LEAST COMMON ANCESTOR OPERATOR AND ITS CLOSURE

2.1 Preliminary definitions
In this section, we give the definitions of two generalized common operators: least common ancestor
(lca) and greatest common descendant (gcd) for a direct acyclic graph (dag). The following definitions
are provided to make the paper self-contained. For further definitions on graphs see [6]. Given a dag
G = (V,E) and an edge (x,y) we say that x is the child and y is the father. The indegree dg (v) (outdegree
d¢(v)) of a vertex v is the number of edges with head v (tail v). When G contains a directed (v, u)-
path, the vertex u is said to be an ancestor of v and the vertex v is a descendant of u. For a non-empty
subset W of V, the subgraph of G whose vertex set is W and whose edge set is the set of edges of G
that have both ends in W is called the subgraph of G induced by W and is denoted G[W].

Given a vertex v of the dag G = (V,E), the set A;(v) denotes the subset of ancestors of v in G. The
generalization of this definition to a set S € V of vertices is straightforward, i.e. A¢(S) = Nyes A (V).
For simplicity, we will omit index G from the notations whenever there is no ambiguity.

Definition 2.1.1. [2] The least common ancestors lca(S) of a vertex subset S < V with respect to a dag
G = (V,E) are the vertices u € A(S), such that dj(u) = 0 in the graph H = G[A(S)] induced by A(S).

This definition generalizes the widely known concept of least common ancestor (see [2, 3]) for a couple
of vertices, i.e. lca({x,y}) = lca(x,y). This is sometimes called least common semi-strict ancestors [7].
It follows immediately from Definition 2.1.1 that x = lca(x, y) if there is a directed (y, x)-path. By ex-
tension, we define lca(x, x) = x for all x.

Note that, unless the dag G is a tree, lca(x,y) may contain several nodes and the existence of a pair of
nodes x,y € S such that lca(x,y) = lca(S) is not guaranteed. For instance, in the example presented in
Fig. 1, lca({C1,C2,C3}) = {A1, A2} while lca(C1,C2) = {B1, A2}, Ica(C1,C3) = B2 and Ica(C2,C3) =
{A1,B3}.



lea(S)

Iea(Cl, C2)

Fig. 1. lllustration' of the Ica operator

An alternative definition of the Ica in terms of partially ordered sets, has been proposed by [8].

2.2 Two equivalent definitions of Uj,—closurein a dag

Closure operators are widely used in mathematics, especially in geometry. The best known example
comes from convexity in a Euclidian space. A lot of properties follow from the fact that a convex set, for
example a convex polygon, can be obtained by giving a finite set of points and the segment operator
s(x,¥). A natural question is whether these geometric properties are preserved when extending
convexity definition to graphs. It turns out that with a little set of axioms, a lot of good properties of
convexity ([1, 9, 10]) can be transposed in discrete structures like graphs. The richest transposition is
obtained for graphs endowed with interval convexities where the notion of segment s(x,y) is re-
placed by that of interval I(x,y) that is the bunch of the shortest paths between x and y in the given
graph (see [10]). It is out of the scope of this paper to explore these properties. Nevertheless, the de-
finition of closure and its properties show clearly that these objects are convex.

In the previous section, we provided an intuitive and natural definition of the least common ances-
tors of a set of vertices denoted as Ica(S). Yet, in applications, when considering a set of vertices S,
every least common ancestor of a pair of vertices of S is a key vertex to gain insight into relationships
among vertices of S. We thus now introduce a new operator that makes use of the Ica operator and
generalizes it to a well defined closure operator.

Definition 2.2.1. Let S be a subset of vertices of G. The U, — operator on S is defined as:

Uica ) = Ux,yeS lca(x, y) @)

It follows from this definition that S < U;.,(S) and that the U,., — operator is monotonous, i.e.:
ACS B = Upq(A) S Upyo(B).

The Fig. 2 below illustrates the definition of the U, — operator and emphasizes its difference with
the standard Ica operator. In this example, given the set S={C1,(2C(3},
Uiea(S) = {B1,B2, B3,C1, C2, €3}, while lca(S) = {A1, A2}.

In some cases, having only U, (S) and/or Ilca(S) is not enough to understand all relationships
among vertices of S. Such a case is depicted in Fig. 3, where the vertex 4 is helpful for understanding

1 Figures were created using GraphViz, version 2.26 http:/ /www.graphviz.org/



C1 and C2 relationships but is neither included in U, (S) nor in lca(S). Vertex 4 is of interest since A
is the Ica of B1 and B2, which in turn are Ica of two vertices of S. This leads us to the following defini-
tion of the U;., — closure of S.

Fig. 2. Uy, and lca are two different operators.

Fig. 3. lllustration of U,., — closure

Let S be a subset of vertices of G and let consider the increasing set sequence defined by:
SO =S and Si+1 = Ulm(Sl-),i = 0, 1,
Since G is finite and Vi S; € S;.,, there is a number ¢,0 < ¢ < |V| such that Vk = ¢, S, = U,,(Sy). This

fixpoint (or fixset) is reached because of the monotonicity of U, — operator. In fact, once this rela-
tion holds for a given k it holds for all greater values. So, ¢ and S, are well defined.

Definition 2.2.2. The number c is the closure index and the set S, is called the U, — closure of S and
is denoted by S.



It is clear from the Definition 2.2.1 that U,.,(®) = @ and S € U,.,(S). Also, U,., is monotonous and it
verifies the finiteness property because G is finite. Since U.1, U.2 and U.4 hold for the U, —
operator, they also hold for its closure. Moreover, by definition of the closure, S=S8.=Up(S) =
Uica (E), therefore the idempotence axiom U.3 is also satisfied.

This definition provides a simple (and inefficient!) iterative algorithm to compute U;., — closure. The
time complexity of this algorithm is related to the closure index. In the simple case when G is a tree,
the closure index cannot be greater than 1. The following lemma shows that this is no longer true in
the general case.

Lemma 2.2.1. For a dag G = (V,E) and a set S €V, the number of iterations needed to obtain S is
o(vD).

Proof. It is clear that Sj increases with at least one vertex at each iteration, hence proving that
¢ < (IV] = IS]). On the other hand, as shown by the example below, ¢ can be as large as (|V| — [S])/2.
It follows that the number of iterations needed to obtain S is O(|V]).

Fig. 4. The closure index can be proportional to |V|.
So = {4y, By}, at iteration k two vertices {4, B, } are added so that S, = {4, ..., Ay, By, .. By }-

There is an alternative (descending) way to define U, — closure. For this, let the family of U, —
closed sets containing S be denoted by:

LES)={LcV|SclLandL= Ulca(L)} @

Now, we show that the family £L(S) verifies the axioms C.1, C.2 and C.3. The axiom C.1 is obvious
from the definition. The axiom C.3 is conceived originally in order to treat the case of infinite increas-
ing set sequences in continuous spaces. As we are dealing with finite graphs, this axiom is obviously
verified. Nevertheless, it is the basis of our greedy algorithm because, when treating the increasing
set sequence of U, — closed sets, only the last one has to be stored for further treatment. The fol-
lowing lemma gives the proof of axiom C.2.

Lemma 2.2.2. L(S) is non-empty and closed for the intersection, i.e. M,N € L(S) > M NN € L(S).

Proof. L(S) is non-empty since V obviously belongs to L(S). Let us now prove that M,N € L(S) =
M N e L(S).
e ScMNN.AsScMandScN,ScMnN.
e MNnN= U,MnN).
o MnNcUyg,(MnN), by the Uy, definition.
o Upe(M NN)cMn N. This comes from the fact that the U,., preserves monotonicity:
MNONcM=UepMAN)CU(M) =M
MNNcN = Ug,MNN)SU(N) =N
Ued MO N) M and Upy(MAN)SN = Ugy(MAN)cMNN. O

Definition 2.2.3. The Uy, — closure of S is the set § = Nypecs) M.



Lemma 2.2.3. The two above definitions of U,., — closure are equivalent.

Proof. One need to show that S = §.
e §c§. By definition, § = Uy, (S), furthermore the monotonicity of the set sequence S, S; ..., S
ensures that S ¢ S. Therefore S € £(S), thus proving that ScS.
o Sc S. By definition, S is included in every set of £(S) and thus in their intersections. It fol-
lows that S, c S, and therefore U, (Sp)=Upcq ( S), which can be rewritten S; = S. Applying the
Uy, operator to both terms leads to S, S, S, S and so on until S, c S, thus proving that
scs.d

These definitions and properties provide the framework for our algorithm.

3 AN EFFICIENT ALGORITHM TO COMPUTE U,y — CLOSURE

In our applications, we have encountered dags that may contain several thousand of vertices. Thus,
efficient algorithms are needed to compute the U;., — closure. As mentioned in introduction, several
good algorithms exist to retrieve all the vertices v € lca(x,y). When calculating the U, — closure,
one could use one of these algorithms as a subroutine. This approach, detailed below, provides a
straightforward solution to calculate the U, — closure and a (high) upper bound on time complexi-
ty. Then, we introduce an optimized solution that takes advantages of convexity properties and to-
pological vertex order. The main result is an algorithm with a worst time complexity of order
O(ISIIED.

3.1 Straightforward algorithm to compute U, - closure

Name: Straightforward_U,, closure
Input: a dag G and a set of nodes S of G.
Result: S.
Sk < S; Spew < S5
do
Stmp < Si;
for each (x,y) € Si X Spew
Stmp < Stmp Ulca(x,y);
end
Snew < Stmp — Sk;
Sk < Stmp;
while S,,., # @

return S
Algorithm 1. A straightforward U,., — closure algorithm

In Algorithm 1 the [ca of each couple of vertices of Sis computed once leading to O(|V|?) calls of the
lca(x,y) subroutine. It follows that the time complexity of this algorithm is bounded by the prepro-
cessing of the dag that allows obtaining the Ica of two nodes in constant time. As mentioned in the
introduction, the best known solution to this pre-process problem has a 0(|V[3*3*39?) worst time com-
plexity and requires O(|V|?) memory space.

3.2 Optimized algorithm to compute U, - closure in O(|S||E|)

This subsection details an optimized algorithm that determines S for a dag G = (V,E) in O(IS||E])
time complexity. The key idea of this greedy algorithm is that, though there are O(|V|?) couples of
vertices, at most O(|V|) nodes can be added to S. Rather than computing Ica for each pair of vertices,
our greedy algorithm considers each node and decide whether or not it must be added to S. This can



be done efficiently by taking a topological vertex order induced by the dag.

Name: postOrder Name: postOrderRec
Input: a dag G Input: a dag G, anode n of G
Result: the list of nodes of G in postOrder Result: add the list of desc(n), in post order, to the

G.postOrder < empty list postOrder list of G

for root in G.nodes() mark 7 as visited

if root has no parent for s in children(n)
postOrderRec(roor) if s has not been visited
end postOrderRec(s)
return G.postOrder end
append n to the postOrder list of G

Algorithm 2. Post order implementation.

Our Uy, — closure algorithm considers vertices in post order, i.e. a vertex is never considered before
considering all of its descendants. Indeed, vertices of a dag can be ordered along a horizontal line
such that all descendants of a vertex are placed to its left. We call this a post order since, as shown in
[11], one can be efficiently obtained using the post-order indices of a depth-first search. We give this
classical ordering algorithm (Algorithm 2) below to make the paper self-content.

Name: U;., — closure
Input: a dag G, a set S of vertices.
Result: $42 = §.
SAL P (Z)
P = postOrder(G)
for n in P
SP(m) <« 0 // §P (n) is the set of descendants of n present in S
maxSP(n) « 0 // maxSP(n) is the maximal value |SP(s)| with s a child of n
for s in children(n)
§P(m) « SP(m) v SP(s) *)
maxSP (n) « max(ISP (s)I, maxS® (n))
end
if ((n € S)OR (|SP()[>maxSP(n)))  (*%)
SP(n) « SP(m) U {n}
SAL P SAL U {Tl}
end
end
return S4*

Algorithm 3. Computation of U,., — closure

Proposition 3.2.1. (Proof of correctness). Given the inputs G =_(V,E) and S, the set S returned by

Algorithm 3 is the closure of S with respect to G, thatis S4* =S5 =§.

Proof. Let P denote the array of nodes of G sorted by the postOrder function. The U, — closure
algorithm goes through P[1], ..., P[k], ..., P[IV|] gathering, for each k, a subset of S4" denoted S (k).
It is clear that S4 = S4L(|V]). We show by induction that:

S4 (k) =S P[1..k] and
SP(P[k]) = S ndesc(P[k]),k=1,2,...,|V|. 3)

In other words we want to show that § is constructed as an increasing sequence. Each term S#*(k) of
this sequence is closed in the subgraph of G induced by the nodes {P[1], ..., P[k]}. In fact, it cannot
contain vertices that are in {P[k + 1], ..., P[[V]]}. The axiom C.3 says that when taking the union of




these terms, the result is the last one.

The statement (3) holds for k = 1. ~

Node P[1] has no descendant. It is kept in S4* if and only if P[1] € S § (the line (**) of the algo-
rithm.) Thus, S4¢(1) = § n P[1..1] and S?(P[1]) = S n desc(P[1]).

Assuming that (3) holds for 1, ..., (k — 1), then it also holds for k.

Let n = P[k] be the current node and {sy, ..., s,} be the set of immediate descendants (children) of n.
Since nodes are considered in post order, all children of n are at the left of n in array P. When the
algorithm is considering n, all of its children s, ..., s, have already been treated and set S°(s;) has
been recorded for each s; € {s;, ..., s, }. At the point (**), the current recorded set for node n (see point

() is:

SP(n) = SP(s,) U ..U S2(s,) @)

2

“ Cll 4

D|1|{}

Fig. 5. Uy, — closure algorithm: considering a node of S.

For each node n, the 3 following characteristics are displayed: its label, its rank in the postOrder vector and its current
set SP(n). This figure shows the information available at the point (**) when processing the node C2 (dotted circle). At
this step the two sets S?(D) and S”(€3) have already been computed. The other S® sets are not yet initialized (marked
with '?'). €3 has been identified as part of S (represented by a circle around it) and the algorithm is considering whether
or not €2 belongs to S. Since €2 € S the test line (**) returns true and €2 will be included into S.

The test at the point (**) of the algorithm is used to decide whether or not n is in the closure and
should be added to SP(n) and to SAL.

e Case n €S n is added to SA(k) as well as to SP(n) and evidently n € SN P[1..k] and
SP(P[k]) = S N desc(P[K]) (see Fig. 5 for an example).

e Casen ¢S. In this case, assuming the induction hypothesis, at the point (**), all the nodes of
SP=8P(s;)u ..U SD(sp) are in § and S° = S2(n) — {n} = S ndesc(n). The only thing remain-
ing to prove is that n will be included in $#%(k) and in S”(n) if, and only if, it is the least com-
mon ancestor of two nodes of SP.

o If(1S°(n)| > maxS”(n)) then there are at least two nodes z, t of S°. such that n = lca(z,t) and n
should be added to S#%(k) as well as to S®(n). (see Fig. 6 for an example.)
As |SP(n)| > maxSP(n), there are at least two nodes z,t € S? such that {z,t} & SP(s,), i =




1,...,p. It follows that there are two distinct children s;, s; of n such that z € SP(s), tes? (s]-).
By definition of the Ica, n € lca(z, t) if and only if, n € A(z,t) and n has no descendant in the
ancestors set A(z)NA(t). The former assertion is obvious, let us prove the latter by supposing
that this is not the case (reductio ad absurdum). So, there is a node n’ € A(z)NA(t) and a (n,n’)
directed path in G. This path necessarily goes through a child s,,, of n and, according to the in-
duction hypothesis, S?(s;,) = S ndesc(sy). It follows that {z,t} € S°(s,,), which is impossi-
ble.

o If the test (**) is not true, then n is not in the closure and is added neither to S® nor to SA. (see
Fig. 7 for an example.)
The main thing to prove is that when |S? (n)| = maxSP (n), there are not two nodes z, t of S?(n)
such that n = lca(z,t). (see Fig. 7 for an example). As [SP(n)| = maxSP(n) then there is some
i € {1, ..., p} such that S°(n) = SP(s;). In this case, n cannot be the lca of a couple of nodes (z, t)
because the node s; is (by construction) an ancestor of z,t and a descendant of n. It follows
that n ¢ S and the proof is complete. ©
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Fig. 6. Uy, — closure algorithm: considering a node of S. | Fig. 7. Uy, — closure algorithm: considering a node that is
notinS.

This figure displays information available at the point (**)

while processing the node B1 (see Fig. 5 for legend).
C1,C2 and C3 have been identified as part of the U,
closure of S (encircled) and the algorithm considers
whether or not B1 is also part of this U, closure. Here,

The algorithm is considering A1. At the point (**), the set
SP(A1) combines the three sets SP(C1), S?(X) and
SP(D). With the resulting set being equal to S?(X) and
Al ¢ S, A1 will not be added to the U,.,closure of S.

the current set SP(B1) is the union of the two sets SP(C1)
and SP(C2). This union being larger than the two sets
used to deduce it, B1 is identified as part of the U,
closure of S and S?(B1) will be updated accordingly.

Proposition 3.2.2. (Time complexity of U,., — closure algorithm) For a node set S in a dag G = (V,E), the
Uyeq — closure algorithm runs in O(|S||E]) = O(|V||E|).

Proof. Obtaining the postorder vector of nodes is done through a classical depth first search traversal
of the graph in O(|E|). The complexity of the remaining part of the algorithm, made of two nested for
loops, is obviously determined by the number of executions of line (*). This line computes the union
of two sets of at most |S| elements and is executed for every child of every node, i.e. O(|E|) times. It
follows that the overall complexity of this algorithm is O(|S||E[).O0

Proposition 3.2.3. (Space complexity of U,., — closure algorithm) For a node set S in a dag G = (V,E),
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the U, — closure algorithm requires O(|S||V]) = O(|V|?) memory space.

Proof. For each node, a subset of S is stored. In the worst case, |S| = |V| leading to a complexity of
oD

Note that in most real cases |§| < |V|. Moreover, when all the parents of a node n have been treated,
the subset of S attached to n becomes useless. As a consequence, some memory space can be freed.
This can be easily done by maintaining a counter for each node initialized to its number of parents.
When treating a node, the counters of all of its children are decreased by one, and when a child
reaches a zero value its memory is freed. This does not reduce the worst case complexity, since this
optimization is useless when the dag is made of one node that has |V| — 1 children, but it significantly
reduces the memory space needed in real applications.

3.3 Building a relevant excerpt of a dag from a subset of its vertices

When searching for the least relevant overset S, the U, — closure algorithm described above pro-
vide an efficient solution to identify them. Our set of relevant nodes is S, = S.

Then, one may need to extract the corresponding excerpt of the dag. This reduced dag can be seen as
a dedicated “view” of the largest dag and can be used to speed up further analysis or to allow end
user interaction/visualization related to the task. This “relevant dag excerpt” must preserve the par-
tial order among vertices of S, that is induced by the whole original dag even though some interme-
diary nodes have not been kept in S,. More formally, given the dag G = (V,E) and a subset S, of V,
we define the relevant sub-dag G, = (}, E,) as:

e =S
e (u,v) € E, iff there is a directed path in G going from u to v without crossing any nodes of V,

The set E, of edges can be efficiently computed thanks to the topological order induced by the dag.
This time we will consider a vertex u only after having considered all of its ascendants. Such an or-
der, that we will call a pre order, can be obtained by considering the post order vector from tail to
head.

Name: relevantDagExcerpt
Input: adagG = (V,E) asetS, of relevant nodes
Result: G, = (V,, E,) the relevant dag excerpt.
Ve« 503G — V3, 0)
for each u in reverse(postOrder(G))
Vera(u) — 0
for each fin parents(u)
if(fev,)
Vera(W) — Vrpa (W UVrga (f) (%)
else
Vera() — Vppa(W)USf
if(uev,)
for each v in Vg, (u)
E, — E;U (wv)
return G,
Algorithm 4. Relevant dag excerpt algorithm

Let Vzra(u) be the set of Relevant Reachable Ancestors of u containing vertices that are present in V. and
can be reached from u through a path crossing no other nodes of V.. When considering vertices in pre
order, the set Vpp,(u) of the current node u is the union of the sets Vi, (f) of all its parent nodes that
are not in 1, plus all its parent nodes that are in V. The set E, is then constructed by adding, for each
node u of V, the edges (u, v) between u and any node v of Vi, (u) as detailed in Algorithm 4.



11

The complexity of this algorithm is similar to that of the U, — closure (Algorithm 3). As for this
latter algorithm, the key instruction, line (*), computes the union of two sets of at most |V, | elements
and is executed for every parent of every node of the initial dag G i.e. O(|E]) times.

4 BUILDING RELEVANT SUB-DAG VIEWS BASED ON CLOSURE: TWO CASE STUDIES

This section illustrates the usefulness of our approach for two biological applications. The first one is
related to ontology based annotation while the second one is related to species identification for
metagenomic analysis.

4.1 Building sub-ontology to apprehend gene annotations

Ontologies are successfully used as semantic guides when navigating through the huge and ever
increasing quantity of digital documents [12]. They are a graph based representation of domain se-
mantics where nodes represent concepts of the fields and labeled edges represent concept relation-
ships. The is-a relationship is central in ontology for it is the sole one that appears in formal ontology
definition [13]; it is the sole that is present in all ontologies; and it is by far the most widely used
relationship used to link concepts. When restricted to is-a edges the ontology graph is a dag that is
often referred to as the backbone of the ontology [13, 14].

The need for sub-ontology extraction is clearly exposed in [15], where authors point out the fact that
an application focuses only on particular aspects of the whole ontology. Having concise and mea-
ningful sub-ontology is also crucial in any computer assisted ontology operation needing a human
expert, such as ontology design and evolution or visual filtering within conceptual maps. When fo-
cusing on a subset of concepts (e.g. those indexing a given document or those over represented in the
index of a set of documents) a graphical representation of their is-a relationships is very helpful. The
most widespread solution is to display those concepts of interest with all their ancestors. This rough
solution is (manually) used in many publications (e.g. [16, 17]) as well as within Web based tools
(http://www.informatics jax.org/GOgraphs/OrthoDisease). The U, — closure provides a more concise excerpt

of the is-a dag by keeping only ancestors that highlight relation among the concept of interests. In-
deed this ontology problematic was at the origin of our work on Uy, — closure and we have deve-
lopped a dedicated tool called OntoFocus.

To illustrate the relevance and scalability of this approach, OntoFocus has been used to restrict the
Gene Ontology (containing about 30,000 terms) to the 50 concepts of the BRCA1 gene associated with
BReast CAncer susceptibility according to the European Bioinformatics Institute
(http://www.ebi.ac.uk/GOA/.) The corresponding sub-ontology inferred by OntoFocus in about one
minute contains 92 relevant concepts.

GO_0005622 GO_0044424

'005 737 GO GG

GO_0000151 GO_000274 "GO G042

GO (043229

GO_0005634 GO_0000793

GO_D031436

Fig. 8. Visualization of cellular component (GO_0005575).

GO_D005654
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GO-sub-ontologies constructed by OntoFocus using BRCA1 annotation (white colored concepts). Blue colored concepts
were added by OntoFocus to explicit semantic relationships among white ones.

In Fig. 8 one of the three connected parts of the sub-ontology is presented, that corresponds to cellular
components. As one may see, the visualization is very comfortable and within human cognitive and
perceptive limits. The two other parts, not shown here, contain 15 and 63 terms, which also allow a
comfortable visualization.

Several applications may be underlined. First of all, the user-centered sub-ontology may be useful for
biological users in exploiting annotations. This highlights, for example, that several annotations are
refinements of the intracellular part (GO_0044424.) The same approach may be used to simultaneous-
ly consider the annotation of several genes that share some biological characteristics (e.g. genes hav-
ing similar expression profiles in microarray experiments.)

4.2 ldentifying taxonomic group of environmental DNA sequences

New high-throughput sequencing techniques allow to obtain millions of short portions of DNA ge-
nomes (or transcriptome) called reads. These techniques can be used to sequence DNA of a single
species. In that case the quantity of obtained information allows assembling almost the whole ge-
nome of this species. Alternatively, one can also choose to sequence the whole set of genomes availa-
ble in a given environment (e.g. human guts, ocean or earth sample and so on). This is particularly
useful to study the evolution of the biodiversity of the sampled environment in response to some
changes (e.g. illness, climate change). In this latter case a key task is to assign the sequenced reads to
a given species or taxonomic group. This is generally done based on a phylogenetic tree whose
leaves represent today species and internal nodes speciation events that define taxonomic groups. To
assign a taxonomic identity to a given read, the unknown DNA sequence is compared to those of the
phylogeny tree leaves that are: colored in blue when similar to the read and in red otherwise. In the
easiest case there is a single blue leaf and the read will be annotated with the corresponding species.
For ambiguous reads, there are several blue leaves and the read is traditionally annotated based on
their Ica. A recent paper described an original approach that performed better on simulated and real
datasets [18]. The idea is to identify the internal node # that best annotates a read based on the num-
ber of its blue descendants (true positives) red descendants (false positive) as well as the number of
blue and red leaves that are not descendant of n (true and false negative). For doing so, it suffices to
tests what they also called “relevant nodes” that are the least common ancestors of two or more blue
leaves. This can be seen as a particular case of our Uy, — closure when the dag is a tree. Moreover
they provide an algorithm to restrict the taxonomic tree to this relevant set of nodes which is also a
particular case of our more general dag excerpt algorithm. Our work provides theoretical results and
an algorithm that extend their read annotation approach to the case where the taxonomy is depicted
by a phylogenetic network instead of a phylogenetic tree. Phylogenetic networks are dags whose
leaves also represent extant species that received more and more attention in evolutionary biology (a
recent book is entirely dedicated to them [19]). Indeed, by authorizing a node to have several parents
they allow to represent phylogenetic uncertainty (it is not clear which parent is the real one) and
complex biological events (such as species hybridization or lateral gene transfers).

5 CONCLUDING REMARKS

This paper introduced the concept of U, — closure of a set S of vertices in a dag and an optimized
algorithm to identify it. This algorithm has the best known time complexity O(|S||E[|) while using
only O(|V|*) memory space. This low complexity comes from the convexity properties of the closure
of Uy, — operator that allows to obtain a greedy algorithm.

Many applications may benefit from such an algorithm. Two of them, developed in this paper, con-
cern the life sciences domain. One is related to the widespread Gene Ontology while the other is
related to environmental metagenomic analysis.

Future directions of our work include further study of the relationship between the closure concept
and convexity and related algorithm's optimization.
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