Optimizing quasi-dissipative evolution equations with the moment-SOS hierarchy - Institut de Mathématiques et de Modélisation de Montpellier
Pré-Publication, Document De Travail Année : 2024

Optimizing quasi-dissipative evolution equations with the moment-SOS hierarchy

Résumé

We prove that there is no relaxation gap between a quasi-dissipative nonlinear evolution equation in a Hilbert space and its linear Liouville equation reformulation on probability measures. In other words, strong and generalized solutions of such equations are unique in the class of measure-valued solutions. As a major consequence, non-convex numerical optimization over these non-linear partial differential equations can be carried out with the infinite-dimensional moment-SOS hierarchy with global convergence guarantees. This covers in particular all reaction-diffusion equations with polynomial nonlinearity.
Fichier principal
Vignette du fichier
dissipative.pdf (227.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04828131 , version 1 (09-12-2024)

Identifiants

  • HAL Id : hal-04828131 , version 1

Citer

Saroj Prasad Chhatoi, Didier Henrion, Swann Marx, Nicolas Seguin. Optimizing quasi-dissipative evolution equations with the moment-SOS hierarchy. 2024. ⟨hal-04828131⟩
0 Consultations
0 Téléchargements

Partager

More