PAC-Bayesian AUC classification and scoring - ENSAE Paris
Communication Dans Un Congrès Année : 2014

PAC-Bayesian AUC classification and scoring

Pierre Alquier
  • Fonction : Auteur
  • PersonId : 991019
James Ridgway
  • Fonction : Auteur

Résumé

We develop a scoring and classification procedure based on the PAC-Bayesian approach and the AUC (Area Under Curve) criterion. We focus initially on the class of linear score functions. We derive PAC-Bayesian non-asymptotic bounds for two types of prior for the score parameters: a Gaussian prior, and a spike-and-slab prior; the latter makes it possible to perform feature selection. One important advantage of our approach is that it is amenable to powerful Bayesian computational tools. We derive in particular a Sequential Monte Carlo algorithm, as an efficient method which may be used as a gold standard, and an Expectation-Propagation algorithm, as a much faster but approximate method. We also extend our method to a class of non-linear score functions, essentially leading to a nonparametric procedure, by considering a Gaussian process prior.
Fichier principal
Vignette du fichier
NIPS-2014-pac-bayesian-auc-classification-and-scoring-Paper.pdf (354.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04793393 , version 1 (25-11-2024)

Identifiants

  • HAL Id : hal-04793393 , version 1

Citer

Nicolas Chopin, Pierre Alquier, James Ridgway. PAC-Bayesian AUC classification and scoring. Advances in neural information processing systems, Dec 2014, Montréal, Canada. ⟨hal-04793393⟩
0 Consultations
0 Téléchargements

Partager

More