On polynomial automorphisms commuting with a simple derivation - Institut de Mathématiques et de Modélisation de Montpellier
Pré-Publication, Document De Travail Année : 2024

On polynomial automorphisms commuting with a simple derivation

Résumé

Let $D$ be a simple derivation of the polynomial ring $\mathbb{k}[x_1,\dots,x_n]$, where $\mathbb{k}$ is an algebraically closed field of characteristic zero, and denote by $\operatorname{Aut}(D)\subset\operatorname{Aut}(\mathbb{k}[x_1,\dots,x_n])$ the subgroup of $\mathbb{k}$-automorphisms commuting with $D$. We show that the connected component of $\operatorname{Aut}(D)$ passing through the identity is a unipotent algebraic group of dimension at most $n-2$, this bound being sharp. Moreover, $\operatorname{Aut}(D)$ is an algebraic group if and only if it is a connected ind-group. Given a simple derivation $D$, we characterize when $\operatorname{Aut}(D)$ contains a normal subgroup of translations. As an application of our techniques we show that if $n=3$, then either $\operatorname{Aut}(D)$ is a discrete group or it is isomorphic to the additive group acting by translations, and give some insight on the case $n=4$.
Fichier principal
Vignette du fichier
ArxivV1.pdf (341.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04840230 , version 1 (16-12-2024)

Licence

Identifiants

Citer

Pierre-Louis Montagard, Iván Pan, Alvaro Rittatore. On polynomial automorphisms commuting with a simple derivation. 2024. ⟨hal-04840230⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More